E. Lattice Semiconductor Corporation - LAMXO640C-3TN100E Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Product Status	Active
Programmable Type	In System Programmable
Delay Time tpd(1) Max	4.9 ns
Voltage Supply - Internal	1.71V ~ 3.465V
Number of Logic Elements/Blocks	-
Number of Macrocells	320
Number of Gates	
Number of I/O	74
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lamxo640c-3tn100e
	· · · · · · · · · · · · · · · · · · ·

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Semiconductor **Corporation**

Lattice[®] LA-MachXO Automotive Family Data Sheet Introduction

April 2006

Features

Non-volatile, Infinitely Reconfigurable

- Instant-on powers up in microseconds
- Single chip, no external configuration memory reauired
- · Excellent design security, no bit stream to intercept
- Reconfigure SRAM based logic in milliseconds
- SRAM and non-volatile memory programmable through JTAG port
- · Supports background programming of non-volatile memory

AEC-Q100 Tested and Qualified

- Sleep Mode
 - Allows up to 100x static current reduction
- TransFR[™] Reconfiguration (TFR)
 - In-field logic update while system operates
- High I/O to Logic Density
 - 256 to 2280 LUT4s
 - 73 to 271 I/Os with extensive package options
 - Density migration supported
 - Lead free/RoHS compliant packaging
 - **Embedded and Distributed Memory**
 - Up to 27.6 Kbits sysMEM[™] Embedded Block RAM
 - Up to 7.5 Kbits distributed RAM
 - Dedicated FIFO control logic

Flexible I/O Buffer

- Programmable sysIO[™] buffer supports wide range of interfaces:
 - LVCMOS 3.3/2.5/1.8/1.5/1.2
 - LVTTL
 - PCI
 - LVDS, Bus-LVDS, LVPECL, RSDS

■ sysCLOCK[™] PLLs

- Up to two analog PLLs per device
- Clock multiply, divide, and phase shifting

System Level Support

- IEEE Standard 1149.1 Boundary Scan
- Onboard oscillator
- Devices operate with 3.3V, 2.5V, 1.8V or 1.2V power supply
- IEEE 1532 compliant in-system programming

Introduction

The LA-MachXO automotive device family is optimized to meet the requirements of applications traditionally addressed by CPLDs and low capacity FPGAs: glue logic, bus bridging, bus interfacing, power-up control, and control logic. These devices bring together the best features of CPLD and FPGA devices on a single chip in AEC-Q100 tested and qualified versions.

The devices use look-up tables (LUTs) and embedded block memories traditionally associated with FPGAs for flexible and efficient logic implementation. Through nonvolatile technology, the devices provide the single-chip,

Device	LAMXO256E/C	LAMXO640E/C	LAMXO1200E	LAMXO2280E	
LUTs	256	640	1200	2280	
Dist. RAM (Kbits)	2.0	6.0	6.25	7.5	
EBR SRAM (Kbits)	0	0	9.2	27.6	
Number of EBR SRAM Blocks (9 Kbits)	0	0	1	3	
V _{CC} Voltage	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V	1.2	1.2	
Number of PLLs	0	0	1	2	
Max. I/O	78	159	211	271	
Packages				1	
100-pin Lead-Free TQFP (14x14 mm)	78	74	73	73	
144-pin Lead-Free TQFP (20x20 mm)		113	113	113	
256-ball Lead-Free ftBGA (17x17 mm)		159	211	211	
324-ball Lead-Free ftBGA (19x19 mm)				271	

Table 1-1. LA-MachXO Automotive Family Selection Guide

© 2006 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

www.latticesemi.com

Data Sheet DS1003

high-security, instant-on capabilities traditionally associated with CPLDs. Finally, advanced process technology and careful design will provide the high pin-to-pin performance also associated with CPLDs.

The ispLEVER[®] design tools from Lattice allow complex designs to be efficiently implemented using the LA-MachXO automotive family of devices. Popular logic synthesis tools provide synthesis library support for LA-MachXO. The ispLEVER tools use the synthesis tool output along with the constraints from its floor planning tools to place and route the design in the LA-MachXO device. The ispLEVER tool extracts the timing from the routing and back-annotates it into the design for timing verification.

Lattice LA-MachXO Automotive Family Data Sheet **Architecture**

February 2007

Data Sheet DS1003

Architecture Overview

The LA-MachXO family architecture contains an array of logic blocks surrounded by Programmable I/O (PIO). Some devices in this family have sysCLOCK PLLs and blocks of sysMEM[™] Embedded Block RAM (EBRs). Figures 2-1, 2-2, and 2-3 show the block diagrams of the various family members.

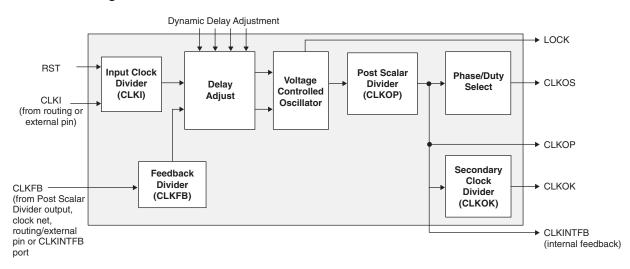
The logic blocks are arranged in a two-dimensional grid with rows and columns. The EBR blocks are arranged in a column to the left of the logic array. The PIO cells are located at the periphery of the device, arranged into Banks. The PIOs utilize a flexible I/O buffer referred to as a sysIO interface that supports operation with a variety of interface standards. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources.

There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and the Programmable Functional unit without RAM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM, ROM, and register functions. The PFF block contains building blocks for logic, arithmetic, ROM, and register functions. Both the PFU and PFF blocks are optimized for flexibility, allowing complex designs to be implemented quickly and effectively. Logic blocks are arranged in a two-dimensional array. Only one type of block is used per row.

In the LA-MachXO family, the number of sysIO Banks varies by device. There are different types of I/O Buffers on different Banks. See the details in later sections of this document. The sysMEM EBRs are large, dedicated fast memory blocks; these blocks are found only in the larger devices. These blocks can be configured as RAM, ROM or FIFO. FIFO support includes dedicated FIFO pointer and flag "hard" control logic to minimize LUT use.

The LA-MachXO architecture provides up to two sysCLOCK[™] Phase Locked Loop (PLL) blocks on larger devices. These blocks are located at either end of the memory blocks. The PLLs have multiply, divide, and phase shifting capabilities that are used to manage the frequency and phase relationships of the clocks.

Every device in the family has a JTAG Port that supports programming and configuration of the device as well as access to the user logic. The LA-MachXO devices are available for operation from 3.3V, 2.5V, 1.8V, and 1.2V power supplies, providing easy integration into the overall system.


^{© 2007} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

sysCLOCK Phase Locked Loops (PLLs)

The LA-MachXO1200 and LA-MachXO2280 provide PLL support. The source of the PLL input divider can come from an external pin or from internal routing. There are four sources of feedback signals to the feedback divider: from CLKINTFB (internal feedback port), from the global clock nets, from the output of the post scalar divider, and from the routing (or from an external pin). There is a PLL_LOCK signal to indicate that the PLL has locked on to the input clock signal. Figure 2-10 shows the sysCLOCK PLL diagram.

The setup and hold times of the device can be improved by programming a delay in the feedback or input path of the PLL which will advance or delay the output clock with reference to the input clock. This delay can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after adjustment and not relock until the t_{LOCK} parameter has been satisfied. Additionally, the phase and duty cycle block allows the user to adjust the phase and duty cycle of the CLKOS output.

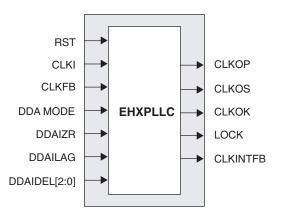

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. Each PLL has four dividers associated with it: input clock divider, feedback divider, post scalar divider, and secondary clock divider. The input clock divider is used to divide the input clock signal, while the feedback divider is used to multiply the input clock signal. The post scalar divider allows the VCO to operate at higher frequencies than the clock output, thereby increasing the frequency range. The secondary divider is used to derive lower frequency outputs.

Figure 2-10. PLL Diagram

Figure 2-11 shows the available macros for the PLL. Table 2-5 provides signal description of the PLL Block.

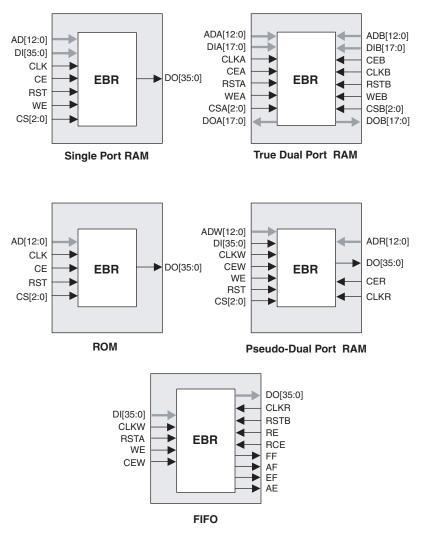
Figure 2-11. PLL Primitive

Bus Size Matching

All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1 and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.


Memory Cascading

Larger and deeper blocks of RAMs can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs.

Single, Dual, Pseudo-Dual Port and FIFO Modes

Figure 2-12 shows the five basic memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and address for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the memory array output.

Figure 2-12. sysMEM Memory Primitives

Output Standard	Drive	V _{CCIO} (Typ.)
Single-ended Interfaces		
LVTTL	4mA, 8mA, 12mA, 16mA	3.3
LVCMOS33	4mA, 8mA, 12mA, 14mA	3.3
LVCMOS25	4mA, 8mA, 12mA, 14mA	2.5
LVCMOS18	4mA, 8mA, 12mA, 14mA	1.8
LVCMOS15	4mA, 8mA	1.5
LVCMOS12	2mA, 6mA	1.2
LVCMOS33, Open Drain	4mA, 8mA, 12mA, 14mA	_
LVCMOS25, Open Drain	4mA, 8mA, 12mA, 14mA	—
LVCMOS18, Open Drain	4mA, 8mA, 12mA, 14mA	_
LVCMOS15, Open Drain	4mA, 8mA	_
LVCMOS12, Open Drain	2mA, 6mA	—
PCI33 ³	N/A	3.3
Differential Interfaces		
LVDS ^{1, 2}	N/A	2.5
BLVDS, RSDS ²	N/A	2.5
LVPECL ²	N/A	3.3

1. LA-MachXO1200 and LA-MachXO2280 devices have dedicated LVDS buffers.

2. These interfaces can be emulated with external resistors in all devices.

3. Top Banks of LA-MachXO1200 and LA-MachXO2280 devices only.

sysIO Buffer Banks

The number of Banks vary between the devices of this family. Eight Banks surround the two larger devices, the LA-MachXO1200 and LA-MachXO2280 (two Banks per side). The LA-MachXO640 has four Banks (one Bank per side). The smallest member of this family, the LA-MachXO256, has only two Banks.

Each sysIO buffer Bank is capable of supporting multiple I/O standards. Each Bank has its own I/O supply voltage (V_{CCIO}) which allows it to be completely independent from the other Banks. Figure 2-18, Figure 2-18, Figure 2-20 and Figure 2-21 shows the sysIO Banks and their associated supplies for all devices.

Device Configuration

All LA-MachXO devices contain a test access port that can be used for device configuration and programming.

The non-volatile memory in the LA-MachXO can be configured in two different modes:

- In IEEE 1532 mode via the IEEE 1149.1 port. In this mode, the device is off-line and I/Os are controlled by BSCAN registers.
- In background mode via the IEEE 1149.1 port. This allows the device to remain operational in user mode while reprogramming takes place.

The SRAM configuration memory can be configured in three different ways:

- At power-up via the on-chip non-volatile memory.
- After a refresh command is issued via the IEEE 1149.1 port.
- In IEEE 1532 mode via the IEEE 1149.1 port.

Figure 2-22 provides a pictorial representation of the different programming modes available in the LA-MachXO devices. On power-up, the SRAM is ready to be configured with IEEE 1149.1 serial TAP port using IEEE 1532 protocols.

Leave Alone I/O

When using IEEE 1532 mode for non-volatile memory programming, SRAM configuration, or issuing a refresh command, users may specify I/Os as high, low, tristated or held at current value. This provides excellent flexibility for implementing systems where reconfiguration or reprogramming occurs on-the-fly.

TransFR (<u>Transparent Field Reconfiguration</u>)

TransFR (TFR) is a unique Lattice technology that allows users to update their logic in the field without interrupting system operation using a single ispVM command. See Lattice technical note #TN1087, *Minimizing System Interruption During Configuration Using TransFR Technology*, for details.

Security

The LA-MachXO automotive devices contain security bits that, when set, prevent the readback of the SRAM configuration and non-volatile memory spaces. Once set, the only way to clear the security bits is to erase the memory space.

For more information on device configuration, please see details of additional technical documentation at the end of this data sheet.

AEC-Q100 Tested and Qualified

The Automotive Electronics Council (AEC) consists of two committees: the Quality Systems Committee and the Component Technical Committee. These committees are composed of representatives from sustaining and other associate members. The AEC Component Technical Committee is the standardization body for establishing standards for reliable, high quality electronic components. In particular, the AEC-Q100 specification "Stress Test for Qualification for Integrated Circuits" defines qualification and re-qualification requirements for electronic components. Components meeting these specifications are suitable for use in the harsh automotive environment without additional component-level qualification testing. Lattice's LA-ispMACH 4000V and LA-MachXO devices completed and passed the requirements of the AEC-Q100 specification.

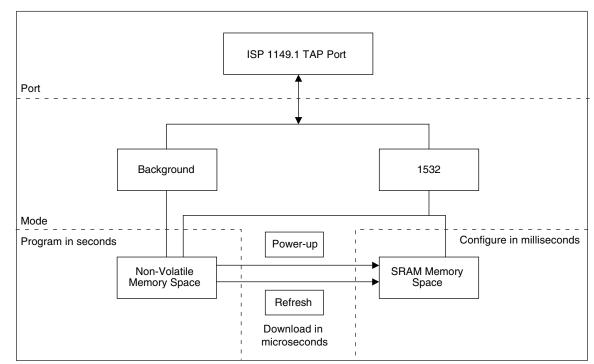


Figure 2-22. LA-MachXO Configuration and Programming

Density Shifting

The LA-MachXO family has been designed to enable density migration in the same package. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

LA-MachXO Automotive Family Data Sheet

November 2007

Data Sheet DS1003

Absolute Maximum Ratings^{1, 2, 3}

	LCMXO E (1.2V)	LCMXO C (1.8V/2.5V/3.3V)
Supply Voltage V _{CC}	0.5 to 1.32V	0.5 to 3.75V
Supply Voltage V _{CCAUX}	0.5 to 3.75V	0.5 to 3.75V
Output Supply Voltage V _{CCIO}	0.5 to 3.75V	0.5 to 3.75V
I/O Tristate Voltage Applied ⁴	0.5 to 3.75V	0.5 to 3.75V
Dedicated Input Voltage Applied ⁴	0.5 to 3.75V	0.5 to 4.25V
Storage Temperature (ambient)	65 to 150°C	65 to 150°C
Junction Temp. (Tj)	+125°C	+125°C

1. Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

2. Compliance with the Lattice Thermal Management document is required.

3. All voltages referenced to GND.

4. Overshoot and undershoot of -2V to (V_{IHMAX} + 2) volts is permitted for a duration of <20ns.

Recommended Operating Conditions¹

Symbol	Parameter	Min.	Max.	Units
Maria	Core Supply Voltage for 1.2V Devices	1.14	1.26	V
V _{CC}	Core Supply Voltage for 1.8V/2.5V/3.3V Devices	1.71	3.465	V
V _{CCAUX} ³	Auxiliary Supply Voltage	3.135	3.465	V
V _{CCIO²}	I/O Driver Supply Voltage	1.14	3.465	V
t _{JAUTO}	Junction Temperature Automotive Operation	-40	125	°C
t _{JFLASHAUTO}	Junction Temperature, Flash Programming, Automotive	-40	125	°C

1. Like power supplies must be tied together. For example, if V_{CCIO} and V_{CC} are both 2.5V, they must also be the same supply 3.3V V_{CCIO} and 1.2V V_{CCIO} should be tied to V_{CCAUX} or 1.2V V_{CC} respectively.

2. See recommended voltages by I/O standard in subsequent table.

3. V_{CC} must reach minimum V_{CC} value before V_{CCAUX} reaches 2.5V.

LA-MachXO256 and LA-MachXO640 Hot Socketing Specifications^{1, 2, 3}

Symbol	Parameter	Condition	Min.	Тур.	Max	Units
I _{DK}	Input or I/O leakage Current	$0 \le V_{IN} \le V_{IH}$ (MAX)	—	—	+/-1000	μA

1. Insensitive to sequence of V_{CC}, V_{CCAUX}, and V_{CCIO}. However, assumes monotonic rise/fall rates for V_{CC}, V_{CCAUX}, and V_{CCIO}.

2. $0 \le V_{CC} \le V_{CC}$ (MAX), $0 \le V_{CCIO} \le V_{CCIO}$ (MAX) and $0 \le V_{CCAUX} \le V_{CCAUX}$ (MAX).

3. I_{DK} is additive to I_{PU} , I_{PD} or I_{BH} .

^{© 2007} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Lattice LA-MachXO Automotive Family Data Sheet **Pinout Information**

November 2007

Data Sheet DS1003

Signal Descriptions

Signal Name	I/O	Descriptions				
General Purpose	•					
		[Edge] indicates the edge of the device on which the pad is located. Valid edge designa- tions are L (Left), B (Bottom), R (Right), T (Top).				
		[Row/Column Number] indicates the PFU row or the column of the device on which the PIO Group exists. When Edge is T (Top) or (Bottom), only need to specify Row Number. When Edge is L (Left) or R (Right), only need to specify Column Number.				
P[Edge] [Row/Column Number]_[A/B/C/D/E/F]	I/O	[A/B/C/D/E/F] indicates the PIO within the group to which the pad is connected.				
		Some of these user programmable pins are shared with special function pins. When not used as special function pins, these pins can be programmed as I/Os for user logic.				
		During configuration of the user-programmable I/Os, the user has an option to tri-state the I/Os and enable an internal pull-up resistor. This option also applies to unused pins (or those not bonded to a package pin). The default during configuration is for user-programmable I/Os to be tri-stated with an internal pull-up resistor enabled.				
GSRN	I	Global RESET signal (active low). Dedicated pad, when not in use it can be used as an I/O pin.				
TSALL	TSALL is a dedicated pad for the global output enable signal. When outputs are tristated. It is a dual function pin. When not in use, it can					
NC	—	No connect.				
GND	—	GND - Ground. Dedicated pins.				
V _{CC}	_	VCC - The power supply pins for core logic. Dedicated pins.				
V _{CCAUX}	-	VCCAUX - the Auxiliary power supply pin. This pin powers up a variety of internal circuits including all the differential and referenced input buffers. Dedicated pins.				
V _{CCIOx}	_	V _{CCIO} - The power supply pins for I/O Bank x. Dedicated pins.				
SLEEPN ¹	I	Sleep Mode pin - Active low sleep pin. When this pin is held high, the device operates normally. This pin has a weak internal pull-up, but when unused, an external pull-up to V_{CC} is recommended. When driven low, the device moves into Sleep mode after a specified time.				
PLL and Clock Functions	(Used	as user programmable I/O pins when not used for PLL or clock pins)				
[LOC][0]_PLL[T, C]_IN	-	Reference clock (PLL) input Pads: [LOC] indicates location. Valid designations are ULM (Upper PLL) and LLM (Lower PLL). T = true and C = complement.				
[LOC][0]_PLL[T, C]_FB	_	Optional feedback (PLL) input Pads: [LOC] indicates location. Valid designations are ULM (Upper PLL) and LLM (Lower PLL). T = true and C = complement.				
PCLK [n]_[1:0]	_	Primary Clock Pads, n per side.				
Test and Programming (D	edicate	d pins)				
TMS	I	Test Mode Select input pin, used to control the 1149.1 state machine.				
ТСК	I	Test Clock input pin, used to clock the 1149.1 state machine.				
TDI	I	Test Data input pin, used to load data into the device using an 1149.1 state machine.				
TDO	0	Output pin -Test Data output pin used to shift data out of the device using 1149.1.				

1. Applies to LA-MachXO "C" devices only. NC for "E" devices.

^{© 2007} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Pin Information Summary

		LAMXO256C/E		LAMXO640C/E	
Pin Type		100 TQFP	100 TQFP	144 TQFP	256 ftBGA
Single Ended User I/O	78	74	113	159	
Differential Pair User I/O1		38	17	43	79
Muxed		6	6	6	6
TAP		4	4	4	4
Dedicated (Total Without Supplie	es)	5	5	5	5
VCC		2	2	4	4
VCCAUX		1	1	2	2
	Bank0	3	2	2	4
VCCIO	Bank1	3	2	2	4
	Bank2	—	2	2	4
	Bank3	—	2	2	4
GND		8	10	12	18
NC		0	0	0	52
	Bank0	41/20	18/5	29/10	42/21
Single Ended/Differential I/O	Bank1	37/18	21/4	30/11	40/20
per Bank	Bank2	—	14/2	24/9	36/18
	Bank3	—	21/6	30/13	40/20

1. These devices support emulated LVDS outputs. LVDS inputs are not supported.

			LAMXO1200E			LAMX	02280E	
Pin Type		100 TQFP	144 TQFP	256 ftBGA	100 TQFP	144 TQFP	256 ftBGA	324 ftBGA
Single Ended User I/O		73	113	211	73	113	211	271
Differential Pair User I/O1		27	48	105	30	47	105	134
Muxed		6	6	6	6	6	6	6
ТАР		4	4	4	4	4	4	4
Dedicated (Total Without Sup	plies)	5	5	5	5	5	5	5
VCC		4	4	4	2	4	4	6
VCCAUX		2	2	2	2	2	2	2
	Bank0	1	1	2	1	1	2	2
	Bank1	1	1	2	1	1	2	2
	Bank2	1	1	2	1	1	2	2
VCCIO	Bank3	1	1	2	1	1	2	2
VCCIU	Bank4	1	1	2	1	1	2	2
	Bank5	1	1	2	1	1	2	2
	Bank6	1	1	2	1	1	2	2
	Bank7	1	1	2	1	1	2	2
GND		8	12	18	8	12	18	24
NC		0	0	0	0	0	0	0
	Bank0	10/3	14/6	26/13	9/3	13/6	24/12	34/17
	Bank1	8/2	15/7	28/14	9/3	16/7	30/15	36/18
	Bank2	10/4	15/7	26/13	10/4	15/7	26/13	34/17
Single Ended/Differential I/O	Bank3	11/5	15/7	28/14	11/5	15/7	28/14	34/17
per Bank	Bank4	8/3	14/5	27/13	8/3	14/4	29/14	35/17
	Bank5	5/2	10/4	22/11	5/2	10/4	20/10	30/15
	Bank6	10/3	15/6	28/14	10/4	15/6	28/14	34/17
	Bank7	11/5	15/6	26/13	11/5	15/6	26/13	34/17
1. These devices support on-chip	LVDS buffers	for left and right I/0	O Banks.					

Power Supply and NC (Cont.)

Signal	256 ftBGA ¹	324 ftBGA ¹
VCC	G7, G10, K7, K10	F14, G11, G9, H7, L7, M9
VCCIO0	LAMXO640: F8, F7, F9, F10 LAMXO1200/2280: F8, F7	G8, G7
VCCIO1	LAMXO640: H11, G11, K11, J11 LAMXO1200/2280: F9, F10	G12, G10
VCCIO2	LAMXO640: L9, L10, L8, L7 LAMXO1200/2280: H11, G11	J12, H12
VCCIO3	LAMXO640: K6, J6, H6, G6 LAMXO1200/2280: K11, J11	L12, K12
VCCIO4	LAMXO640: None LAMXO1200/2280: L9, L10	M12, M11
VCCIO5	LAMXO640: None LAMXO1200/2280: L8, L7	M8, R9
VCCIO6	LAMXO640: None LAMXO1200/2280: K6, J6	M7, K7
VCCIO7	LAMXO640: None LAMXO1200/2280: H6, G6	H6, J7
VCCAUX	T9, A8	M10, F9
GND ²	A1, A16, F11, G8, G9, H7, H8, H9, H10, J7, J8, J9, J10, K8, K9, L6, T1, T16	E14, F16, H10, H11, H8, H9, J10, J11, J4, J8, J9, K10, K11, K17, K8, K9, L10, L11, L8, L9, N2, P14, P5, R7
NC ³	LAMXO640: E4, E5, F5, F6, C3, C2, G4, G5, H4, H5, K5, K4, M5, M4, P2, P3, N5, N6, M7, M8, N10, N11, R15, R16, P15, P16, M11, L11, N12, N13, M13, M12, K12, J12, F12, F13, E12, E13, D13, D14, B15, A15, C14, B14, E11, E10, E7, E6, D4, D3, B3, B2 LAMXO1200: None LAMXO2280: None	

Pin orientation A1 starts from the upper left corner of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally.
All grounds must be electrically connected at the board level. For fpBGA and ftBGA packages, the total number of GND balls is less than the actual number of GND logic connections from the die to the common package GND plane.
NC pins should not be connected to any active signals, VCC or GND.

LA-MachXO256 and LA-MachXO640 Logic Signal Connections: 100 TQFP (Cont.)

		LAM	KO256		LAMXO640			
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential
83	PT4C	0		Т	PT7A	0		
84	GND	-			GND	-		
85	PT4B	0	PCLK0_1**	С	PT6B	0	PCLK0_1**	
86	PT4A	0	PCLK0_0**	Т	PT5B	0	PCLK0_0**	С
87	PT3D	0		С	PT5A	0		Т
88	VCCAUX	-			VCCAUX	-		
89	PT3C	0		Т	PT4F	0		
90	VCC	-			VCC	-		
91	PT3B	0		С	PT3F	0		
92	VCCIO0	0			VCCIO0	0		
93	GNDIO0	0			GNDIO0	0		
94	PT3A	0		Т	PT3B	0		С
95	PT2F	0		С	PT3A	0		Т
96	PT2E	0		Т	PT2F	0		С
97	PT2D	0		С	PT2E	0		Т
98	PT2C	0		Т	PT2B	0		С
99	PT2B	0		С	PT2C	0		
100	PT2A	0		Т	PT2A	0		Т

* NC for "E" devices.

** Primary clock inputs are single-ended.

LA-MachXO1200 and LA-MachXO2280 Logic Signal Connections: 100 TQFP (Cont.)

		LA	AMXO1200		LAMXO2280					
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential		
41	GND	-			GND	-				
42	PB9A	4		Т	PB12A	4		Т		
43	PB9B	4		С	PB12B	4		С		
44	VCCIO4	4			VCCIO4	4				
45	PB10A	4		Т	PB13A	4		Т		
46	PB10B	4		С	PB13B	4		С		
47	NC	-	NC		NC	-	NC			
48	PB11A	4		Т	PB16A	4		Т		
49	PB11B	4		С	PB16B	4		С		
50**	GNDIO3 GNDIO4	-			GNDIO3 GNDIO4	-				
51	PR16B	3			PR19B	3				
52	PR15B	3		C*	PR18B	3		C*		
53	PR15A	3		T*	PR18A	3		T*		
54	PR14B	3		C*	PR17B	3		C*		
55	PR14A	3		T*	PR17A	3		T*		
56	VCCIO3	3			VCCIO3	3				
57	PR12B	3		C*	PR15B	3		C*		
58	PR12A	3		T*	PR15A	3		T*		
59	GND	-			GND	-				
60	PR10B	3		C*	PR13B	3		C*		
61	PR10A	3		T*	PR13A	3		T*		
62	PR9B	3		C*	PR11B	3		C*		
63	PR9A	3		T*	PR11A	3		T*		
64	PR8B	2		C*	PR10B	2		C*		
65	PR8A	2		T*	PR10A	2		T*		
66	VCC	-			VCC	-				
67	PR6C	2			PR8C	2				
68	PR6B	2		C*	PR8B	2		C*		
69	PR6A	2		T*	PR8A	2		T*		
70	VCCIO2	2			VCCIO2	2				
71	PR4D	2			PR5D	2				
72	PR4B	2		C*	PR5B	2		C*		
73	PR4A	2		T*	PR5A	2		T*		
74	PR2B	2		C	PR3B	2		C*		
75	PR2A	2		T	PR3A	2		T*		
76**	GNDIO1 GNDIO2	-			GNDIO1 GNDIO2	-				
77	PT11C	1			PT15C	1				
78	PT11B	1		С	PT14B	1		С		
79	PT11A	1		T	PT14A	1		T		

LA-MachXO1200 and LA-MachXO2280 Logic Signal Connections: 100 TQFP (Cont.)

		l	AMXO1200		LAMXO2280					
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential		
80	VCCIO1	1			VCCIO1	1				
81	PT9E	1			PT12D	1		С		
82	PT9A	1			PT12C	1		Т		
83	GND	-			GND	-				
84	PT8B	1		С	PT11B	1		С		
85	PT8A	1		Т	PT11A	1		Т		
86	PT7D	1	PCLK1_1***		PT10B	1	PCLK1_1***			
87	PT6F	0	PCLK1_0***		PT9B	1	PCLK1_0***			
88	PT6D	0		С	PT8F	0		С		
89	PT6C	0		Т	PT8E	0		Т		
90	VCCAUX	-			VCCAUX	-				
91	VCC	-			VCC	-				
92	PT5B	0			PT6D	0				
93	PT4B	0			PT6F	0				
94	VCCIO0	0			VCCIO0	0				
95	PT3D	0		С	PT4B	0		С		
96	PT3C	0		Т	PT4A	0		Т		
97	PT3B	0			PT3B	0				
98	PT2B	0		С	PT2B	0		С		
99	PT2A	0		Т	PT2A	0		Т		
100**	GNDIO0 GNDIO7	-			GNDIO0 GNDIO7	-				

*Supports true LVDS outputs.

**Double bonded to the pin.

*** Primary clock inputs are single-ended.

LA-MachXO640, LA-MachXO1200 and LA-MachXO2280 Logic Signal Connections: 256 ftBGA (Cont.)

LAMXO640					LAMXO1200				LAMXO2280					
Ball Number	Ball Function	Bank	Dual Function	Differential	Ball Number	Ball Function	Bank	Dual Function	Differential	Ball Number	Ball Function	Bank	Dual Function	Differential
J4	PL8A	3	Tunction	Т	J4	PL13A	6	i unction	T**	J4	PL16A	6	1 direction	T**
J5	PL8B	3		C	J5	PL13B	6		C**	J5	PL16B	6		C**
R1	PL11A	3		Т	R1	PL13C	6		Т	R1	PL16C	6		т
R2	PL11B	3		C	R2	PL13D	6		C	R2	PL16D	6		C
-	-	-		-	-	-	-		-	GND	GND	-		-
K5	NC				K5	PL14A	6	LLM0_PLLT_FB_A	T**	K5	PL17A	6	LLM0_PLLT_FB_A	T**
K4	NC				K4	PL14B	6	LLM0_PLLC_FB_A	C**	K4	PL17B	6	LLM0_PLLC_FB_A	C**
L5	PL10C	3		т	L5	PL14C	6		Т	L5	PL17C	6		Т
L4	PL10D	3		С	L4	PL14D	6		С	L4	PL17D	6		С
M5	NC				M5	PL15A	6	LLM0_PLLT_IN_A	T**	M5	PL18A	6	LLM0_PLLT_IN_A	T**
M4	NC				M4	PL15B	6	LLM0_PLLC_IN_A	C**	M4	PL18B	6	LLM0_PLLC_IN_A	C**
N4	PL11C	3		т	N4	PL16A	6		Т	N4	PL19A	6		Т
N3	PL11D	3		С	N3	PL16B	6		С	N3	PL19B	6		С
VCCIO3	VCCIO3	3			VCCIO6	VCCIO6	6			VCCIO6	VCCIO6	6		
GND	GNDIO3	3			GND	GNDIO6	6			GND	GNDIO6	6		
GND	GNDIO2	2			GND	GNDIO5	5			GND	GNDIO5	5		
VCCIO2	VCCIO2	2			VCCIO5	VCCI05	5			VCCI05	VCCIO5	5		
P4	TMS	2	TMS		P4	TMS	5	TMS		P4	TMS	5	TMS	
P2	NC				P2	PB2A	5		Т	P2	PB2A	5		Т
P3	NC				P3	PB2B	5		С	P3	PB2B	5		С
N5	NC				N5	PB2C	5		т	N5	PB2C	5		Т
R3	тск	2	тск		R3	тск	5	ТСК		R3	ТСК	5	тск	
N6	NC				N6	PB2D	5		С	N6	PB2D	5		С
T2	PB2A	2		Т	T2	PB3A	5		т	T2	PB3A	5		Т
Т3	PB2B	2		С	Т3	PB3B	5		С	Т3	PB3B	5		С
R4	PB2C	2		Т	R4	PB3C	5		Т	R4	PB3C	5		Т
R5	PB2D	2		С	R5	PB3D	5		С	R5	PB3D	5		С
P5	PB3A	2		Т	P5	PB4A	5		Т	P5	PB4A	5		Т
P6	PB3B	2		С	P6	PB4B	5		С	P6	PB4B	5		С
T5	PB3C	2		Т	T5	PB4C	5		Т	T5	PB4C	5		Т
M6	TDO	2	TDO		M6	TDO	5	TDO		M6	TDO	5	TDO	
T4	PB3D	2		С	T4	PB4D	5		С	T4	PB4D	5		С
R6	PB4A	2		Т	R6	PB5A	5		Т	R6	PB5A	5		Т
GND	GNDIO2	2			GND	GNDIO5	5			GND	GNDIO5	5		
VCCIO2	VCCIO2	2			VCCIO5	VCCIO5	5			VCCIO5	VCCIO5	5		
T6	PB4B	2		С	T6	PB5B	5		С	T6	PB5B	5		С
N7	TDI	2	TDI		N7	TDI	5	TDI		N7	TDI	5	TDI	
T8	PB4C	2		Т	Т8	PB5C	5		Т	Т8	PB6A	5		Т
T7	PB4D	2		С	T7	PB5D	5		С	T7	PB6B	5		С
M7	NC				M7	PB6A	5		Т	M7	PB7C	5		Т
M8	NC				M8	PB6B	5		С	M8	PB7D	5		С
Т9	VCCAUX	-			Т9	VCCAUX	-			Т9	VCCAUX	-		
R7	PB4E	2		Т	R7	PB6C	5		Т	R7	PB8C	5		Т
R8	PB4F	2		С	R8	PB6D	5		С	R8	PB8D	5		С
-	-				VCCIO5	VCCI05	5			VCCIO5	VCCIO5	5		
-	-				GND	GNDIO5	5			GND	GNDIO5	5		
P7	PB5C	2		Т	P7	PB6E	5		Т	P7	PB9A	4		Т
P8	PB5D	2		С	P8	PB6F	5		С	P8	PB9B	4		С
N8	PB5A	2		Т	N8	PB7A	4		Т	N8	PB10E	4		Т
N9	PB5B	2	PCLK2_1****	С	N9	PB7B	4	PCLK4_1****	С	N9	PB10F	4	PCLK4_1****	С
P10	PB7B	2		С	P10	PB7D	4		С	P10	PB10D	4		С
P9	PB7A	2		Т	P9	PB7C	4		Т	P9	PB10C	4		Т
M9	PB6B	2	PCLK2_0****	С	M9	PB7F	4	PCLK4_0****	С	M9	PB10B	4	PCLK4_0****	С

LA-MachXO2280 Logic Signal Connections: 324 ftBGA

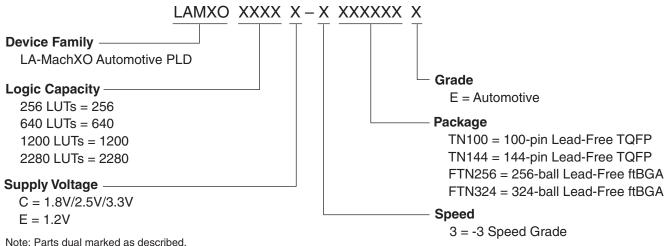
		LAMXO2280		D.//
Ball Number	Ball Function	Bank	Dual Function	Differentia
GND	GNDIO7	7		
VCCIO7	VCCI07	7		
D4	PL2A	7	LUM0_PLLT_FB_A	Т
F5	PL2B	7	LUM0_PLLC_FB_A	С
B3	PL3A	7		Τ*
C3	PL3B	7		C*
E4	PL3C	7	LUM0_PLLT_IN_A	Т
G6	PL3D	7	LUM0_PLLC_IN_A	С
A1	PL4A	7		T*
B1	PL4B	7		C*
F4	PL4C	7		Т
VCC	VCC	-		
E3	PL4D	7		С
D2	PL5A	7		T*
D3	PL5B	7		C*
G5	PL5C	7		Т
F3	PL5D	7		С
C2	PL6A	7		T*
VCCIO7	VCCIO7	7		
GND	GNDIO7	7		
C1	PL6B	7		C*
H5	PL6C	7		Т
G4	PL6D	7		С
E2	PL7A	7		T*
D1	PL7B	7	GSRN	C*
J6	PL7C	7		Т
H4	PL7D	7		С
F2	PL8A	7		T*
E1	PL8B	7		C*
GND	GND	-		
J3	PL8C	7		Т
J5	PL8D	7		С
G3	PL9A	7		T*
H3	PL9B	7		C*
K3	PL9C	7		Т
K5	PL9D	7		С
F1	PL10A	7		T*
VCCIO7	VCCIO7	7		-
GND	GNDIO7	7		
G1	PL10B	7		C*
K4	PL10C	7		т
K6	PL10D	7		С

LA-MachXO2280 Logic Signal Connections: 324 ftBGA (Cont.)

		LAMXO2280		
Ball Number	Ball Function	Bank	Dual Function	Differential
GND	GNDIO3	3		
VCCIO3	VCCIO3	3		
P15	PR20B	3		С
N14	PR20A	3		Т
N15	PR19B	3		С
M13	PR19A	3		Т
R15	PR18B	3		C*
T16	PR18A	3		T*
N16	PR17D	3		С
M14	PR17C	3		Т
U17	PR17B	3		C*
VCC	VCC	-		
U18	PR17A	3		T*
R17	PR16D	3		С
R16	PR16C	3		Т
P16	PR16B	3		C*
VCCIO3	VCCIO3	3		
GND	GNDIO3	3		
P17	PR16A	3		Τ*
L13	PR15D	3		С
M15	PR15C	3		Т
T17	PR15B	3		C*
T18	PR15A	3		T*
L14	PR14D	3		С
L15	PR14C	3		Т
R18	PR14B	3		C*
P18	PR14A	3		T*
GND	GND	-		
K15	PR13D	3		С
K13	PR13C	3		Т
N17	PR13B	3		C*
N18	PR13A	3		Τ*
K16	PR12D	3		С
K14	PR12C	3		Т
M16	PR12B	3		C*
L16	PR12A	3		T*
GND	GNDIO3	3		
VCCIO3	VCCIO3	3		
J16	PR11D	3		С
J14	PR11C	3		Т
M17	PR11B	3		C*
L17	PR11A	3		T*
J15	PR10D	2		С

LA-MachXO2280 Logic Signal Connections: 324 ftBGA (Cont.)

	· · · · · ·	LAMXO2280		
Ball Number	Ball Function	Bank	Dual Function	Differential
A10	PT8E	0		Т
VCCIO0	VCCIO0	0		
GND	GNDIO0	0		
A9	PT8D	0		С
C9	PT8C	0		Т
B9	PT8B	0		С
F9	VCCAUX	-		
A8	PT8A	0		Т
B8	PT7D	0		С
C8	PT7C	0		Т
VCC	VCC	-		
A7	PT7B	0		С
B7	PT7A	0		Т
A6	PT6A	0		Т
B6	PT6B	0		С
D8	PT6C	0		Т
F8	PT6D	0		С
C7	PT6E	0		Т
E8	PT6F	0		С
D7	PT5D	0		С
VCCIO0	VCCIO0	0		
GND	GNDIO0	0		
E7	PT5C	0		Т
A5	PT5B	0		С
C6	PT5A	0		Т
B5	PT4A	0		Т
A4	PT4B	0		С
D6	PT4C	0		Т
F7	PT4D	0		С
B4	PT4E	0		Т
GND	GND	-		
C5	PT4F	0		С
F6	PT3D	0		С
E5	PT3C	0		Т
E6	PT3B	0		С
D5	PT3A	0		Т
A3	PT2D	0		С
C4	PT2C	0		Т
A2	PT2B	0		С
B2	PT2A	0		Т
VCCIO0	VCCIO0	0		
GND	GNDIO0	0		
E14	GND	-		



LA-MachXO Automotive Family Data Sheet

April 2006

Data Sheet DS1003

Part Number Description

Ordering Information

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LAMXO256C-3TN100E	256	1.8V/2.5V/3.3V	78	-3	Lead-Free TQFP	100	AUTO
LAMXO640C-3TN100E	640	1.8V/2.5V/3.3V	74	-3	Lead-Free TQFP	100	AUTO
LAMXO640C-3TN144E	640	1.8V/2.5V/3.3V	113	-3	Lead-Free TQFP	144	AUTO
LAMXO640C-3FTN256E	640	1.8V/2.5V/3.3V	159	-3	Lead-Free ftBGA	256	AUTO
LAMXO256E-3TN100E	256	1.2V	78	-3	Lead-Free TQFP	100	AUTO
LAMXO640E-3TN100E	640	1.2V	74	-3	Lead-Free TQFP	100	AUTO
LAMXO640E-3TN144E	640	1.2V	113	-3	Lead-Free TQFP	144	AUTO
LAMXO640E-3FTN256E	640	1.2V	159	-3	Lead-Free ftBGA	256	AUTO
LAMXO1200E-3TN100E	1200	1.2V	73	-3	Lead-Free TQFP	100	AUTO
LAMXO1200E-3TN144E	1200	1.2V	113	-3	Lead-Free TQFP	144	AUTO
LAMXO1200E-3FTN256E	1200	1.2V	211	-3	Lead-Free ftBGA	256	AUTO
LAMXO2280E-3TN100E	2280	1.2V	73	-3	Lead-Free TQFP	100	AUTO
LAMXO2280E-3TN144E	2280	1.2V	113	-3	Lead-Free TQFP	144	AUTO
LAMXO2280E-3FTN256E	2280	1.2V	211	-3	Lead-Free ftBGA	256	AUTO
LAMXO2280E-3FTN324E	2280	1.2V	271	-3	Lead-Free ftBGA	324	AUTO

© 2006 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.