

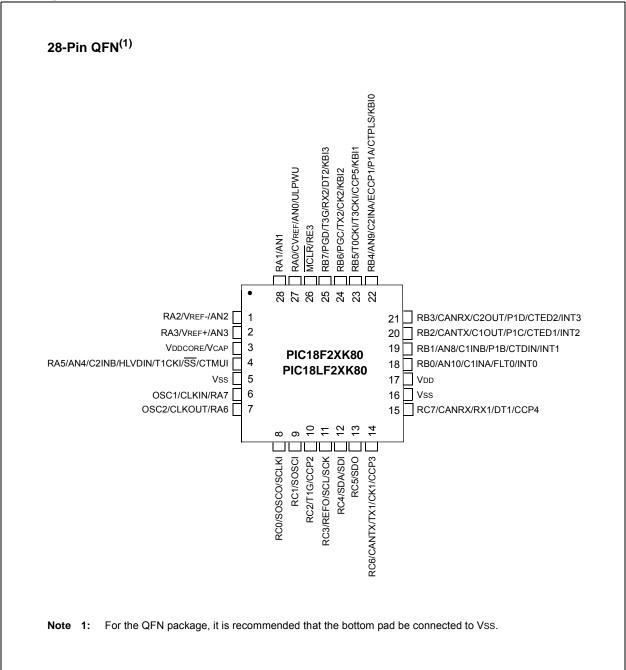
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


:XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	ECANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6К х 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f25k80-e-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

Pin Name	Pin Num	Pin Type	Buffer Type	Description
RD6/P1C/PSP6	4			
RD6		I/O	ST/ CMOS	Digital I/O.
P1C		0	CMOS	Enhanced PWM1 Output C.
PSP6		I/O	ST/ CMOS	Parallel Slave Port data.
RD7/P1D/PSP7	5			
RD7		I/O	ST/ CMOS	Digital I/O.
P1D		0	CMOS	Enhanced PWM1 Output D.
PSP7		I/O	ST/ CMOS	Parallel Slave Port data.
Legend: I ² C™ = I ² C ST = Schr I = Input	nitt Trigge	-		CMOS = CMOS compatible input or output OS levels Analog = Analog input O = Output

TABLE 1-6: PIC18F6XK80 PINOUT I/O DESCRIPTIONS (CONTINUED))
---	----

I = Input P = Power

REGISTER 4-1: PMD2: PERIPHERAL MODULE DISABLE REGISTER 2

U-0	U-0	U-0 U-0		R/W-0 R/W-0		R/W-0	R/W-0
—	—	—	—	MODMD ⁽¹⁾	ECANMD	CMP2MD	CMP1MD
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4	Unimplemented: Read as '0'
bit 3	MODMD: Modulator Output Module Disable bit ⁽¹⁾
	1 = The modulator output module is disabled; all Modulator Output registers are held in Reset and are not writable
	0 = The modulator output module is enabled
bit 2	ECANMD: Enhanced CAN Module Disable bit
	1 = The Enhanced CAN module is disabled; all Enhanced CAN registers are held in Reset and are not writable
	0 = The Enhanced CAN module is enabled
bit 1	CMP2MD: Comparator 2 Module Disable bit
	1 = The Comparator 2 module is disabled; all Comparator 2 registers are held in Reset and are not writable
	0 = The Comparator 2 module is enabled
bit 0	CMP1MD: Comparator 1 Module Disable bit
	1 = The Comparator 1 module is disabled; all Comparator 1 registers are held in Reset and are not writable
	0 = The Comparator 1 module is enabled

Note 1: This bit is only implemented on devices with 64 pins (PIC18F6XK80, PIC18LF6XK80).

Addr.	Name	Addr.	Name	Addr.	Name	Addr.	Name	Addr.	Name	Addr.	Name
F3Fh	CANCON_RO0 ⁽⁵⁾	F0Fh	CANCON_RO3(5)	EDFh	CANCON_RO4 ⁽⁵⁾	EAFh	CANCON_RO7(5)	E7Fh	TXBIE ⁽⁵⁾	E4Fh	RXF7EIDL ⁽⁵⁾
	CANSTAT_RO0 ⁽⁵⁾		CANSTAT_RO3 ⁽⁵⁾	EDEh	CANSTAT_RO4 ⁽⁵⁾		CANSTAT_RO7 ⁽⁵⁾	E7Eh	BIE0 ⁽⁵⁾	E4Eh	RXF7EIDH ⁽⁵⁾
F3Dh	RXB1D7 ⁽⁵⁾	F0Dh	TXB2D7 ⁽⁵⁾	EDDh	B5D7 ⁽⁵⁾	EADh	B2D7 ⁽⁵⁾	E7Dh	BSEL0 ⁽⁵⁾	E4Dh	RXF7SIDL ⁽⁵⁾
F3Ch	RXB1D6 ⁽⁵⁾	F0Ch	TXB2D6 ⁽⁵⁾	EDCh	B5D6 ⁽⁵⁾	EACh	B2D6 ⁽⁵⁾	E7Ch	MSEL3 ⁽⁵⁾	E4Ch	RXF7SIDH ⁽⁵⁾
F3Bh	RXB1D5 ⁽⁵⁾	F0Bh	TXB2D5 ⁽⁵⁾	EDBh	B5D5 ⁽⁵⁾	EABh	B2D5 ⁽⁵⁾	E7Bh	MSEL2 ⁽⁵⁾	E4Bh	RXF6EIDL ⁽⁵⁾
F3Ah	RXB1D4 ⁽⁵⁾	F0Ah	TXB2D4 ⁽⁵⁾	EDAh	B5D4 ⁽⁵⁾	EAAh	B2D4 ⁽⁵⁾	E7Ah	MSEL1 ⁽⁵⁾	E4Ah	RXF6EIDH ⁽⁵⁾
F39h	RXB1D3 ⁽⁵⁾	F09h	TXB2D3 ⁽⁵⁾	ED9h	B5D3 ⁽⁵⁾	EA9h	B2D3 ⁽⁵⁾	E79h	MSEL0 ⁽⁵⁾	E49h	RXF6SIDL ⁽⁵⁾
F38h	RXB1D2 ⁽⁵⁾	F08h	TXB2D2 ⁽⁵⁾	ED8h	B5D2 ⁽⁵⁾	EA8h	B2D2 ⁽⁵⁾	E78h	RXFBCON7 ⁽⁵⁾	E48h	RXF6SIDH(5)
F37h	RXB1D1 ⁽⁵⁾	F07h	TXB2D1 ⁽⁵⁾	ED7h	B5D1 ⁽⁵⁾	EA7h	B2D1 ⁽⁵⁾	E77h	RXFBCON6(5)	E47h	RXFCON1 ⁽⁵⁾
F36h	RXB1D0 ⁽⁵⁾	F06h	TXB2D0 ⁽⁵⁾	ED6h	B5D0 ⁽⁵⁾	EA6h	B2D0 ⁽⁵⁾	E76h	RXFBCON5(5)	E46h	RXFCON0 ⁽⁵⁾
F35h	RXB1DLC ⁽⁵⁾	F05h	TXB2DLC ⁽⁵⁾	ED5h	B5DLC ⁽⁵⁾	EA5h	B2DLC ⁽⁵⁾	E75h	RXFBCON4 ⁽⁵⁾	E45h	BRGCON3(5)
F34h	RXB1EIDL ⁽⁵⁾	F04h	TXB2EIDL ⁽⁵⁾	ED4h	B5EIDL ⁽⁵⁾	EA4h	B2EIDL ⁽⁵⁾	E74h	RXFBCON3(5)	E44h	BRGCON2 ⁽⁵⁾
F33h	RXB1EIDH ⁽⁵⁾	F03h	TXB2EIDH ⁽⁵⁾	ED3h	B5EIDH ⁽⁵⁾	EA3h	B2EIDH ⁽⁵⁾	E73h	RXFBCON2 ⁽⁵⁾	E43h	BRGCON1 ⁽⁵⁾
F32h	RXB1SIDL ⁽⁵⁾	F02h	TXB2SIDL ⁽⁵⁾	ED2h	B5SIDL ⁽⁵⁾	EA2h	B2SIDL ⁽⁵⁾	E72h	RXFBCON1(5)	E42h	TXERRCNT ⁽⁵⁾
F31h	RXB1SIDH ⁽⁵⁾	F01h	TXB2SIDH ⁽⁵⁾	ED1h	B5SIDH ⁽⁵⁾	EA1h	B2SIDH ⁽⁵⁾	E71h	RXFBCON0(5)	E41h	RXERRCNT ⁽⁵⁾
F30h	RXB1CON ⁽⁵⁾	F00h	TXB2CON ⁽⁵⁾	ED0h	B5CON ⁽⁵⁾	EA0h	B2CON ⁽⁵⁾	E70h	SDFLC ⁽⁵⁾		
F30h	RXB1CON ⁽⁵⁾	EFFh	RXM1EIDL ⁽⁵⁾	ECFh	CANCON_RO5(5)	E9Fh	CANCON_RO8(5)	E6Fh	RXF15EIDL ⁽⁵⁾		
F2Fh	CANCON_RO1(5)	EFEh	RXM1EIDH ⁽⁵⁾	ECEh	CANSTAT_RO5(5)	E9Eh	CANSTAT_RO8 ⁽⁵⁾	E6Eh	RXF15EIDH ⁽⁵⁾		
F2Eh	CANSTAT_RO1(5)	EFDh	RXM1SIDL ⁽⁵⁾	ECDh	B4D7 ⁽⁵⁾	E9Dh	B1D7 ⁽⁵⁾	E6Dh	RXF15SIDL ⁽⁵⁾		
F2Dh	TXB0D7 ⁽⁵⁾	EFCh	RXM1SIDH ⁽⁵⁾	ECCh	B4D6 ⁽⁵⁾	E9Ch	B1D6 ⁽⁵⁾		RXF15SIDH(5)		
F2Ch	TXB0D6 ⁽⁵⁾	EFBh	RXM0EIDL ⁽⁵⁾	ECBh	B4D5 ⁽⁵⁾	E9Bh	B1D5 ⁽⁵⁾		RXF14EIDL ⁽⁵⁾		
F2Bh	TXB0D5 ⁽⁵⁾	EFAh	RXM0EIDH ⁽⁵⁾	ECAh	B4D4 ⁽⁵⁾	E9Ah	B1D4 ⁽⁵⁾	E6Ah	RXF14EIDH ⁽⁵⁾		
F2Ah	TXB0D4 ⁽⁵⁾	EF9h	RXM0SIDL ⁽⁵⁾	EC9h	B4D3 ⁽⁵⁾	E99h	B1D3 ⁽⁵⁾	E69h	RXF14SIDL ⁽⁵⁾		
F29h	TXB0D3 ⁽⁵⁾	EF8h	RXM0SIDH ⁽⁵⁾	EC8h	B4D2 ⁽⁵⁾	E98h	B1D2 ⁽⁵⁾	E68h	RXF14SIDH(5)		
F28h	TXB0D2 ⁽⁵⁾	EF7h	RXF5EIDL ⁽⁵⁾	EC7h	B4D1 ⁽⁵⁾	E97h	B1D1 ⁽⁵⁾	E67h	RXF13EIDL ⁽⁵⁾		
F27h	TXB0D1 ⁽⁵⁾	EF6h	RXF5EIDH ⁽⁵⁾	EC6h	B4D0 ⁽⁵⁾	E96h	B1D0 ⁽⁵⁾	E66h	RXF13EIDH ⁽⁵⁾		
F26h	TXB0D0 ⁽⁵⁾	EF5h	RXF5SIDL ⁽⁵⁾	EC5h	B4DLC ⁽⁵⁾	E95h	B1DLC ⁽⁵⁾	E65h	RXF13SIDL ⁽⁵⁾		
F25h	TXB0DLC ⁽⁵⁾	EF4h	RXF5SIDH ⁽⁵⁾	EC4h	B4EIDL ⁽⁵⁾	E94h	B1EIDL ⁽⁵⁾		RXF13SIDH(5)		
F24h	TXB0EIDL ⁽⁵⁾	EF3h	RXF4EIDL ⁽⁵⁾	EC3h	B4EIDH ⁽⁵⁾	E93h			RXF12EIDL ⁽⁵⁾		
F23h	TXB0EIDH ⁽⁵⁾	EF2h	RXF4EIDH ⁽⁵⁾	EC2h	B4SIDL ⁽⁵⁾	E92h	B1SIDL ⁽⁵⁾		RXF12EIDH ⁽⁵⁾		
F22h	TXB0SIDL ⁽⁵⁾	EF1h	RXF4SIDL ⁽⁵⁾	EC1h	B4SIDH ⁽⁵⁾	E91h	B1SIDH ⁽⁵⁾		RXF12SIDL ⁽⁵⁾		
F21h	TXB0SIDH ⁽⁵⁾	EF0h	RXF4SIDH ⁽⁵⁾	EC0h	B4CON ⁽⁵⁾	E90h	B1CON ⁽⁵⁾		RXF12SIDH ⁽⁵⁾		
F20h	TXB0CON ⁽⁵⁾	EEFh	RXF3EIDL ⁽⁵⁾		CANCON_RO6 ⁽⁵⁾	E90h			RXF11EIDL ⁽⁵⁾		
	CANCON_RO2 ⁽⁵⁾	EEEh	RXF3EIDH ⁽⁵⁾	EBEh	CANSTAT_RO6 ⁽⁵⁾		CANCON_RO9 ⁽⁵⁾		RXF11EIDH ⁽⁵⁾		
F1Eh	CANSTAT_RO2 ⁽⁵⁾	EEDh	RXF3SIDL ⁽⁵⁾	EBDh	B3D7 ⁽⁵⁾	E8Eh	CANSTAT_RO9 ⁽⁵⁾		RXF11SIDL ⁽⁵⁾		
F1Dh	TXB1D7 ⁽⁵⁾	EECh	RXF3SIDH ⁽⁵⁾	EBCh	B3D6 ⁽⁵⁾	E8Dh			RXF11SIDH ⁽⁵⁾		
F1Ch		EEBh	RXF2EIDL ⁽⁵⁾	EBBh		E8Ch			RXF10EIDL ⁽⁵⁾		
F1Bh		EEAh		EBAh		E8Bh			RXF10EIDH ⁽⁵⁾		
F1Ah	TXB1D4 ⁽⁵⁾	EE9h	RXF2SIDL ⁽⁵⁾	EB9h	B3D3 ⁽⁵⁾	E8Ah			RXF10SIDL ⁽⁵⁾		
F19h	TXB1D3 ⁽⁵⁾	EE8h	RXF2SIDH ⁽⁵⁾	EB8h		E89h			RXF10SIDH(5)		
F18h	TXB1D2 ⁽⁵⁾	EE7h	RXF1EIDL ⁽⁵⁾	EB7h	B3D1 ⁽⁵⁾	E88h			RXF9EIDL ⁽⁵⁾		
F17h	TXB1D1 ⁽⁵⁾	EE6h	RXF1EIDH ⁽⁵⁾	EB6h	B3D0 ⁽⁵⁾	E87h		E56h	RXF9EIDH ⁽⁵⁾		
F16h	TXB1D0 ⁽⁵⁾	EE5h	RXF1SIDL ⁽⁵⁾	EB5h	B3DLC ⁽⁵⁾	E86h		E55h			
F15h	TXB1DLC ⁽⁵⁾	EE4h	RXF1SIDH ⁽⁵⁾	EB4h	-	E85h			RXF9SIDH ⁽⁵⁾		
F14h	TXB1EIDL ⁽⁵⁾	EE3h	RXF0EIDL ⁽⁵⁾	EB3h		E84h			RXF8EIDL ⁽⁵⁾		
F13h	TXB1EIDH ⁽⁵⁾	EE2h	RXF0EIDH ⁽⁵⁾	EB2h	B3SIDL ⁽⁵⁾	E83h		E52h	RXF8EIDH ⁽⁵⁾		
F12h	TXB1SIDL ⁽⁵⁾	EE1h	RXF0SIDL ⁽⁵⁾	EB1h		E82h		E51h			
F11h	TXB1SIDH ⁽⁵⁾	EE0h	RXF0SIDH ⁽⁵⁾	EB0h	B3CON ⁽⁵⁾	E81h		E50h	RXF8SIDH ⁽⁵⁾		
F10h	TXB1CON ⁽⁵⁾					E80h	B0CON ⁽⁵⁾				

TABLE 6-1: SPECIAL FUNCTION REGISTER MAP FOR PIC18F66K80 FAMILY (CONTINUED)

Note 1:

2:

This is not a physical register. Unimplemented registers are read as '0'. This register is only available on devices with 64 pins. 3:

4: This register is not available on devices with 28 pins.

Addresses, E41h through F5Fh, are also used by the SFRs, but are not part of the Access RAM. To access these registers, users must 5: always load the proper BSR value.

8.6 Operation During Code-Protect

Data EEPROM memory has its own code-protect bits in Configuration Words. External read and write operations are disabled if code protection is enabled.

The microcontroller itself can both read and write to the internal data EEPROM regardless of the state of the code-protect Configuration bit. Refer to **Section 28.0 "Special Features of the CPU"** for additional information.

8.7 Protection Against Spurious Write

There are conditions when the device may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been implemented. On power-up, the WREN bit is cleared. In addition, writes to the EEPROM are blocked during the Power-up Timer period (TPWRT, Parameter 33).

The write initiate sequence, and the WREN bit together, help prevent an accidental write during brown-out, power glitch or software malfunction.

8.8 Using the Data EEPROM

The data EEPROM is a high-endurance, byteaddressable array that has been optimized for the storage of frequently changing information (e.g., program variables or other data that are updated often). Frequently changing values will typically be updated more often than Parameter D124. If this is not the case, an array refresh must be performed. For this reason, variables that change infrequently (such as constants, IDs, calibration, etc.) should be stored in Flash program memory.

A simple data EEPROM refresh routine is shown in Example 8-3.

Note: If data EEPROM is only used to store constants and/or data that changes often, an array refresh is likely not required. See Parameter D124.

EXAMPLE 8-3: DATA EEPROM REFRESH ROUTINE

	CLRF	EEADR	; Start at address 0
	CLRF	EEADRH	7
	BCF	EECON1, CFGS	; Set for memory
	BCF	EECON1, EEPGD	; Set for Data EEPROM
	BCF	INTCON, GIE	; Disable interrupts
	BSF	EECON1, WREN	; Enable writes
LOOP			; Loop to refresh array
	BSF	EECON1, RD	; Read current address
	MOVLW	55h	;
	MOVWF	EECON2	; Write 55h
	MOVLW	0AAh	i
	MOVWF	EECON2	; Write OAAh
	BSF	EECON1, WR	; Set WR bit to begin write
	BTFSC	EECON1, WR	; Wait for write to complete
	BRA	\$-2	
	INCFSZ	EEADR, F	; Increment address
	BRA	LOOP	; Not zero, do it again
	INCFSZ	EEADRH, F	; Increment the high address
	BRA	LOOP	; Not zero, do it again
	BCF	EECON1, WREN	; Disable writes
	BSF	INTCON, GIE	; Enable interrupts
1			

10.0 INTERRUPTS

Members of the PIC18F66K80 family of devices have multiple interrupt sources and an interrupt priority feature that allows most interrupt sources to be assigned a high-priority level or a low-priority level. The high-priority interrupt vector is at 0008h and the low-priority interrupt vector is at 0018h. High-priority interrupt events will interrupt any low-priority interrupts that may be in progress.

The registers for controlling interrupt operation are:

- RCON
- INTCON
- INTCON2
- INTCON3
- PIR1, PIR2, PIR3, PIR4 and PIR5
- PIE1, PIE2, PIE3, PIE4 and PIE5
- IPR1, IPR2, IPR3, IPR4 and IPR5

It is recommended that the Microchip header files supplied with MPLAB[®] IDE be used for the symbolic bit names in these registers. This allows the assembler/compiler to automatically take care of the placement of these bits within the specified register.

In general, interrupt sources have three bits to control their operation. They are:

- Flag bit Indicating that an interrupt event occurred
- Enable bit Enabling program execution to branch to the interrupt vector address when the flag bit is set
- **Priority bit** Specifying high priority or low priority

The interrupt priority feature is enabled by setting the IPEN bit (RCON<7>). When interrupt priority is enabled, there are two bits that enable interrupts globally. Setting the GIEH bit (INTCON<7>) enables all interrupts that have the priority bit set (high priority). Setting the GIEL bit (INTCON<6>) enables all interrupts that have the priority bit cleared (low priority). When the interrupt flag, enable bit and appropriate Global Interrupt Enable bit are set, the interrupt will vector immediately to address 0008h or 0018h, depending on the priority bit setting. Individual interrupts can be disabled through their corresponding enable bits.

When the IPEN bit is cleared (default state), the interrupt priority feature is disabled and interrupts are compatible with PIC[®] mid-range devices. In Compatibility mode, the interrupt priority bits for each source have no effect. INTCON<6> is the PEIE bit that enables/disables all peripheral interrupt sources. INTCON<7> is the GIE bit that enables/disables all interrupt sources. All interrupts branch to address 0008h in Compatibility mode.

When an interrupt is responded to, the Global Interrupt Enable bit is cleared to disable further interrupts. If the IPEN bit is cleared, this is the GIE bit. If interrupt priority levels are used, this will be either the GIEH or GIEL bit. High-priority interrupt sources can interrupt a low-priority interrupt. Low-priority interrupts are not processed while high-priority interrupts are in progress.

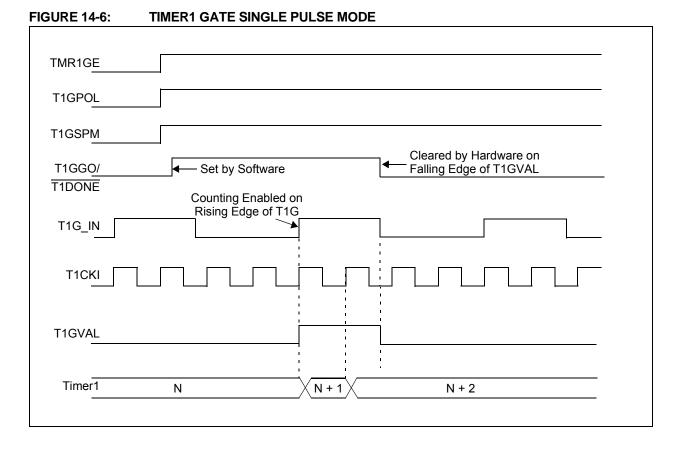
The return address is pushed onto the stack and the PC is loaded with the interrupt vector address (0008h or 0018h). Once in the Interrupt Service Routine (ISR), the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bits must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine and sets the GIE bit (GIEH or GIEL if priority levels are used) that re-enables interrupts.

For external interrupt events, such as the INTx pins or the PORTB input change interrupt, the interrupt latency will be three to four instruction cycles. The exact latency is the same for one or two-cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding enable bit or the GIE bit.

Note: Do not use the MOVFF instruction to modify any of the Interrupt Control registers while **any** interrupt is enabled. Doing so may cause erratic microcontroller behavior.

14.8.4 TIMER1 GATE SINGLE PULSE MODE


When Timer1 Gate Single Pulse mode is enabled, it is possible to capture a single pulse gate event. Timer1 Gate Single Pulse mode is enabled by setting the T1GSPM bit (T1GCON<4>) and the T1GGO/T1DONE bit (T1GCON<3>). The Timer1 will be fully enabled on the next incrementing edge.

On the next trailing edge of the pulse, the T1GGO/ T1DONE bit will automatically be cleared. No other gate events will be allowed to increment Timer1 until the T1GGO/T1DONE bit is once again set in software. Clearing the T1GSPM <u>bit of the</u> T1GCON register will also clear the T1GGO/T1DONE bit. (For timing details, see Figure 14-6.)

Simultaneously enabling the Toggle and Single Pulse modes will permit both sections to work together. This allows the cycle times on the Timer1 gate source to be measured. (For timing details, see Figure 14-7.)

14.8.5 TIMER1 GATE VALUE STATUS

When the Timer1 gate value status is utilized, it is possible to read the most current level of the gate control value. The value is stored in the T1GVAL bit (T1GCON<2>). This bit is valid even when the Timer1 gate is not enabled (TMR1GE bit is cleared).

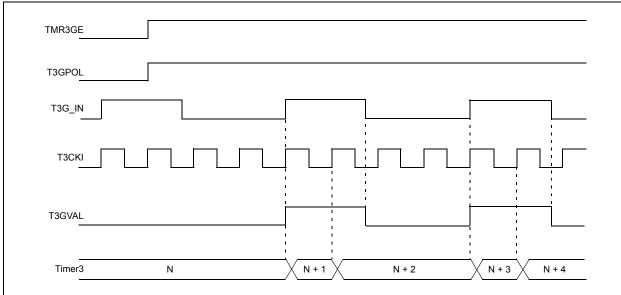
© 2010-2012 Microchip Technology Inc.

16.5 Timer3 Gates

Timer3 can be configured to count freely or the count can be enabled and disabled using the Timer3 gate circuitry. This is also referred to as the Timer3 gate count enable.

The Timer3 gate can also be driven by multiple selectable sources.

16.5.1 TIMER3 GATE COUNT ENABLE


The Timer3 Gate Enable mode is enabled by setting the TMR3GE bit (TxGCON<7>). The polarity of the Timer3 Gate Enable mode is configured using the T3GPOL bit (T3GCON<6>).

When Timer3 Gate Enable mode is enabled, Timer3 will increment on the rising edge of the Timer3 clock source. When Timer3 Gate Enable mode is disabled, no incrementing will occur and Timer3 will hold the current count. See Figure 16-2 for timing details.

TABLE 16-1: TIMER3 GATE ENABLE SELECTIONS

T3CLK ^(†)	T3GPOL (T3GCON<6>)	T3G Pin	Timer3 Operation	
1	0	0	Counts	
\uparrow	0	1	Holds Count	
\uparrow	1	0	Holds Count	
\uparrow	1	1	Counts	

† The clock on which TMR3 is running. For more information, see T3CLK in Figure 16-1.

FIGURE 16-2: TIMER3 GATE COUNT ENABLE MODE

16.6 Timer3 Interrupt

The TMR3 register pair (TMR3H:TMR3L) increments from 0000h to FFFFh and overflows to 0000h. The Timer3 interrupt, if enabled, is generated on overflow and is latched in the interrupt flag bit, TMR3IF. Table 16-3 gives each module's flag bit.

This interrupt can be enabled or disabled by setting or clearing the TMR3IE bit. Table 16-3 displays each module's enable bit.

16.7 Resetting Timer3 Using the ECCP Special Event Trigger

If the ECCP modules are configured to use Timer3 and to generate a Special Event Trigger in Compare mode (CCP3M<3:0> = 1011), this signal will reset Timer3. The trigger from ECCP will also start an A/D conversion if the A/D module is enabled (For more information, see **Section 20.3.4 "Special Event Trigger"**.) The module must be configured as either a timer or synchronous counter to take advantage of this feature. When used this way, the CCPR3H:CCPR3L register pair effectively becomes a Period register for Timer3.

If Timer3 is running in Asynchronous Counter mode, the Reset operation may not work.

In the event that a write to Timer3 coincides with a Special Event Trigger from an ECCP module, the write will take precedence.

- **Note:** The Special Event Triggers from the ECCPx module will only clear the TMR3 register's content, but not set the TMR3IF interrupt flag bit (PIR2<1>).
- Note: The CCP and ECCP modules use Timers, 1 through 4, for some modes. The assignment of a particular timer to a CCP/ECCP module is determined by the Timer to CCP enable bits in the CCPTMRS register. For more details, see Register 20-2 and Register 19-2.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
PIR5	IRXIF	WAKIF	ERRIF	TXB2IF	TXB1IF	TXB0IF	RXB1IF	RXB0IF
PIE5	IRXIE	WAKIE	ERRIE	TX2BIE	TXB1IE	TXB0IE	RXB1IE	RXB0IE
PIR2	OSCFIF				BCLIF	HLVDIF	TMR3IF	TMR3GIF
PIE2	OSCFIE	_	_	_	BCLIE	HLVDIE	TMR3IE	TMR3GIE
TMR3H	Timer3 Regi	ster High Byte	9					
TMR3L	Timer3 Regi	ster Low Byte	•					
T3GCON	TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/ T3DONE	T3GVAL	T3GSS1	T3GSS0
T3CON	TMR3CS1	TMR3CS0	T3CKPS1	T3CKPS0	SOSCEN	T3SYNC	RD16	TMR3ON
OSCCON2	—	SOSCRUN	_	SOSCDRV	SOSCGO	_	MFIOFS	MFIOSEL
PMD1	PSPMD	CTMUMD	ADCMD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	TMR0MD

TABLE 16-3: REGISTERS ASSOCIATED WITH TIMER3 AS A TIMER/COUNTER

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer3 module.

21.3.1 REGISTERS

The MSSP module has four registers for SPI mode operation. These are:

- MSSP Control Register 1 (SSPCON1)
- MSSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer Register (SSPBUF)
- MSSP Shift Register (SSPSR) Not directly accessible

SSPCON1 and SSPSTAT are the control and status registers in SPI mode operation. The SSPCON1 register is readable and writable. The lower 6 bits of the SSPSTAT are read-only. The upper two bits of the SSPSTAT are read/write.

SSPSR is the shift register used for shifting data in or out. SSPBUF is the buffer register to which data bytes are written to or read from.

In receive operations, SSPSR and SSPBUF together, create a double-buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set.

During transmission, the SSPBUF is not double-buffered. A write to SSPBUF will write to both SSPBUF and SSPSR.

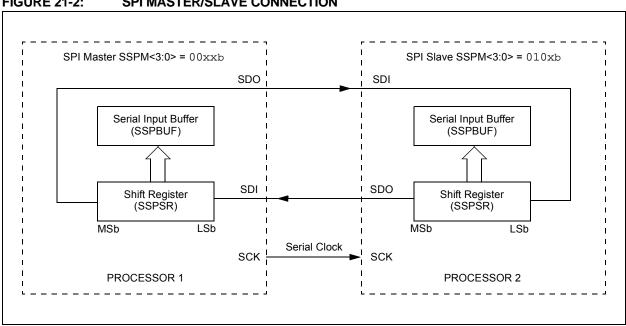
REGISTER 21-1: SSPSTAT: MSSP STATUS REGISTER (SPI MODE)

-				\ -	,					
R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0			
SMP	CKE ⁽¹⁾	D/A	Р	S	R/W	UA	BF			
bit 7	•						bit			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	nown			
bit 7	SMP: Samp	le bit								
	SPI Master I									
		ta is sampled at ta is sampled at			2					
	<u>SPI Slave m</u>	•								
		e cleared when	SPI is used ir	n Slave mode.						
bit 6	CKE: SPI Clock Select bit ⁽¹⁾									
		t occurs on trans								
		t occurs on trans	sition from Idle	e to active clock	state					
bit 5	D/A: Data/A									
		™ mode only.								
bit 4	P: Stop bit									
		mode only. This	bit is cleared	when the MSSF	^o module is dis	abled; SSPEN i	is cleared.			
bit 3	S: Start bit	manala amb i								
h:: 0	Used in I ² C		. 1. 14							
bit 2	Used in I ² C	Write Information	1 DIT							
bit 1	USed In T C UA: Update	,								
DILI	Used in I ² C									
bit 0		fill Status bit (Re	ceive mode (only)						
		is complete, SS		Jiliy)						
		is not complete,		empty						
NOTE 1: PO	Diarity of Clock	state is set by th	18 CKP bit (S	5PCUN1<4>).						

Note 1: Polarity of clock state is set by the CKP bit (SSPCON1<4>).

21.3.4 **ENABLING SPI I/O**

To enable the serial port, MSSP Enable bit, SSPEN (SSPCON1<5>), must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, reinitialize the SSPCON registers and then set the SSPEN bit. This configures the SDI, SDO, SCK and SS pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed as follows:


- · SDI is automatically controlled by the SPI module
- SDO must have the TRISC<5> bit cleared
- SCK (Master mode) must have the TRISC<3> bit cleared
- SCK (Slave mode) must have the TRISC<3> bit set
- SS must have the TRISA<5> bit set

Any serial port function that is not desired may be overridden by programming the corresponding Data Direction (TRIS) register to the opposite value.

21.3.5 TYPICAL CONNECTION

Figure 21-2 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCK signal. Data is shifted out of both shift registers on their programmed clock edge and latched on the opposite edge of the clock. Both processors should be programmed to the same Clock Polarity (CKP), then both controllers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application software. This leads to three scenarios for data transmission:

- · Master sends data Slave sends dummy data
- Master sends data Slave sends data
- · Master sends dummy data Slave sends data

FIGURE 21-2: SPI MASTER/SLAVE CONNECTION

21.4.2 OPERATION

The MSSP module functions are enabled by setting the MSSP Enable bit, SSPEN (SSPCON1<5>).

The SSPCON1 register allows control of the I^2C operation. Four mode selection bits (SSPCON1<3:0>) allow one of the following I^2C modes to be selected:

- I²C Master mode, clock
- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address) with Start and Stop bit interrupts enabled
- I²C Slave mode (10-bit address) with Start and Stop bit interrupts enabled
- I²C Firmware Controlled Master mode, slave is Idle

Selection of any I²C mode with the SSPEN bit set forces the SCL and SDA pins to be open-drain, provided these pins are programmed as inputs by setting the appropriate TRISC bit. To ensure proper operation of the module, pull-up resistors must be provided externally to the SCL and SDA pins.

21.4.3 SLAVE MODE

In Slave mode, the SCL and SDA pins must be configured as inputs (TRISC<4:3> set). The MSSP module will override the input state with the output data when required (slave-transmitter).

The I^2C Slave mode hardware will always generate an interrupt on an address match. Address masking will allow the hardware to generate an interrupt for more than one address (up to 31 in 7-bit addressing and up to 63 in 10-bit addressing). Through the mode select bits, the user can also choose to interrupt on Start and Stop bits.

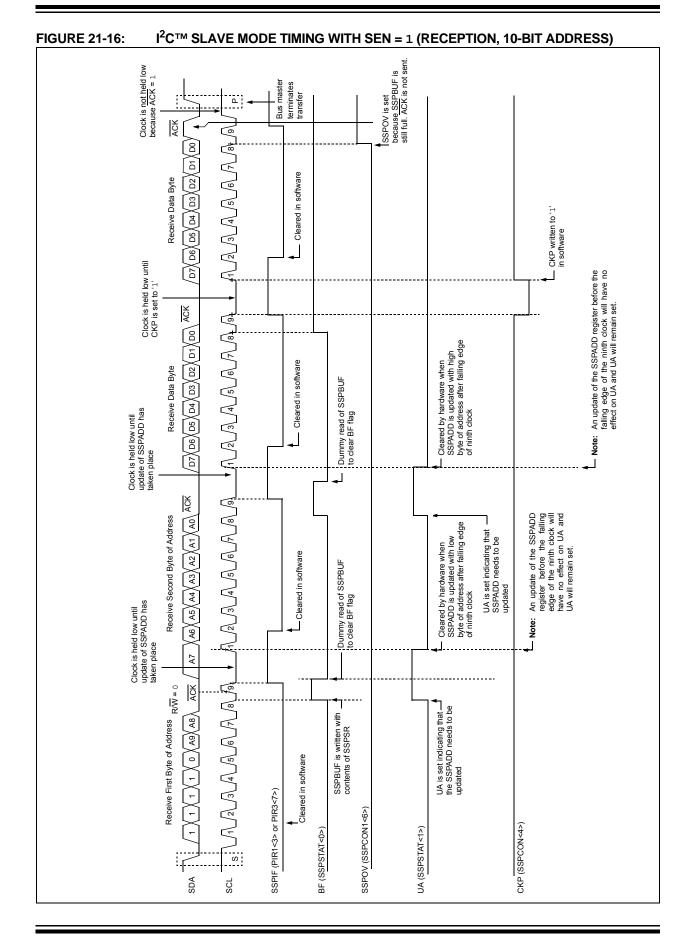
When an address is matched, or the data transfer after an address match is received, the hardware automatically will generate the Acknowledge (\overrightarrow{ACK}) pulse and load the SSPBUF register with the received value currently in the SSPSR register.

Any combination of the following conditions will cause the MSSP module not to give this ACK pulse:

- The Buffer Full bit, BF (SSPSTAT<0>), was set before the transfer was received.
- The overflow bit, SSPOV (SSPCON1<6>), was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF, but bit, SSPIF, is set. The BF bit is cleared by reading the SSPBUF register, while bit, SSPOV, is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification, as well as the requirement of the MSSP module, are shown in timing Parameter 100 and Parameter 101.


21.4.3.1 Addressing

Once the MSSP module has been enabled, it waits for a Start condition to occur. Following the Start condition, the 8 bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register, SSPSR<7:1>, is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match and the BF and SSPOV bits are clear, the following events occur:

- 1. The SSPSR register value is loaded into the SSPBUF register.
- 2. The Buffer Full bit, BF, is set.
- 3. An ACK pulse is generated.
- 4. The MSSP Interrupt Flag bit, SSPIF, is set (and interrupt is generated, if enabled) on the falling edge of the ninth SCL pulse.

In 10-Bit Addressing mode, two address bytes need to be received by the slave. The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. The R/\overline{W} (SSPSTAT<2>) bit must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal '11110 A9 A8 0', where 'A9' and 'A8' are the two MSbs of the address. The sequence of events for 10-bit addressing is as follows, with Steps 7 through 9 for the slave-transmitter:

- 1. Receive first (high) byte of address (bits, SSPIF, BF and UA, are set on address match).
- 2. Update the SSPADD register with second (low) byte of address (clears bit, UA, and releases the SCL line).
- 3. Read the SSPBUF register (clears bit, BF) and clear flag bit, SSPIF.
- 4. Receive second (low) byte of address (bits, SSPIF, BF and UA, are set).
- 5. Update the SSPADD register with the first (high) byte of address. If match releases SCL line, this will clear bit, UA.
- 6. Read the SSPBUF register (clears bit, BF) and clear flag bit SSPIF.
- 7. Receive Repeated Start condition.
- 8. Receive first (high) byte of address (bits, SSPIF and BF, are set).
- 9. Read the SSPBUF register (clears bit, BF) and clear flag bit, SSPIF.

REGISTERS ASSOCIATED WITH STNCHRONOUS MASTER RECEPTION								
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	
PSPIF	ADIF	RC1IF	TX1IF	SSPIF	TMR1GIF	TMR2IF	TMR1IF	
PSPIE	ADIE	RC1IE	TX1IE	SSPIE	TMR1GIE	TMR2IE	TMR1IE	
PSPIP	ADIP	RC1IP	TX1IP	SSPIP	TMR1GIP	TMR2IP	TMR1IP	
—	-	RC2IF	TX2IF	CTMUIF	CCP2IF	CCP1IF	—	
_	_	RC2IE	TX2IE	CTMUIE	CCP2IE	CCP1IE	_	
—	_	RC2IP	TX2IP	CTMUIP	CCP2IP	CCP1IP	_	
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	
EUSART1 R	eceive Regist	er						
CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	
ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN	
EUSART1 Ba	aud Rate Ger	erator Regi	ster High By	te				
EUSART1 Ba	aud Rate Ger	erator Regi	ster Low By	te				
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	
EUSART2 R	eceive Regist	er						
CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	
ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN	
EUSART2 Ba	aud Rate Ger	erator Regi	ster High By	te				
EUSART2 Baud Rate Generator Register Low Byte								
CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	UART2MD	UART1MD	SSPMD	
SSPOD	CCP5OD	CCP4OD	CCP3OD	CCP2OD	CCP10D	U2OD	U10D	
unimplement	ed, read as '0	'. Shaded c	ells are not	used for synd	chronous mas	ster reception		
	Bit 7 GIE/GIEH PSPIF PSPIF PSPIP — SPEN EUSART1 R CSRC ABDOVF EUSART1 B EUSART1 B SPEN EUSART1 B CSRC ABDOVF EUSART2 B EUSART2 B CSRC ABDOVF	Bit 7Bit 6GIE/GIEHPEIE/GIELPSPIFADIFPSPIEADIEPSPIPADIP——————————SPENRX9EUSART1 R=ceive RegistCSRCTX9ABDOVFRCIDLEUSART1 B=∪ Rate GerSPENRX9EUSART1 B=∪ Rate GerSPENRX9EUSART2 R=ceive RegistCSRCTX9ABDOVFRCIDLEUSART2 R=ceive RegistCSRCTX9ABDOVFRCIDLEUSART2 B=∪ Rate GerEUSART2 B=∪ Rate GerEUSART2 B=∪ Rate GerEUSART2 B=∪ Rate GerSSPODCCP4MDSSPODCCP50D	Bit 7Bit 6Bit 5GIE/GIEHPEIE/GIELTMR0IEPSPIFADIFRC1IFPSPIEADIERC1IEPSPIPADIPRC1IPRC2IFRC2IERC2IPSPENRX9SRENEUSART1 R=ceive RegisterTXENABDOVFRCIDLRXDTPEUSART1 B=ud Rate Gen=rator RegisterSPENRX9SRENEUSART1 B=ud Rate Gen=rator RegisterSPENRX9SRENEUSART2 R=ceive RegisterCSRCTX9ABDOVFRCIDLRX9SRENEUSART2 B=ud Rate Gen=rator RegisterCSRCTX9TXENABDOVFABDOVFRCIDLRXDTPEUSART2 B=ud Rate Gen=rator RegisterCCP5MDCCP4MDCCP5MDCCP3MDSSPODCCP50DCCP40D	Bit 7Bit 6Bit 5Bit 4GIE/GIEHPEIE/GIELTMROIEINTOIEPSPIFADIFRC1IFTX1IFPSPIEADIERC1IETX1IEPSPIPADIPRC1IPTX1IPRC2IFTX2IFRC2IETX2IERC2IPTX2IPSPENRX9SRENCRENEUSART1 Receive RegisterTXENSYNCABDOVFRCIDLRXDTPTXCKPEUSART1 Baud Rate Generator Register High ByEUSART1 Baud Rate Generator Register Low BySPENRX9SRENCRENEUSART2 Receive RegisterTXENSYNCABDOVFRCIDLRXDTPTXCKPEUSART2 Baud Rate Generator Register High ByEUSART2 Baud Rate Generator Register Low ByGCP5MDCCP3MDCCP5MDCCP4MDCCP3MDCCP2MDSSPODCCP5ODCCP40DCCP3OD	Bit 7Bit 6Bit 5Bit 4Bit 3GIE/GIEHPEIE/GIELTMR0IEINT0IERBIEPSPIFADIFRC1IFTX1IFSSPIFPSPIEADIERC1IETX1IESSPIEPSPIPADIPRC1IPTX1IPSSPIPRC2IFTX2IFCTMUIFRC2IETX2IECTMUIFRC2IPTX2IPCTMUIPSPENRX9SRENCRENADDENEUSART1 Receive RegisterTXENSYNCSENDBABDOVFRCIDLRXDTPTXCKPBRG16EUSART1 Baud Rate Generator Register Low ByteEUSART1 Baud Rate Generator Register Low ByteADDENEUSART2 Receive RegisterTXENSYNCSENDBABDOVFRCIDLRXDTPTXCKPBRG16EUSART2 Baud Rate Generator Register Low ByteSENDBADDENEUSART2 Baud Rate Generator Register High ByteEUSART2 Baud Rate Generator Register Low ByteEUSART2 Baud Rate Generator Register Low ByteCCP5MDCCP4MDCCP3MDCCP2MDCCP5MDCCP4MDCCP3MDCCP2MDSSPODCCP5ODCCP40DCCP30DSSPODCCP50DCCP40DCCP30D	Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2GIE/GIEHPEIE/GIELTMROIEINTOIERBIETMROIFPSPIFADIFRC1IFTX1IFSSPIFTMR1GIFPSPIEADIERC1IETX1IESSPIETMR1GIEPSPIPADIPRC1IPTX1IPSSPIPTMR1GIPRC2IFTX2IFCTMUIFCCP2IFRC2IETX2IECTMUIPCCP2IERC2IPTX2IPCTMUIPCCP2IPSPENRX9SRENCRENADDENFERREUSART1 Receive RegisterTXCKPBRG16EUSART1 Baud Rate Generator Register High ByteEUSART1 Baud Rate Generator Register Low ByteFERRSPENRX9SRENCRENADDENFERREUSART2 Receive RegisterSYNCSENDBBRGHABDOVFRCIDLRXDTPTXCKPBRG16EUSART2 Baud Rate Generator Register High ByteEUSART2 Baud Rate Generator Register Low ByteCCP1MDUART2MDSSPODCCP50DCCP40DCCP30DCCP10DCCP10DSSPODCCP50DCCP40DCCP30DCCP10DCCP10D	Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1GIE/GIEHPEIE/GIELTMR0IEINT0IERBIETMR0IFINT0IFPSPIFADIFRC1IFTX1IFSSPIFTMR1GIFTMR2IFPSPIEADIERC1IETX1IESSPIETMR1GIETMR2IEPSPIPADIPRC1IPTX1IPSSPIPTMR1GIPTMR2IPRC2IFTX2IFCTMUIFCCP2IFCCP1IFRC2IETX2IECTMUIPCCP2IECCP1IPSPENRX9SRENCRENADDENFERROERREUSART1 Receive RegisterTXCKPBRG16WUEEUSART1 Baud Rate Generator Register Low ByteSRENCRENADDENFERROERREUSART2 Receive RegisterTXENSYNCSENDBBRGHTRMTABDOVFRCIDLRXDTPTXCKPBRG16WUEEUSART2 Receive RegisterWUEEUSART2 Baud Rate Generator Register High ByteEUSART2 Baud Rate Generator Register High ByteEUSART2 Baud Rate Generator Register High ByteWUEEUSART2 Baud Rate Generator Register High ByteEUSART2 Baud Rate Generator Register Low ByteWUEEUSART2 Baud Rate Generator Register Low ByteWUEWUEEUSART2 Baud Rate Generator Register Low ByteWUEWUEEUSART2 Baud Rate Generator Register Low Byte<	

TABLE 22-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
CON	COE	CPOL	EVPOL1	EVPOL0	CREF	CCH1	CCH0		
bit 7							bit		
Legend:									
R = Readat	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown		
bit 7	CON: Compa	irator Enable b	it						
	1 = Comparat								
bit 6	COE: Comparator Output Enable bit								
		tor output is protor output is int	esent on the C ernal only	xOUT pin					
bit 5	CPOL: Comparator Output Polarity Select bit								
		tor output is inv tor output is no							
bit 4-3	EVPOL<1:0>: Interrupt Polarity Select bits								
	10 = Interrupt 01 = Interrupt	t generation on	ly on low-to-hig	f the output ⁽¹⁾ ow transition of t gh transition of t					
bit 2	CREF: Comp	arator Referen	ce Select bit (r	on-inverting inp	out)				
		• •	ects to interna ects to CxINA	I CVREF voltage	2				
bit 1-0	CCH<1:0>: C	Comparator Cha	annel Select bi	ts					
	10 = Inverting 01 = Inverting	input of comp input of comp	arator connect	s to V _{BG} s to C2INB pin ⁽² s to CxINC pin s to C1INB pin ⁽²					
	The CMPxIF is au after the initial co		t any time this	mode is selecte	d and must be	e cleared by the	application		
	Comparator 1 use	•	n input to the ir	verting terminal	I. Comparator	2 uses C1INB a	as an input to		

REGISTER 24-1: CMxCON: COMPARATOR CONTROL x REGISTER

2: Comparator 1 uses C2INB as an input to the inverting terminal. Comparator 2 uses C1INB as an input to the inverted terminal.

R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0							
MDSEL1(1) MDSEL0 ⁽¹⁾	FIFOWM ⁽²⁾	EWIN4	EWIN3	EWIN2	EWIN1	EWIN0							
bit 7		· · · · · ·					bit							
Legend:														
R = Readab	le bit	W = Writable b	oit	U = Unimple	mented bit, read	d as '0'								
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown							
bit 7-6	MDSEL<1:0>	. Mode Select b	oits(1)											
		mode (Mode 0,												
		ed Legacy mode												
	10 = Enhance 11 = Reserve	ed FIFO mode (l	Mode 2)											
bit 5			Aark hit(2)											
DIL D	FIFOWM : FIFO High Water Mark bit ⁽²⁾ 1 = Will cause FIFO interrupt when one receive buffer remains													
		e FIFO interrupt												
bit 4-0	EWIN<4:0>: Enhanced Window Address bits													
	These bits map the group of 16 banked CAN SFRs into Access Bank addresses, 0F60-0F6Dh. Th													
	exact group of registers to map is determined by the binary value of these bits.													
	Mode 0:													
	Unimplemented: Read as '0'													
	Mode 1, 2: 00000 = Acceptance Filters 0, 1, 2 and BRGCON2, 3													
	00000 = Acceptance Filters 0, 1, 2 and BRGCON2, 3 00001 = Acceptance Filters 3, 4, 5 and BRGCON1, CIOCON													
	00010 = Acceptance Filter Masks, Error and Interrupt Control													
	00011 = Transmit Buffer 0													
	00100 = Transmit Buffer 1													
	00101 = Transmit Buffer 2													
	00110 = Acceptance Filters 6, 7, 8 00111 = Acceptance Filters 9, 10, 11													
	01000 = Acceptance Filters 12, 13, 14													
	01000 = Acceptance Filter 15													
	01010-01110 = Reserved													
	01111 = RXINTO, RXINT1													
	10000 = Receive Buffer 0													
	10001 = Receive Buffer 1													
	10010 TV/	10010 = TX/RX Buffer 0												
						10011 = TX/RX Buffer 1 10100 = TX/RX Buffer 2								
	10011 = TX/	RX Buffer 1												
	10011 = TX/F 10100 = TX/F	RX Buffer 1 RX Buffer 2												
	10011 = TX/	RX Buffer 1 RX Buffer 2 RX Buffer 3												
	10011 = TX/F 10100 = TX/F 10101 = TX/F	RX Buffer 1 RX Buffer 2 RX Buffer 3 RX Buffer 4												

REGISTER 27-3: ECANCON: ENHANCED CAN CONTROL REGISTER

- **Note 1:** These bits can only be changed in Configuration mode. See Register 27-1 to change to Configuration mode.
 - **2:** This bit is used in Mode 2 only.
 - 3: If FIFO is configured to contain four or less buffers, then the FIFO interrupt will trigger.

REGISTER 28-11: CONFIG7L: CONFIGURATION REGISTER 7 LOW (BYTE ADDRESS 30000Ch)

U-0	U-0	U-0	U-0	R/C-1	R/C-1	R/C-1	R/C-1
—	—	—	_	EBTR3	EBTR2	EBTR1	EBTR0
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4	Unimplemented: Read as '0'
bit 3	EBTR3: Table Read Protection bit
	 1 = Block 3 is not protected from table reads executed in other blocks⁽¹⁾ 0 = Block 3 is protected from table reads executed in other blocks⁽¹⁾
bit 2	EBTR2: Table Read Protection bit
	 1 = Block 2 is not protected from table reads executed in other blocks⁽¹⁾ 0 = Block 2 is protected from table reads executed in other blocks⁽¹⁾
bit 1	EBTR1: Table Read Protection bit
	 1 = Block 1 is not protected from table reads executed in other blocks⁽¹⁾ 0 = Block 1 is protected from table reads executed in other blocks⁽¹⁾
bit 0	EBTR0: Table Read Protection bit
	 1 = Block 0 is not protected from table reads executed in other blocks⁽¹⁾ 0 = Block 0 is protected from table reads executed in other blocks⁽¹⁾

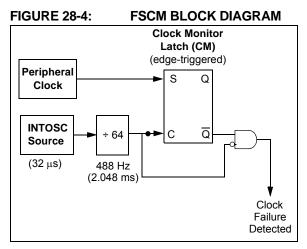
Note 1: For the memory size of the blocks, see Figure 28-6.

REGISTER 28-12: CONFIG7H: CONFIGURATION REGISTER 7 HIGH (BYTE ADDRESS 30000Dh)

U-0	R/C-1	U-0	U-0	U-0	U-0	U-0	U-0
—	EBTRB	—	_	—	—	—	—
bit 7				•			bit 0
Legend:		C = Clearable	bit				
R = Readable bit V		W = Writable bit		U = Unimplemented bit, re		read as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared x = Bit is unkno			nown

bit 7 Unimplemented: Read as '0'

bit 6	EBTRB: Boot Block Table Read Protection bit
	1 = Boot block is not protected from table reads executed in other blocks ⁽¹⁾
	0 = Boot block is protected from table reads executed in other blocks ⁽¹⁾


bit 5-0 Unimplemented: Read as '0'

Note 1: For the memory size of the blocks, see Figure 28-6.

28.5 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the microcontroller to continue operation in the event of an external oscillator failure by automatically switching the device clock to the internal oscillator block. The FSCM function is enabled by setting the FCMEN Configuration bit.

When FSCM is enabled, the LF-INTOSC oscillator runs at all times to monitor clocks to peripherals and provide a backup clock in the event of a clock failure. Clock monitoring (shown in Figure 28-4) is accomplished by creating a sample clock signal, which is the output from the LF-INTOSC divided by 64. This allows ample time between FSCM sample clocks for a peripheral clock edge to occur. The peripheral device clock and the sample clock are presented as inputs to the Clock Monitor (CM) latch. The CM is set on the falling edge of the device clock source, but cleared on the rising edge of the sample clock.

Clock failure is tested for on the falling edge of the sample clock. If a sample clock falling edge occurs while CM is still set, a clock failure has been detected (Figure 28-5). This causes the following:

- The FSCM generates an oscillator fail interrupt by setting bit, OSCFIF (PIR2<7>)
- The device clock source switches to the internal oscillator block (OSCCON is not updated to show the current clock source – this is the fail-safe condition)
- The WDT is reset

During switchover, the postscaler frequency from the internal oscillator block may not be sufficiently stable for timing-sensitive applications. In these cases, it may be desirable to select another clock configuration and enter an alternate power-managed mode. This can be done to attempt a partial recovery or execute a controlled shutdown. See Section 4.1.4 "Multiple Sleep Commands" and Section 28.4.1 "Special Considerations for Using Two-Speed Start-up" for more details.

To use a higher clock speed on wake-up, the INTOSC or postscaler clock sources can be selected to provide a higher clock speed by setting bits, IRCF<2:0>, immediately after Reset. For wake-ups from Sleep, the INTOSC or postscaler clock sources can be selected by setting the IRCF<2:0> bits prior to entering Sleep mode.

The FSCM will detect only failures of the primary or secondary clock sources. If the internal oscillator block fails, no failure would be detected nor would any action be possible.

28.5.1 FSCM AND THE WATCHDOG TIMER

Both the FSCM and the WDT are clocked by the INTOSC oscillator. Since the WDT operates with a separate divider and counter, disabling the WDT has no effect on the operation of the INTOSC oscillator when the FSCM is enabled.

As already noted, the clock source is switched to the INTOSC clock when a clock failure is detected. Depending on the frequency selected by the IRCF<2:0> bits, this may mean a substantial change in the speed of code execution. If the WDT is enabled with a small prescale value, a decrease in clock speed allows a WDT time-out to occur and a subsequent device Reset. For this reason, Fail-Safe Clock events also reset the WDT and postscaler, allowing it to start timing from when execution speed was changed and decreasing the likelihood of an erroneous time-out.

28.5.2 EXITING FAIL-SAFE OPERATION

The Fail-Safe condition is terminated by either a device Reset or by entering a power-managed mode. On Reset, the controller starts the primary clock source specified in Configuration Register 1H (with any required start-up delays that are required for the oscillator mode, such as the OST or PLL timer). The INTOSC multiplexer provides the device clock until the primary clock source becomes ready (similar to a Two-Speed Start-up). The clock source is then switched to the primary clock (indicated by the OSTS bit in the OSCCON register becoming set). The Fail-Safe Clock Monitor then resumes monitoring the peripheral clock.

The primary clock source may never become ready during start-up. In this case, operation is clocked by the INTOSC multiplexer. The OSCCON register will remain in its Reset state until a power-managed mode is entered.

TBLWT	Table Wri	te					
Syntax:	TBLWT (*; *+; *-; +*)						
Operands:	None						
Operation:	if TBLWT*, (TABLAT) \rightarrow Holding Register; TBLPTR – No Change if TBLWT*+, (TABLAT) \rightarrow Holding Register; (TBLPTR) + 1 \rightarrow TBLPTR if TBLWT*-, (TABLAT) \rightarrow Holding Register; (TBLPTR) – 1 \rightarrow TBLPTR if TBLWT+*, (TBLPTR) + 1 \rightarrow TBLPTR; (TABLAT) \rightarrow Holding Register						
Status Affected:	None		0 0				
Encoding:	0000	0000	0000	11nn nn=0 * =1 *+ =2 *- =3 +*			
Description:	This instruction uses the 3 LSBs of TBLPTR to determine which of the 8 holding registers the TABLAT is written to. The holding registers are used to program the contents of Program Memory (P.M.). (Refer to Section 6.0 "Memory Organization " for additional details on programming Flash memory.) The TBLPTR (a 21-bit pointer) points to each byte in the program memory. TBLPTR has a 2-Mbyte address range. The LSb of the TBLPTR selects which byte of the program memory location to						
	TBLPTR[0] = 0: Least Significant of Program Men Word						
	TBLPTR[0] = 1: Most Significant Byte of Program Memory Word						
	The TBLW value of T • no char • post-inc • post-de • pre-incr	⊤ instruct BLPTR as nge crement crement	ion can m	odify the			
Words:	1						
Cycles:	2						
Q Cycle Activity:							
	Q1	Q2	Q3	Q4			
	Decode	No operation	No operation	No operation			
	No	No	No	No			
	-		operation	operation (Write to			

TÀBLAT)

Holding Register)

_ ΤВ d)

TBLWT	Table Write (C	Conti	nued)
Example 1:	TBLWT *+;		
Before Inst	ruction		
TABL	AT	=	55h
TBLP	=	00A356h	
HOLD			
(00A3	56h)	=	FFh
After Instru	ctions (table write	comp	oletion)
TABL	AT	=	55h
TBLP	TR	=	00A357h
HOLD	ING REGISTER		
(00A3	56h)	=	55h
Example 2:	TBLWT +*;		

TABLAT TBLPTR HOLDING REGISTER (01389Ah) HOLDING REGISTER (01389Bh)

TABLAT TBLPTR HOLDING REGISTER (01389Ah) HOLDING REGISTER (01389Bh)

After Instruction (table write completion)

34h

FFh

FFh

34h 01389Bh

FFh

34h

01389Ah

=

= =

=

=

= =

=

Before Instruction

DS39977F-page 522