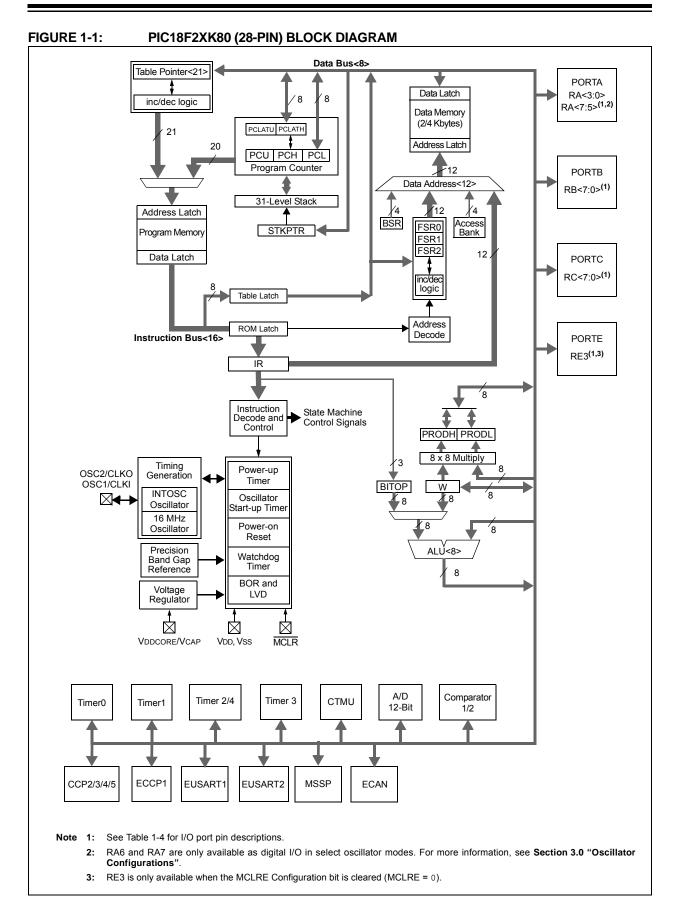


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	ECANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f25k80-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

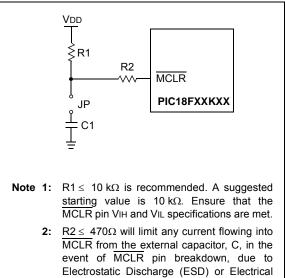
The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS, is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1 μ F (100 nF), 10-20V capacitor is recommended. The capacitor should be a low-ESR device, with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1 μ F in parallel with 0.001 μ F).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits, including microcontrollers, to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μF to 47 μF .


2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: Device Reset, and Device Programming and Debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented, depending on the application's requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the $\overline{\text{MCLR}}$ pin should be placed within 0.25 inch (6 mm) of the pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

Overstress (EOS). Ensure that the MCLR pin

VIH and VIL specifications are met.

TABLE 5-4:	INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)										
Register	A	pplicable Devic	es	Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt					
RXF12SIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu					
RXF11EIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu					
RXF11EIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu					
RXF11SIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxx- x-xx	uuu- u-uu	uuu- u-uu					
RXF11SIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu					
RXF10EIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu					
RXF10EIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu					
RXF10SIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxx- x-xx	uuu- u-uu	uuu- u-uu					
RXF10SIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu					
RXF9EIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu					
RXF9EIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu					
RXF9SIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxx- x-xx	uuu- u-uu	uuu- u-uu					
RXF9SIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu					
RXF8EIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu					
RXF8EIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu					
RXF8SIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxx- x-xx	uuu- u-uu	uuu- u-uu					
RXF8SIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu					
RXF7EIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu					
RXF7EIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu					
RXF7SIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxx- x-xx	uuu- u-uu	uuu- u-uu					
RXF7SIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu					
RXF6EIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu					
RXF6EIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu					
RXF6SIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxx- x-xx	uuu- u-uu	uuu- u-uu					
RXF6SIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu					
RXFCON0	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 0000	0000 0000	uuuu uuuu					
RXFCON1	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 0000	0000 0000	uuuu uuuu					
BRGCON3	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	00000	00000	uuuuu					
BRGCON2	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 0000	0000 0000	uuuu uuuu					
BRGCON1	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 0000	0000 0000	uuuu uuuu					
TXERRCNT	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 0000	0000 0000	uuuu uuuu					
RXERRCNT	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 0000	0000 0000	uuuu uuuu					

TABLE 5-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged; x = unknown; - = unimplemented bit, read as '0'; q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

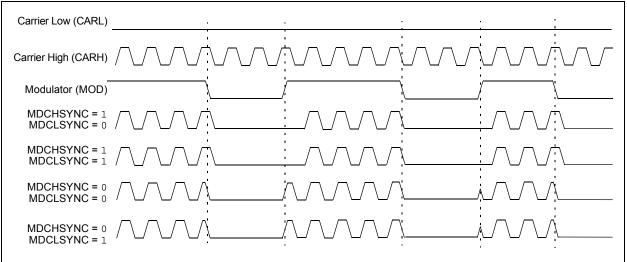
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 5-3 for Reset value for specific conditions.

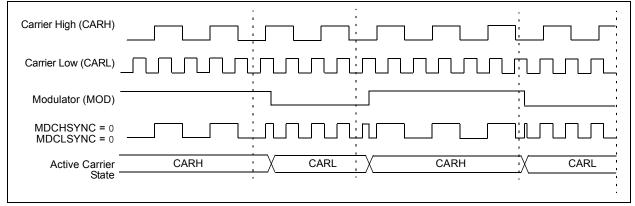
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read as '0'.

10.3 PIE Registers

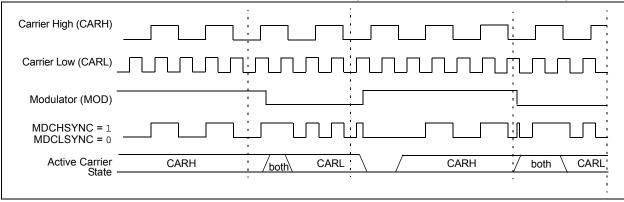
The PIE registers contain the individual enable bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are six Peripheral Interrupt Enable registers (PIE1 through PIE6). When IPEN (RCON<7>) = 0, the PEIE bit must be set to enable any of these peripheral interrupts.


REGISTER 10-9: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PSPIE	ADIE	RC1IE	TX1IE	SSPIE	TMR1GIE	TMR2IE	TMR1IE
bit 7							bit 0


Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	PSPIE: Parallel Slave Port Read/Write Interrupt Enable bit 1 = Enables the PSP read/write interrupt 0 = Disables the PSP read/write interrupt
bit 6	ADIE: A/D Converter Interrupt Enable bit 1 = Enables the A/D interrupt 0 = Disables the A/D interrupt
bit 5	RC1IE: EUSARTx Receive Interrupt Enable bit 1 = Enables the EUSARTx receive interrupt 0 = Disables the EUSARTx receive interrupt
bit 4	TX1IE: EUSARTx Transmit Interrupt Enable bit 1 = Enables the EUSARTx transmit interrupt 0 = Disables the EUSARTx transmit interrupt
bit 3	SSPIE: Master Synchronous Serial Port Interrupt Enable bit 1 = Enables the MSSP interrupt 0 = Disables the MSSP interrupt
bit 2	TMR1GIE: TMR1 Gate Interrupt Enable bit 1 = Enables the gate 0 = Disabled the gate
bit 1	TMR2IE: TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt
bit 0	TMR1IE: TMR1 Overflow Interrupt Enable bit 1 = Enables the TMR1 overflow interrupt 0 = Disables the TMR1 overflow interrupt



EXAMPLE 12-1: NO SYNCHRONIZATION (MDCHSYNC = 0, MDCLSYNC = 0)

FIGURE 12-3: CARRIER HIGH SYNCHRONIZATION (MDCHSYNC = 1, MDCLSYNC = 0)

17.2 Timer4 Interrupt

The Timer4 module has an eight-bit Period register, PR4, that is both readable and writable. Timer4 increment from 00h until it matches PR4 and then resets to 00h on the next increment cycle. The PR4 register is initialized to FFh upon Reset.

17.3

Output of TMR4

as is the Timer2 output.

The outputs of TMR4 (before the postscaler) are used

only as a PWM time base for the ECCP modules. They

are not used as baud rate clocks for the MSSP module

FIGURE 17-1: TIMER4 BLOCK DIAGRAM

TABLE 17-1: REGISTERS ASSOCIATED WITH TIMER4 AS A TIMER/COUNTER

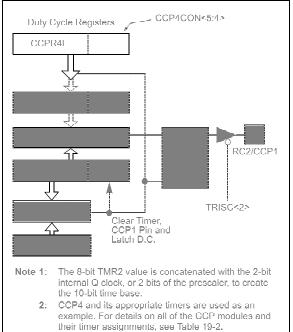
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF			
IPR4	TMR4IP	EEIP	CMP2IP	CMP1IP	—	CCP5IP	CCP4IP	CCP3IP			
PIR4	TMR4IF	EEIF	CMP2IF	CMP1IF	—	CCP5IF	CCP4IF	CCP3IF			
PIE4	TMR4IE	EEIE	CMP2IE	CMP1IE	—	CCP5IE	CCP4IE	CCP3IE			
TMR4	Timer4 Register										
T4CON	—	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR40N	T4CKPS1	T4CKPS0			
PR4	Timer4 Period Register										
PMD1	PSPMD	CTMUMD	ADCMD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	TMR0MD			

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer4 module.

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
	—	_	C5TSEL	C4TSEL	C3TSEL	C2TSEL	C1TSEL					
bit 7							bit 0					
Legend:												
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'						
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown					
bit 7-5	Unimplemen	ted: Read as '	0'									
bit 4	C5TSEL: CC	P5 Timer Selec	tion bit									
	0 = CCP5 is	0 = CCP5 is based off of TMR1/TMR2										
	1 = CCP5 is	1 = CCP5 is based off of TMR3/TMR4										
bit 3	C4TSEL: CC	P4 Timer Selec	tion bit									
		based off of TN										
		based off of TN										
bit 2	C3TSEL: CC	P3 Timer Selec	tion bit									
		based off of TN										
	1 = CCP3 is	based off of TN	/R3/TMR4									
bit 1	C2TSEL: CC	P2 Timer Selec	tion bit									
		based off of TN										
	1 = CCP2 is	based off of TN	/R3/TMR4									
bit 0		P1 Timer Selec										
		s based off of T										
	1 = ECCP1 is	s based off of 1	MR3/TMR4									

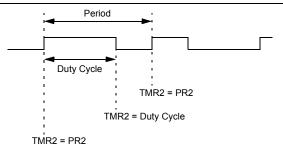
REGISTER 19-2: CCPTMRS: CCP TIMER SELECT REGISTER

19.4 PWM Mode


In Pulse-Width Modulation (PWM) mode, the CCPx pin produces up to a 10-bit resolution PWM output. Since the CCPx pin is multiplexed with a PORTC or PORTB data latch, the appropriate TRIS bit must be cleared to make the CCPx pin an output.

Note:	Clearing the CCPxCON register will force							
	the corresponding CCPx output latch							
	(depending on device configuration) to the							
	default low level. This is not the PORTx							
	I/O data latch.							

Figure 19-3 shows a simplified block diagram of the CCPx module in PWM mode.


For a step-by-step procedure on how to set up the CCP module for PWM operation, see **Section 19.4.3** "Setup for PWM Operation".

A PWM output (Figure 19-4) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

FIGURE 19-4: PWM OUTPUT

19.4.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

EQUATION 19-1:

 $PWM Period = [(PR2) + 1] \cdot 4 \cdot TOSC \cdot (TMR2 Prescale Value)$

PWM frequency is defined as 1/[PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP4 pin is set (An exception: If PWM duty cycle = 0%, the CCP4 pin will not be set)
- The PWM duty cycle is latched from CCPR4L into CCPR4H

Note:	The	Timer2	postscalers	(see
	Sectior	n 15.0 "Tin	ner2 Module") a	are not
	used in	the deter	mination of the	PWM
	frequen	cy. The po	stscaler could be	e used
	to have	a servo up	odate rate at a di	ifferent
	frequen	cy than the	PWM output.	

ECCP Mode	P1M<1:0>	P1A	P1B	P1C	P1D
Single	00	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾
Half-Bridge	10	Yes	Yes	No	No
Full-Bridge, Forward	01	Yes	Yes	Yes	Yes
Full-Bridge, Reverse	11	Yes	Yes	Yes	Yes

TABLE 20-2: EXAMPLE PIN ASSIGNMENTS FOR VARIOUS PWM ENHANCED MODES

Note 1: Outputs are enabled by pulse steering in Single mode (see Register 20-5).

FIGURE 20-4: EXAMPLE PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS (ACTIVE-HIGH STATE)

	P1M<1:0>	Signal	0	Pulse Width	►	PR2 + 1
			- 	4	Period	
00	(Single Output)	P1A Modulated		Delay ⁽¹⁾	Delay ⁽¹⁾	
		P1A Modulated				
10	(Half-Bridge)	P1B Modulated	;			
		P1A Active	;			<u></u> і і і
01	(Full-Bridge,	P1B Inactive			1 1 1	1 1 1
UT	Forward)	P1C Inactive	_ ; ;		1 1 1	1
		P1D Modulated	=ť		-	
		P1A Inactive	;		1 1 1	1 1 1
11	(Full-Bridge,	P1B Modulated	=		-j	1 1 1
	Reverse)	P1C Active -				
		P1D Inactive	;		1 1	

Relationships:

Period = 4 * Tosc * (PR2 + 1) * (TMR2 Prescale Value)
Pulse Width = Tosc * (CCPR1L<7:0>:CCP1CON<5:4>) * (TMR2 Prescale Value)
Delay = 4 * Tosc * (ECCP1DEL<6:0>)

Note 1: Dead-band delay is programmed using the ECCP1DEL register (Section 20.4.6 "Programmable Dead-Band Delay Mode").

ECCP1DEL: ENHANCED PWM CONTROL REGISTER REGISTER 20-4:

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
P1RSEN	P1DC6	P1DC5	P1DC4	P1DC3	P1DC2	P1DC1	P1DC0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7 P1RSEN: PWM Restart Enable bit

- 1 = Upon auto-shutdown, the ECCP1ASE bit clears automatically once the shutdown event goes away; the PWM restarts automatically
- 0 = Upon auto-shutdown, ECCP1ASE must be cleared by software to restart the PWM

bit 6-0

P1DC<6:0>: PWM Delay Count bits

P1DCn = Number of Fosc/4 (4 * Tosc) cycles between the scheduled time when a PWM signal should transition active and the actual time it does transition active.

20.4.7 PULSE STEERING MODE

In Single Output mode, pulse steering allows any of the PWM pins to be the modulated signal. Additionally, the same PWM signal can simultaneously be available on multiple pins.

Once the Single Output mode is selected (CCP1M<3:2> = 11 and P1M<1:0> = 00 of theCCP1CON register), the user firmware can bring out the same PWM signal to one, two, three or four output pins by setting the appropriate STR<D:A> bits (PSTR1CON<3:0>), as provided in Table 20-2.

Note: The associated TRIS bits must be set to output ('0') to enable the pin output driver in order to see the PWM signal on the pin.

While the PWM Steering mode is active, the CCP1M<1:0> bits (CCP1CON<1:0>) select the PWM output polarity for the P1<D:A> pins.

The PWM auto-shutdown operation also applies to the PWM Steering mode, as described in Section 20.4.4 "Enhanced PWM Auto-shutdown mode". An auto-shutdown event will only affect pins that have PWM outputs enabled.

21.3.7 SLAVE MODE

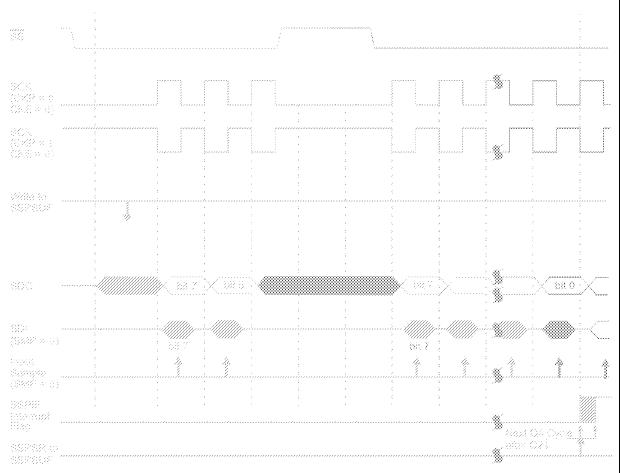
In Slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched, the SSPIF interrupt flag bit is set.

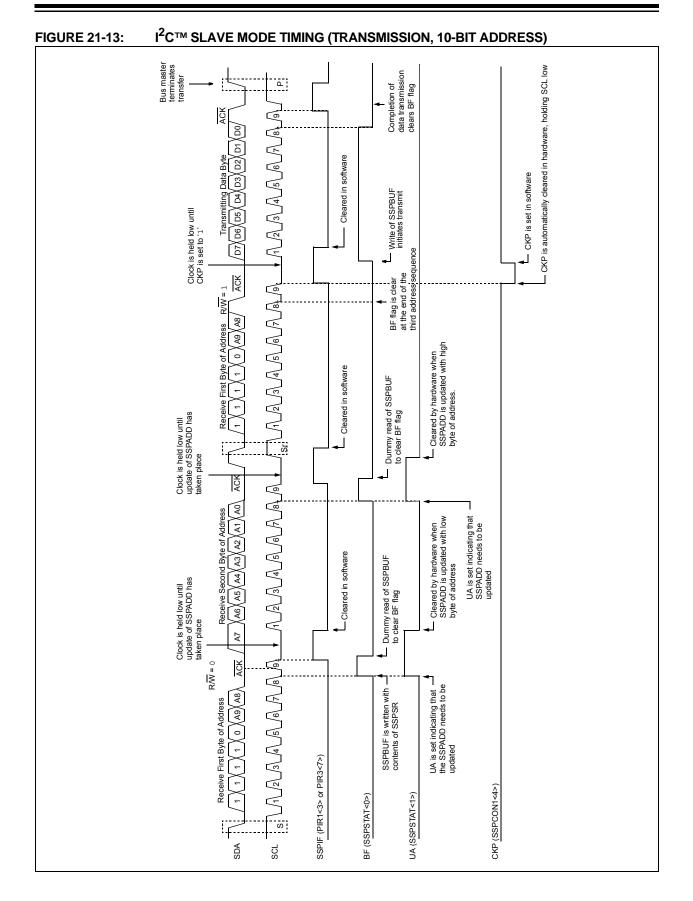
While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive data. When a byte is received, the device can be configured to wake-up from Sleep.

21.3.8 SLAVE SELECT SYNCHRONIZATION

The \overline{SS} pin allows a Synchronous Slave mode. The SPI must be in Slave mode with the \overline{SS} pin control enabled (SSPCON1<3:0> = 04h). When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a


transmitted byte, and becomes a floating output. External pull-up/pull-down resistors may be desirable depending on the application.


- Note 1: When the SPI is in Slave mode, with \overline{SS} pin control enabled (SSPCON1<3:0> = 0100), the SPI module will reset if the \overline{SS} pin is set to VDD.
 - 2: If the SPI is used in Slave mode, with CKE set, then the SS pin control must be enabled.

When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the \overline{SS} pin to a high level or clearing the SSPEN bit.

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver, the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

22.5 EUSARTx Synchronous Slave Mode

Synchronous Slave mode is entered by clearing bit, CSRC (TXSTAx<7>). This mode differs from the Synchronous Master mode in that the shift clock is supplied externally at the CKx pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in any low-power mode.

22.5.1 EUSARTx SYNCHRONOUS SLAVE TRANSMISSION

The operation of the Synchronous Master and Slave modes is identical, except in the case of Sleep mode.

If two words are written to the TXREGx and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in the TXREGx register.
- c) Flag bit, TXxIF, will not be set.
- When the first word has been shifted out of TSR, the TXREGx register will transfer the second word to the TSR and flag bit, TXxIF, will now be set.

e) If enable bit, TXxIE, is set, the interrupt will wake the chip from Sleep. If the global interrupt is enabled, the program will branch to the interrupt vector.

To set up a Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits, SYNC and SPEN, and clearing bit, CSRC.
- 2. Clear bits, CREN and SREN.
- 3. If interrupts are desired, set enable bit, TXxIE.
- 4. If 9-bit transmission is desired, set bit, TX9.
- 5. Enable the transmission by setting enable bit, TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit, TX9D.
- 7. Start transmission by loading data to the TXREGx register.
- 8. If using interrupts, ensure that the GIE and PEIE bits (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
PIR1	PSPIF	ADIF	RC1IF	TX1IF	SSPIF	TMR1GIF	TMR2IF	TMR1IF
PIE1	PSPIE	ADIE	RC1IE	TX1IE	SSPIE	TMR1GIE	TMR2IE	TMR1IE
IPR1	PSPIP	ADIP	RC1IP	TX1IP	SSPIP	TMR1GIP	TMR2IP	TMR1IP
PIR3	—	_	RC2IF	TX2IF	CTMUIF	CCP2IF	CCP1IF	-
PIE3	—	_	RC2IE	TX2IE	CTMUIE	CCP2IE	CCP1IE	_
IPR3	—	_	RC2IP	TX2IP	CTMUIP	CCP2IP	CCP1IP	_
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
TXREG1	EUSART1 Transmit Register							
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D
BAUDCON1	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN
SPBRGH1	EUSART1 Baud Rate Generator Register High Byte							
SPBRG1	EUSART1 B	aud Rate Ger	nerator Regi	ster Low Byte	9			
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
TXREG2	EUSART2 T	ransmit Regis	ster					
TXSTA2	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D
BAUDCON2	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN
SPBRGH2	EUSART2 Baud Rate Generator Register High Byte							
SPBRG2	EUSART2 Baud Rate Generator Register Low Byte							
PMD0	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	UART2MD	UART1MD	SSPMD
ODCON	SSPOD	CCP5OD	CCP4OD	CCP3OD	CCP2OD	CCP10D	U2OD	U10D

TABLE 22-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission.

NOTES:

27.2 CAN Module Registers

Note: Not all CAN registers are available in the Access Bank.

There are many control and data registers associated with the CAN module. For convenience, their descriptions have been grouped into the following sections:

- Control and Status Registers
- Dedicated Transmit Buffer Registers
- Dedicated Receive Buffer Registers
- Programmable TX/RX and Auto RTR Buffers
- Baud Rate Control Registers
- I/O Control Register
- Interrupt Status and Control Registers

Detailed descriptions of each register and their usage are described in the following sections.

27.2.1 CAN CONTROL AND STATUS REGISTERS

The registers described in this section control the overall operation of the CAN module and show its operational status.

COMF	Compleme	ent f		CPFS	EQ	Compare f	with W, Skip	if f = W
Syntax:	COMF f	{,d {,a}}		Syntax	C:	CPFSEQ	f {,a}	
Operands:	0 ≤ f ≤ 255			Opera	nds:	$0 \leq f \leq 255$		
	$d \in [0,1]$					a ∈ [0,1]		
	a ∈ [0,1]			Opera	tion:	(f) - (W),	(14/)	
Operation:	$f \rightarrow dest$					skip if (f) =	(VV) comparison)	
Status Affected:	N, Z			Status	Affected:	None	ompanson	
Encoding:	0001	11da ff:	ff ffff	Encod		0110	001a ff:	ff ffff
Description:	complemer stored in W	ts of register 'f nted. If 'd' is '0' /. If 'd' is '1', th < in register 'f'	', the result is e result is	Descri	0	Compares location 'f' t		f data memory s of W by
	lf 'a' is '0', t	he Access Bar he BSR is use				discarded a	en the fetched and a NOP is ex aking this a two	xecuted
	set is enabl in Indexed	and the extended led, this instruct Literal Offset A never $f \le 95$ (5)	ction operates					nk is selected. d to select the
	Section 29 Bit-Oriente	0.2.3 "Byte-Or ed Instruction set Mode" for	iented and s in Indexed			set is enab in Indexed	nd the extende led, this instruct Literal Offset A never f \leq 95 (5)	ction operates Addressing
Words:	1						.2.3 "Byte-Or	,
Cycles:	1					Bit-Oriente	ed Instruction	s in Indexed
Q Cycle Activity:						Literal Offs	set Mode" for	details.
Q1	Q2	Q3	Q4	Words		1		
Decode	Read register 'f'	Process Data	Write to destination	Cycles	3:		cles if skip and 2-word instrue	
E uropean la c				Q Cy	cle Activity:			
Example:	COMF	REG, 0, 0		-	Q1	Q2	Q3	Q4
Before Instruc REG	tion = 13h				Decode	Read	Process	No
After Instruction				الأعاد		register 'f'	Data	operation
REG	= 13h			lf skip	, Q1	Q2	Q3	Q4
W	= ECh			Г	No	No	No	No
					operation	operation	operation	operation
				lf skip		d by 2-word in	struction:	
				г	Q1	Q2	Q3	Q4
					No operation	No operation	No operation	No operation
				F	No	No	No	No
					operation	operation	operation	operation
				Exam	<u>ole:</u>	HERE NEQUAL	CPFSEQ REG :	G, O
					efore Instruction PC Addr W REG	ess = HE = ? = ?	: RE	

W; Address (EQUAL) W; Address (NEQUAL)

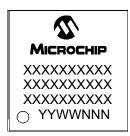
After Instruction

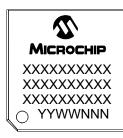
If REG PC If REG PC

= = ≠

32.1 Package Marking Information (Continued)

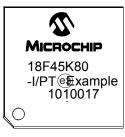
40-Lead PDIP

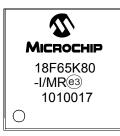

44-Lead QFN


44-Lead TQFP

64-Lead QFN

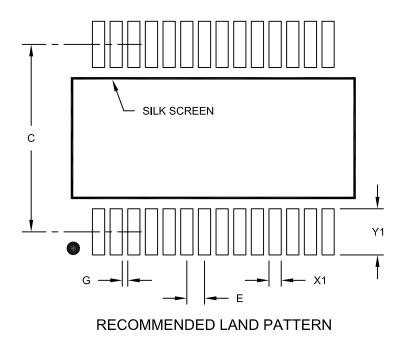
64-Lead TQFP


Example



Example

Example



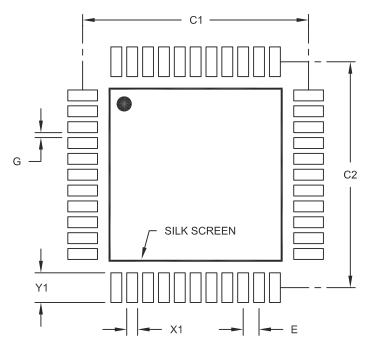
Example

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Ν		S	
Dimension	MIN	NOM	MAX	
Contact Pitch	E	0.65 BSC		
Contact Pad Spacing	С		7.20	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIM	ETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.80 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076A

Configuration Mode	438
Configuration Register Protection	482
Core Features	
Easy Migration	12
Extended Instruction Set	11
Memory Options	11
nanoWatt Technology	11
Oscillator Options and Features	11
CPFSEQ	
CPFSGT	501
CPFSLT	501
Crystal Oscillator/Ceramic Resonator	
Customer Change Notification Service	617
Customer Notification Service	
Customer Support	617

D

Data Addressing Modes	
Comparing Addressing Modes with the Extended	l In-
struction Set Enabled	127
Direct	
Indexed Literal Offset	126
BSR	
Instructions Affected	
Mapping Access Bank	
Indirect	
Inherent and Literal	123
Data EEPROM	
Associated Registers	
Code Protection	
During Code-Protect	
EEADR and EEADRH Registers	139
EECON1 and EECON2 Registers	
Overview	
Reading	141
Spurious Write Protection	
Using	
Write Verify	
Writing	141
Data EEPROM Memory	
Operation During Code-Protect	
Data Memory	
Access Bank	
Bank Select Register (BSR)	
Extended Instruction Set	
General Purpose Registers	110
Memory Maps	
PIC18FX5K80/X6K80 Devices	
Special Function Registers	
Special Function Registers	
Data Signal Modulator (DSM)	195
Associated Registers	
Carrier Signal Sources	197
Carrier Source	~~~
Pin Disable	
Polarity Select	
Carrier Synchronization	
Effects of a Reset	
Modulated Output Polarity	200
Modulator Signal Sources	
Modulator Source Pin Disable	
Operation	
Operation in Sleep Mode	
Programmable Modulator Data Slew Rate Control	
DAW	
	00Z

DC Characteristics	
CTMU Current Source Specifications	557
PIC18F66K80 Family (Industrial) 55	5, 557
Power-Down and Supply Current	540
Supply Voltage	539
DCFSNZ	503
DECF	502
DECFSZ	503
Default System Clock	57
Details on Individual Family Members	12
Development Support	
Device Overview	11
Features (28-Pin Devices)	
Features (40/44-Pin Devices)	13
Features (64-Pin Devices)	14
Device Reset Timers	83
Oscillator Start-up Timer (OST)	83
PLL Lock Time-out	83
Power-up Timer (PWRT)	83
Direct Addressing	124
Disable/Sleep Mode	438

Е

ECAN Module	391
Baud Rate Setting	446
Bit Time Partitioning	
Bit Timing Configuration Registers	
Calculating To, Nominal Bit Rate and Nominal Bit Ti	
449	
CAN Baud Rate Registers	430
CAN Control and Status Registers	393
CAN I/O Control Register	433
CAN Interrupt Registers	
CAN Interrupts	453
Bus Activity Wake-up	454
Bus-Off	455
Code Bits	
Error	454
Message Error	454
Receive	454
Receiver Bus Passive	455
Receiver Overflow	455
Receiver Warning	
Transmit	
Transmitter Bus Passive	455
Transmitter Warning	
CAN Message Buffers	440
Dedicated Receive	
Dedicated Transmit	
Programmable Auto-RTR	
Programmable Transmit/Receive	
CAN Message Transmission	441
Aborting	
Initiating	441
Priority	
CAN Modes of Operation	
CAN Registers	
Configuration Mode	
Dedicated CAN Receive Buffer Registers	
Dedicated CAN Transmit Buffer Registers	
Disable/Sleep Mode	
Error Detection	
Acknowledge	
Bit	
CRC	
Error Modes and Counters	

 $\ensuremath{\textcircled{}^{\odot}}$ 2010-2012 Microchip Technology Inc.