

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	ECANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f25k80-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Register	A	pplicable Device	es	Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt
B4D5	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B4D4	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B4D3	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B4D2	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B4D1	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B4D0	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B4DLC	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	-xxx xxxx	-uuu uuuu	-uuu uuuu
B4EIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B4EIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B4SIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx x-xx	uuuu u-uu	uuuu u-uu
B4SIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B4CON	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 0000	0000 0000	uuuu uuuu
CANCON_RO6	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	1000 0000	1000 0000	uuuu uuuu
CANSTAT_RO6	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	1000 0000	1000 0000	uuuu uuuu
B3D7	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B3D6	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B3D5	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B3D4	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B3D3	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B3D2	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B3D1	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B3D0	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B3DLC	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	-xxx xxxx	-uuu uuuu	-uuu uuuu
B3EIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B3EIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B3SIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx x-xx	uuuu u-uu	uuuu u-uu
B3SIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B3CON	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 0000	0000 0000	uuuu uuuu
CANCON_RO7	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	1000 0000	1000 0000	uuuu uuuu
B2D7	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B2D6	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B2D5	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B2D4	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B2D3	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B2D2	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu

TABLE 5-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged; x = unknown; - = unimplemented bit, read as '0'; q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 5-3 for Reset value for specific conditions.

5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read as '0'.

6.3.4 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. SFRs start at the top of data memory (FFFh) and extend downward to occupy all of Bank 15 (F00h to FFFh) and the top part of Bank 14 (EF4h to EFFh).

A list of these registers is given in Table 6-1 and Table 6-2.

The SFRs can be classified into two sets: those associated with the "core" device functionality (ALU, Resets and interrupts) and those related to the peripheral functions. The Reset and Interrupt registers are described in their respective chapters, while the ALU's STATUS register is described later in this section. Registers related to the operation of the peripheral features are described in the chapter for that peripheral.

The SFRs are typically distributed among the peripherals whose functions they control. Unused SFR locations are unimplemented and read as '0's.

TABLE 6-1:SPECIAL FUNCTION REGISTER MAP FOR PIC18F66K80 FAMILY

Addr.	Name	Addr.	Name	Addr.	Name	Addr.	Name	Addr.	Name	Addr.	Name
FFFh	TOSU	FDFh	INDF2 ⁽¹⁾	FBFh	ECCP1AS	F9Fh	IPR1	F7Fh	EECON1	F5Fh	CM1CON ⁽⁵⁾
FFEh	TOSH	FDEh	POSTINC2 ⁽¹⁾	FBEh	ECCP1DEL	F9Eh	PIR1	F7Eh	EECON2	F5Eh	CM2CON ⁽⁵⁾
FFDh	TOSL	FDDh	POSTDEC2 ⁽¹⁾	FBDh	CCPR1H	F9Dh	PIE1	F7Dh	SPBRGH1	F5Dh	ANCON0 ⁽⁵⁾
FFCh	STKPTR	FDCh	PREINC2 ⁽¹⁾	FBCh	CCPR1L	F9Ch	PSTR1CON	F7Ch	SPBRGH2	F5Ch	ANCON1 ⁽⁵⁾
FFBh	PCLATU	FDBh	PLUSW2 ⁽¹⁾	FBBh	CCP1CON	F9Bh	OSCTUNE	F7Bh	SPBRG2	F5Bh	WPUB ⁽⁵⁾
FFAh	PCLATH	FDAh	FSR2H	FBAh	TXSTA2	F9Ah	REFOCON	F7Ah	RCREG2	F5Ah	IOCB ⁽⁵⁾
FF9h	PCL	FD9h	FSR2L	FB9h	BAUDCON2	F99h	CCPTMRS	F79h	TXREG2	F59h	PMD0 ⁽⁵⁾
FF8h	TBLPTRU	FD8h	STATUS	FB8h	IPR4	F98h	TRISG ⁽³⁾	F78h	IPR5	F58h	PMD1 ⁽⁵⁾
FF7h	TBLPTRH	FD7h	TMR0H	FB7h	PIR4	F97h	TRISF ⁽³⁾	F77h	PIR5	F57h	PMD2 ⁽⁵⁾
FF6h	TBLPTRL	FD6h	TMR0L	FB6h	PIE4	F96h	TRISE ⁽⁴⁾	F76h	PIE5	F56h	PADCFG1 ⁽⁵⁾
FF5h	TABLAT	FD5h	TOCON	FB5h	CVRCON	F95h	TRISD ⁽⁴⁾	F75h	EEADRH	F55h	CTMUCONH ⁽⁵⁾
FF4h	PRODH	FD4h	(2)	FB4h	CMSTAT	F94h	TRISC	F74h	EEADR	F54h	CTMUCONL ⁽⁵⁾
FF3h	PRODL	FD3h	OSCCON	FB3h	TMR3H	F93h	TRISB	F73h	EEDATA	F53h	CTMUICONH ⁽⁵⁾
FF2h	INTCON	FD2h	OSCCON2	FB2h	TMR3L	F92h	TRISA	F72h	ECANCON	F52h	CCPR2H ⁽⁵⁾
FF1h	INTCON2	FD1h	WDTCON	FB1h	T3CON	F91h	ODCON	F71h	COMSTAT	F51h	CCPR2L ⁽⁵⁾
FF0h	INTCON3	FD0h	RCON	FB0h	T3GCON	F90h	SLRCON	F70h	CIOCON	F50h	CCP2CON ^(4,5)
FEFh	INDF0 ⁽¹⁾	FCFh	TMR1H	FAFh	SPBRG1	F8Fh	LATG ⁽³⁾	F6Fh	CANCON	F4Fh	CCPR3H ^(4,5)
FEEh	POSTINC0 ⁽¹⁾	FCEh	TMR1L	FAEh	RCREG1	F8Eh	LATF ⁽³⁾	F6Eh	CANSTAT	F4Eh	CCPR3L ^(4,5)
FEDh	POSTDEC0 ⁽¹⁾	FCDh	T1CON	FADh	TXREG1	F8Dh	LATE ⁽⁴⁾	F6Dh	RXB0D7	F4Dh	CCP3CON ⁽⁵⁾
FECh	PREINC0 ⁽¹⁾	FCCh	TMR2	FACh	TXSTA1	F8Ch	LATD ⁽⁴⁾	F6Ch	RXB0D6	F4Ch	CCPR4H ⁽⁵⁾
FEBh	PLUSW0 ⁽¹⁾	FCBh	PR2	FABh	RCSTA1	F8Bh	LATC	F6Bh	RXB0D5	F4Bh	CCPR4L ⁽⁵⁾
FEAh	FSR0H	FCAh	T2CON	FAAh	T1GCON	F8Ah	LATB	F6Ah	RXB0D4	F4Ah	CCP4CON ⁽⁵⁾
FE9h	FSR0L	FC9h	SSPBUF	FA9h	PR4	F89h	LATA	F69h	RXB0D3	F49h	CCPR5H ⁽⁵⁾
FE8h	WREG	FC8h	SSPADD	FA8h	HLVDCON	F88h	T4CON	F68h	RXB0D2	F48h	CCPR5L ⁽⁵⁾
FE7h	INDF1 ⁽¹⁾	FC8h	SSPMSK	FA7h	BAUDCON1	F87h	TMR4	F67h	RXB0D1	F47h	CCP5CON ⁽⁵⁾
FE6h	POSTINC1 ⁽¹⁾	FC7h	SSPSTAT	FA6h	RCSTA2	F86h	PORTG ⁽³⁾	F66h	RXB0D0	F46h	PSPCON ^(4,5)
FE5h	POSTDEC1 ⁽¹⁾	FC6h	SSPCON1	FA5h	IPR3	F85h	PORTF ⁽³⁾	F65h	RXB0DLC	F45h	MDCON ^(3,5)
FE4h	PREINC1 ⁽¹⁾	FC5h	SSPCON2	FA4h	PIR3	F84h	PORTE	F64h	RXB0EIDL	F44h	MDSRC ^(3,5)
FE3h	PLUSW1 ⁽¹⁾	FC4h	ADRESH	FA3h	PIE3	F83h	PORTD ⁽⁴⁾	F63h	RXB0EIDH	F43h	MDCARH ^(3,5)
FE2h	FSR1H	FC3h	ADRESL	FA2h	IPR2	F82h	PORTC	F62h	RXB0SIDL	F42h	MDCARL ^(3,5)
FE1h	FSR1L	FC2h	ADCON0	FA1h	PIR2	F81h	PORTB	F61h	RXB0SIDH	F41h	_(2)
FE0h	BSR	FC1h	ADCON1	FA0h	PIE2	F80h	PORTA	F60h	RXB0CON	F40h	_(2)
_		FC0h	ADCON2			-		-		-	

Note 1: This is not a physical register.

2: Unimplemented registers are read as '0'.

3: This register is only available on devices with 64 pins.

4: This register is not available on devices with 28 pins.

5: Addresses, E41h through F5Fh, are also used by the SFRs, but are not part of the Access RAM. To access these registers, users must always load the proper BSR value.

6.4.3.2 FSR Registers and POSTINC, POSTDEC, PREINC and PLUSW

In addition to the INDF operand, each FSR register pair also has four additional indirect operands. Like INDF, these are "virtual" registers that cannot be indirectly read or written to. Accessing these registers actually accesses the associated FSR register pair, but also performs a specific action on its stored value.

These operands are:

- POSTDEC Accesses the FSR value, then automatically decrements it by '1' afterwards
- POSTINC Accesses the FSR value, then automatically increments it by '1' afterwards
- PREINC Increments the FSR value by '1', then uses it in the operation
- PLUSW Adds the signed value of the W register (range of -127 to 128) to that of the FSR and uses the new value in the operation

In this context, accessing an INDF register uses the value in the FSR registers without changing them. Similarly, accessing a PLUSW register gives the FSR value, offset by the value in the W register, with neither value actually changed in the operation. Accessing the other virtual registers changes the value of the FSR registers.

Operations on the FSRs with POSTDEC, POSTINC and PREINC affect the entire register pair. Rollovers of the FSRnL register, from FFh to 00h, carry over to the FSRnH register. On the other hand, results of these operations do not change the value of any flags in the STATUS register (for example, Z, N and OV bits).

The PLUSW register can be used to implement a form of Indexed Addressing in the data memory space. By manipulating the value in the W register, users can reach addresses that are fixed offsets from pointer addresses. In some applications, this can be used to implement some powerful program control structure, such as software stacks, inside of data memory.

6.4.3.3 Operations by FSRs on FSRs

Indirect Addressing operations that target other FSRs or virtual registers represent special cases. For example, using an FSR to point to one of the virtual registers will not result in successful operations.

As a specific case, assume that the FSR0H:FSR0L registers contain FE7h, the address of INDF1. Attempts to read the value of the INDF1, using INDF0 as an operand, will return 00h. Attempts to write to INDF1, using INDF0 as the operand, will result in a NOP.

On the other hand, using the virtual registers to write to an FSR pair may not occur as planned. In these cases, the value will be written to the FSR pair, but without any incrementing or decrementing. Thus, writing to INDF2 or POSTDEC2 will write the same value to the FSR2H:FSR2L.

Since the FSRs are physical registers mapped in the SFR space, they can be manipulated through all direct operations. Users should proceed cautiously when working on these registers, however, particularly if their code uses Indirect Addressing.

Similarly, operations by Indirect Addressing are generally permitted on all other SFRs. Users should exercise the appropriate caution, so that they do not inadvertently change settings that might affect the operation of the device.

6.5 Program Memory and the Extended Instruction Set

The operation of program memory is unaffected by the use of the extended instruction set.

Enabling the extended instruction set adds five additional two-word commands to the existing PIC18 instruction set: ADDFSR, CALLW, MOVSF, MOVSS and SUBFSR. These instructions are executed as described in Section 6.2.4 "Two-Word Instructions".

10.0 INTERRUPTS

Members of the PIC18F66K80 family of devices have multiple interrupt sources and an interrupt priority feature that allows most interrupt sources to be assigned a high-priority level or a low-priority level. The high-priority interrupt vector is at 0008h and the low-priority interrupt vector is at 0018h. High-priority interrupt events will interrupt any low-priority interrupts that may be in progress.

The registers for controlling interrupt operation are:

- RCON
- INTCON
- INTCON2
- INTCON3
- PIR1, PIR2, PIR3, PIR4 and PIR5
- PIE1, PIE2, PIE3, PIE4 and PIE5
- IPR1, IPR2, IPR3, IPR4 and IPR5

It is recommended that the Microchip header files supplied with MPLAB[®] IDE be used for the symbolic bit names in these registers. This allows the assembler/compiler to automatically take care of the placement of these bits within the specified register.

In general, interrupt sources have three bits to control their operation. They are:

- Flag bit Indicating that an interrupt event occurred
- Enable bit Enabling program execution to branch to the interrupt vector address when the flag bit is set
- **Priority bit** Specifying high priority or low priority

The interrupt priority feature is enabled by setting the IPEN bit (RCON<7>). When interrupt priority is enabled, there are two bits that enable interrupts globally. Setting the GIEH bit (INTCON<7>) enables all interrupts that have the priority bit set (high priority). Setting the GIEL bit (INTCON<6>) enables all interrupts that have the priority bit cleared (low priority). When the interrupt flag, enable bit and appropriate Global Interrupt Enable bit are set, the interrupt will vector immediately to address 0008h or 0018h, depending on the priority bit setting. Individual interrupts can be disabled through their corresponding enable bits.

When the IPEN bit is cleared (default state), the interrupt priority feature is disabled and interrupts are compatible with PIC[®] mid-range devices. In Compatibility mode, the interrupt priority bits for each source have no effect. INTCON<6> is the PEIE bit that enables/disables all peripheral interrupt sources. INTCON<7> is the GIE bit that enables/disables all interrupt sources. All interrupts branch to address 0008h in Compatibility mode.

When an interrupt is responded to, the Global Interrupt Enable bit is cleared to disable further interrupts. If the IPEN bit is cleared, this is the GIE bit. If interrupt priority levels are used, this will be either the GIEH or GIEL bit. High-priority interrupt sources can interrupt a low-priority interrupt. Low-priority interrupts are not processed while high-priority interrupts are in progress.

The return address is pushed onto the stack and the PC is loaded with the interrupt vector address (0008h or 0018h). Once in the Interrupt Service Routine (ISR), the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bits must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine and sets the GIE bit (GIEH or GIEL if priority levels are used) that re-enables interrupts.

For external interrupt events, such as the INTx pins or the PORTB input change interrupt, the interrupt latency will be three to four instruction cycles. The exact latency is the same for one or two-cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding enable bit or the GIE bit.

Note: Do not use the MOVFF instruction to modify any of the Interrupt Control registers while **any** interrupt is enabled. Doing so may cause erratic microcontroller behavior.

REGISTER 10-7: PIR4: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 4

					· /		
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
TMR4IF	EEIF	CMP2IF	CMP1IF		CCP5IF	CCP4IF	CCP3IF
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 7	TMR4IF: TMF	R4 Overflow Int	terrupt Flag bi	t			
	1 = TMR4 re 0 = TMR4 re	gister overflow gister did not o	ed (must be c verflow	leared in softw	are)		
bit 6	EEIF: Data E	EDATA/Flash V	Vrite Operatio	n Interrupt Flag	g bit		
	1 = The write	operation is c	omplete (mus	t be cleared in	software)		
	0 = The write	operation is n	ot complete o	r has not been	started		
bit 5	CMP2IF: CMI	P2 Interrupt Fla	ag bit				
	1 = CMP2 int 0 = CMP2 int	terrupt occurre	a (must be cle occur	eared in softwa	re)		
bit 4	CMP1IF: CMI	P1 Interrupt Fla	aa bit				
	1 = CMP1 int	terrupt occurre	d (must be cle	ared in softwa	re)		
	0 = CMP1 int	terrupt did not o	occur				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2	CCP5IF: CCF	P5 Interrupt Fla	g bit				
	<u>Capture Mode</u> 1 = A TMR re 0 = No TMR	<u>e</u> egister capture register captur	occurred (bit e occurred	must be cleare	ed in software)		
	<u>Compare Mod</u> 1 = A TMR re 0 = No TMR	<u>de</u> egister compare register compa	e match occui are match occ	rred (must be c urred	cleared in softwa	are)	
	<u>PWM Mode</u> Not used in P	WM mode.					
bit 1	CCP4IF: CCF	P4 Interrupt Fla	g bit				
	$\frac{\text{Capture Mode}}{1 = A TMR re}$	<u>e</u> egister capture	occurred (bit	must be cleare	ed in software)		
	0 = NO IMR	register captur	e occurred				
	$\frac{\text{Compare Mod}}{1 = \text{A TMR re}}$	<u>de</u> egister compare register compa	e match occu	rred (must be o	cleared in softwa	are)	
	PWM Mode			uncu			
	Not used in P	WM mode.					
bit 0	CCP3IF: CCF	P3 Interrupt Fla	g bit				
	$\frac{\text{Capture Mode}}{1 = A TMR re}$	<u>e</u> egister capture	occurred (bit	must be cleare	ed in software)		
	Compare Mod 1 = A TMR re 0 = No TMR	de egister compare register compa	e match occur are match occu	rred (must be c urred	cleared in softwa	are)	
	<u>PWM Mode</u> Not used in P	WM mode.					

11.2 PORTA, TRISA and LATA Registers

PORTA is a seven-bit wide, bidirectional port. The corresponding Data Direction and Output Latch registers are TRISA and LATA.

RA5 and RA<3:0> are multiplexed with analog inputs for the A/D Converter.

The operation of the analog inputs as A/D Converter inputs is selected by clearing or setting the ANSELx control bits in the ANCON1 register. The corresponding TRISA bits control the direction of these pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

Note: RA5 and RA<3:0> are configured as analog inputs on any Reset and are read as '0'.

OSC2/CLKO/RA6 and OSC1/CLKI/RA7 normally serve as the external circuit connections for the external (primary) oscillator circuit (HS Oscillator modes) or the external clock input and output (EC Oscillator modes). In these cases, RA6 and RA7 are not available as digital I/O and their corresponding TRIS and LAT bits are read as '0'. When the device is configured to use HF-INTOSC, MF-INTOSC or LF-INTOSC as the default oscillator mode, RA6 and RA7 are automatically configured as digital I/O; the oscillator and clock in/clock out functions are disabled.

RA5 has additional functionality for Timer1 and Timer3. It can be configured as the Timer1 clock input or the Timer3 external clock gate input.

EXAMP	LE 11-1:		INITIALIZING PORTA
CLRF	PORTA	;	Initialize PORTA by
		;	clearing output latches
CLRF	LATA	;	Alternate method to
		;	clear output data latches
MOVLW	00h	;	Configure A/D
MOVWF	ANCON1	;	for digital inputs
MOVLW	0BFh	;	Value used to initialize
		;	data direction
MOVWF	TRISA	;	Set $RA < 7$, 5:0> as inputs.

; RA<6> as output

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
RCON	IPEN	SBOREN	CM	RI	TO	PD	POR	BOR
PIR3	—	_	RC2IF	TX2IF	CTMUIF	CCP2IF	CCP1IF	_
PIE3	_	_	RC2IE	TX2IE	CTMUIE	CCP2IE	CCP1IE	_
IPR3	_	_	RC2IP	TX2IP	CTMUIP	CCP2IP	CCP1IP	
PIR4	TMR4IF	EEIF	CMP2IF	CMP1IF	_	CCP5IF	CCP4IF	CCP3IF
PIE4	TMR4IE	EEIE	CMP2IE	CMP1IE	_	CCP5IE	CCP4IE	CCP3IE
IPR4	TMR4IP	EEIP	CMP2IP	CMP1IP	_	CCP5IP	CCP4IP	CCP3IP
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0
TMR2	Timer2 Reg	ister						
TMR4	Timer4 Reg	ister						
PR2	Timer2 Peri	od Register						
PR4	Timer4 Peri	od Register						
T2CON	—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0
T4CON	—	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR4ON	T4CKPS1	T4CKPS0
CCPR2L	Capture/Cor	mpare/PWM	Register 2 Lo	ow Byte				
CCPR2H	Capture/Cor	mpare/PWM	Register 2 Hi	gh Byte				
CCPR3L	Capture/Cor	mpare/PWM	Register 3 Lo	ow Byte				
CCPR3H	Capture/Cor	mpare/PWM	Register 3 Hi	gh Byte				
CCPR4L	Capture/Cor	mpare/PWM	Register 4 Lo	ow Byte				
CCPR4H	Capture/Cor	mpare/PWM	Register 4 Hi	igh Byte				
CCPR5L	Capture/Cor	mpare/PWM	Register 5 Lo	ow Byte				
CCPR5H	Capture/Cor	mpare/PWM	Register 5 Hi	gh Byte				
CCP2CON	_	—	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0
CCP3CON	_	—	DC3B1	DC3B0	CCP3M3	CCP3M2	CCP3M1	CCP3M0
CCP4CON	—	—	DC4B1	DC4B0	CCP4M3	CCP4M2	CCP4M1	CCP4M0
CCP5CON	—	—	DC5B1	DC5B0	CCP5M3	CCP5M2	CCP5M1	CCP5M0
CCPTMRS	_	_		C5TSEL	C4TSEL	C3TSEL	C2TSEL	C1TSEL
PMD0	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	UART2MD	UART1MD	SSPMD

TABLE 19-5: REGISTERS ASSOCIATED WITH PWM AND TIMERS

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PWM or Timer2/4.

REGISTER 20-2: CCPTMRS: CCP TIMER SELECT REGISTER

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	—	C5TSEL	C4TSEL	C3TSEL	C2TSEL	C1TSEL
bit 7							bit 0

Legend:				
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7-5	Unimple	mented: Read as '0'		
bit 4	C5TSEL	: CCP5 Timer Selection bit		
	0 = CCF	P5 is based off of TMR1/TMR2		
	1 = CCF	P5 is based off of TMR3/TMR4		
bit 3	C4TSEL	: CCP4 Timer Selection bit		
	0 = CCF	P4 is based off of TMR1/TMR2		
	1 = CCF	P4 is based off of TMR3/TMR4		
bit 2	C3TSEL	: CCP3 Timer Selection bit		
	0 = CCF	P3 is based off of TMR1/TMR2		
	1 = CCF	P3 is based off of TMR3/TMR4		
bit 1	C2TSEL	: CCP2 Timer Selection bit		
	0 = CCF	P2 is based off of TMR1/TMR2		
	1 = CCF	P2 is based off of TMR3/TMR4		
bit 0	C1TSEL	: CCP1 Timer Selection bit		
	0 = ECC	CP1 is based off of TMR1/TMR	2	
	1 = ECC	CP1 is based off of TMR3/TMR	4	

20.4.5 AUTO-RESTART MODE

The Enhanced PWM can be configured to automatically restart the PWM signal once the auto-shutdown condition has been removed. Auto-restart is enabled by setting the P1RSEN bit (ECCP1DEL<7>).

If auto-restart is enabled, the ECCP1ASE bit will remain set as long as the auto-shutdown condition is active. When the auto-shutdown condition is removed, the ECCP1ASE bit will be cleared via hardware and normal operation will resume. The module will wait until the next PWM period begins, however, before re-enabling the output pin. This behavior allows the auto-shutdown with auto-restart features to be used in applications based on current mode of PWM control.

FIGURE 20-13: PWM AUTO-SHUTDOWN WITH AUTO-RESTART ENABLED (P1RSEN = 1)

21.4 I²C Mode

The MSSP module in I^2C mode fully implements all master and slave functions (including general call support), and provides interrupts on Start and Stop bits in hardware to determine a free bus (multi-master function). The MSSP module implements the standard mode specifications, as well as 7-bit and 10-bit addressing.

Two pins are used for data transfer:

- Serial Clock (SCL) RC3/REFO/SCL/SCK
- Serial Data (SDA) RC4/SDA/SDI

The user must configure these pins as inputs by setting the associated TRIS bits.

FIGURE 21-7: MSSP BLOCK DIAGRAM (I²C™ MODE)

21.4.1 REGISTERS

The MSSP module has seven registers for ${\rm I}^2{\rm C}$ operation. These are:

- MSSP Control Register 1 (SSPCON1)
- MSSP Control Register 2 (SSPCON2)
- MSSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer Register (SSPBUF)
- MSSP Shift Register (SSPSR) Not directly accessible
- MSSP Address Register (SSPADD)
- I²C Slave Address Mask Register (SSPMSK)

SSPCON1, SSPCON2 and SSPSTAT are the control and status registers in I²C mode operation. The SSPCON1 and SSPCON2 registers are readable and writable. The lower 6 bits of the SSPSTAT are read-only. The upper two bits of the SSPSTAT are read/write.

SSPSR is the shift register used for shifting data in or out. SSPBUF is the buffer register to which data bytes are written to or read from.

SSPADD contains the slave device address when the MSSP is configured in I²C Slave mode. When the MSSP is configured in Master mode, all eight bits of SSPADD act as the Baud Rate Generator reload value.

SSPMSK holds the slave address mask value when the module is configured for 7-Bit Address Masking mode. While it is a separate register, it shares the same SFR address as SSPADD; it is only accessible when the SSPM<3:0> bits are specifically set to permit access. Additional details are provided in Section 21.4.3.4 "7-Bit Address Masking Mode".

In receive operations, SSPSR and SSPBUF together, create a double-buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set.

During transmission, the SSPBUF is not double-buffered. A write to SSPBUF will write to both SSPBUF and SSPSR.

21.4.7 BAUD RATE

In I²C Master mode, the Baud Rate Generator (BRG) reload value is placed in the 8 bits of the SSPADD register (Figure 21-19). When a write occurs to SSPBUF, the Baud Rate Generator will automatically begin counting. The BRG counts down to 0 and stops until another reload has taken place. The BRG count is decremented twice per instruction cycle (Tcr) on the Q2 and Q4 clocks. In I²C Master mode, the BRG is reloaded automatically.

Once the given operation is complete (i.e., transmission of the last data bit is followed by ACK), the internal clock will automatically stop counting and the SCL pin will remain in its last state.

Table 21-3 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPADD. The SSPADD BRG value of 00h is not supported.

FIGURE 21-19: BAUD RATE GENERATOR BLOCK DIAGRAM

TABLE 21-3: I²C[™] CLOCK RATE w/BRG

Fosc	Fcy	Fcy * 2	BRG Value	FscL (2 Rollovers of BRG)
40 MHz	10 MHz	20 MHz	18h	400 kHz ⁽¹⁾
40 MHz	10 MHz	20 MHz	1Fh	312.5 kHz
40 MHz	10 MHz	20 MHz	63h	100 kHz
16 MHz	4 MHz	8 MHz	09h	400 kHz ⁽¹⁾
16 MHz	4 MHz	8 MHz	0Ch	308 kHz
16 MHz	4 MHz	8 MHz	27h	100 kHz
4 MHz	1 MHz	2 MHz	02h	333 kHz ⁽¹⁾
4 MHz	1 MHz	2 MHz	09h	100 kHz
16 MHz ⁽²⁾	4 MHz	8 MHz	03h	1 MHz ⁽¹⁾

Note 1: The I²C interface does not conform to the 400 kHz I²C specification (which applies to rates greater than 100 kHz) in all details, but may be used with care where higher rates are required by the application.

2: A minimum 16-MHz Fosc is required for 1 MHz I²C.

22.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is one of two serial I/O modules. (Generically, the EUSART is also known as a Serial Communications Interface or SCI.)

The EUSART can be configured as a full-duplex, asynchronous system that can communicate with peripheral devices, such as CRT terminals and personal computers. It can also be configured as a half-duplex synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs, etc.

The Enhanced USARTx modules implement additional features, including automatic baud rate detection and calibration, automatic wake-up on Sync Break reception and 12-bit Break character transmit. These make it ideally suited for use in Local Interconnect Network bus (LIN/J2602 bus) systems.

All members of the PIC18F66K80 family are equipped with two independent EUSART modules, referred to as EUSART1 and EUSART2. They can be configured in the following modes:

- Asynchronous (full duplex) with:
 - Auto-wake-up on character reception
 - Auto-baud calibration
- 12-bit Break character transmission
- Synchronous Master (half duplex) with selectable clock polarity
- Synchronous Slave (half duplex) with selectable clock polarity

The pins of EUSART1 and EUSART2 are multiplexed with the functions with the following ports, depending on the device pin count. See Table 22-1.

Pin		EUSART1	EUSART2			
Count	Port	Pins	Port	Pins		
28-pin	PORTC	RC6/TX1/CK1 and RC7/RX1/DT1	PORTB	RB6/PGC/TX2/CK2/KBI2 and RB7/PGD/T3G/RX2/DT2/KBI3		
40/44-pin	PORTC	RC6/TX1/CK1 and RC7/RX1/DT1	PORTD	RD6/TX2/CK2/P1C/PSP6 and RD7/RX2/DT2/P1D/PSP7		
64-pin	PORTG	RG3/TX1/CK1 and RG0/RX1/DT1	PORTE	RE7/TX2/CK2 and RE6/RX2/DT2		

TABLE 22-1:CONFIGURING EUSARTx PINS⁽¹⁾

Note 1: The EUSARTx control will automatically reconfigure the pin from input to output as needed.

In order to configure the pins as an EUSARTx:

- For EUSART1:
 - SPEN (RCSTA1<7>) must be set (= 1)
 - TRISx<x> must be set (= 1)
 - For Asynchronous and Synchronous Master modes, TRISx<x> must be cleared (= 0)
 - For Synchronous Slave mode, TRISx<x> must be set (= 1)

- For EUSART2:
 - SPEN (RCSTA2<7>) must be set (= 1)
 - TRISx<x> must be set (= 1)
 - For Asynchronous and Synchronous Master modes, TRISx<x> must be cleared (= 0)
 - For Synchronous Slave mode, TRISx<x> must be set (= 1)

22.5.2 EUSARTX SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical, except in the case of Sleep, or any Idle mode and bit, SREN, which is a "don't care" in Slave mode.

If receive is enabled by setting the CREN bit prior to entering Sleep or any Idle mode, then a word may be received while in this low-power mode. Once the word is received, the RSR register will transfer the data to the RCREGx register. If the RCxIE enable bit is set, the interrupt generated will wake the chip from the low-power mode. If the global interrupt is enabled, the program will branch to the interrupt vector. To set up a Synchronous Slave Reception:

- Enable the synchronous master serial port by setting bits, SYNC and SPEN, and clearing bit, CSRC.
- 2. If interrupts are desired, set enable bit, RCxIE.
- 3. If 9-bit reception is desired, set bit, RX9.
- 4. To enable reception, set enable bit, CREN.
- 5. Flag bit, RCxIF, will be set when reception is complete. An interrupt will be generated if enable bit, RCxIE, was set.
- Read the RCSTAx register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREGx register.
- 8. If any error occurred, clear the error by clearing bit, CREN.
- 9. If using interrupts, ensure that the GIE and PEIE bits (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
PIR1	PSPIF	ADIF	RC1IF	TX1IF	SSPIF	TMR1GIF	TMR2IF	TMR1IF
PIE1	PSPIE	ADIE	RC1IE	TX1IE	SSPIE	TMR1GIE	TMR2IE	TMR1IE
IPR1	PSPIP	ADIP	RC1IP	TX1IP	SSPIP	TMR1GIP	TMR2IP	TMR1IP
PIR3	_	—	RC2IF	TX2IF	CTMUIF	CCP2IF	CCP1IF	_
PIE3	—	—	RC2IE	TX2IE	CTMUIE	CCP2IE	CCP1IE	_
IPR3	—	—	RC2IP	TX2IP	CTMUIP	CCP2IP	CCP1IP	_
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
RCREG1	EUSART1 F	Receive Regis	ster					
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D
BAUDCON1	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN
SPBRGH1	EUSART1 E	Baud Rate Ge	nerator Regi	ster High Byt	e			
SPBRG1	EUSART1 E	Baud Rate Ge	nerator Regi	ster Low Byte	е			
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
RCREG2	EUSART2 F	Receive Regis	ster					
TXSTA2	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D
BAUDCON2	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN
SPBRGH2	EUSART2 E	Baud Rate Ge	nerator Regi	ster High Byt	e			
SPBRG2	EUSART2 E	Baud Rate Ge	nerator Regi	ster Low Byte	e			
PMD0	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	UART2MD	UART1MD	SSPMD
ODCON	SSPOD	CCP5OD	CCP40D	CCP3OD	CCP2OD	CCP10D	U2OD	U10D

TABLE 22-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous slave reception.

Table 27-2 shows the relation between the clock generated by the PLL and the frequency error from jitter (measured jitter-induced error of 2%, Gaussian distribution, within 3 standard deviations), as a percentage of the nominal clock frequency.

This is clearly smaller than the expected drift of a crystal oscillator, typically specified at 100 ppm or 0.01%. If we add jitter to oscillator drift, we have a total frequency drift of 0.0132%. The total oscillator frequency errors for common clock frequencies and bit rates, including both drift and jitter, are shown in Table 27-3.

TARI E 27-2.	FREQUENCY FROM FROM JITTER AT VARIOUS PLL GENERATED CLOCK SPEEDS
TADLL ZI-Z.	TREQUENCI ERROR I ROW JITTER AT VARIOUS FEE GENERATED GEOCR SFEEDS

DLI			Frequency Error at Various Nominal Bit Times (Bit Rates)						
Output	P _{jitter}	T jitter	8 μs (125 Kb/s)	4 μs (250 Kb/s)	2 μs (500 Kb/s)	1 μs (1 Mb/s)			
40 MHz	0.5 ns	1 ns	0.00125%	0.00250%	0.005%	0.01%			
24 MHz	0.83 ns	1.67 ns	0.00209%	0.00418%	0.008%	0.017%			
16 MHz	1.25 ns	2.5 ns	0.00313%	0.00625%	0.013%	0.025%			

TABLE 27-3:TOTAL FREQUENCY ERROR AT VARIOUS PLL GENERATED CLOCK SPEEDS
(100 PPM OSCILLATOR DRIFT, INCLUDING ERROR FROM JITTER)

	Frequency Error at Various Nominal Bit Times (Bit Rates)								
Nominal PLL Output	8 μs (125 Kb/s)	8 μs 4 μs (125 Kb/s) (250 Kb/s)		1 μs (1 Mb/s)					
40 MHz	0.01125%	0.01250%	0.015%	0.02%					
24 MHz	0.01209%	0.01418%	0.018%	0.027%					
16 MHz	0.01313%	0.01625%	0.023%	0.035%					

мον	'LW	Move Lite	ral to W						
Synta	ax:	MOVLW	MOVLW k						
Oper	ands:	$0 \le k \le 258$	5						
Oper	ation:	$k\toW$							
Statu	s Affected:	None							
Encoding:		0000	1110	kkk	ck	kkkk			
Description:		The eight-	The eight-bit literal 'k' is loaded into W.						
Words:		1	1						
Cycles:		1	1						
QC	ycle Activity:								
	Q1	Q2	Q3	6		Q4			
	Decode	Read literal 'k'	Proce Data	SS a	V	/rite to W			
Exan	nple:	MOVLW	5Ah						
	After Instructio	on							

= 5Ah

W

MOVWF	Move W to	f						
Syntax:	MOVWF	f {,a}						
Operands:	$0 \leq f \leq 255$							
	a ∈ [0,1]							
Operation:	$(W) \to f$							
Status Affected:	None							
Encoding:	0110	111a	ffff	ffff				
Description:	Move data Location 'f' 256-byte ba	from W to can be a ank.	o register nywhere	ʻf'. in the				
	If 'a' is '0', t If 'a' is '1', t GPR bank.	he Acces he BSR is	s Bank is s used to	selected. select the				
	If 'a' is '0' a set is enab in Indexed mode wher Section 29 Bit-Oriente Literal Offs	Ind the ex led, this ir Literal Off never f ≤ 9 0.2.3 "Byt ed Instruct set Mode	tended in Instruction fset Addr 05 (5Fh). e-Orient ctions in " for deta	nstruction operates essing See ed and Indexed ails.				
Words:	1							
Cycles:	1	1						
Q Cycle Activity:								
Q1	Q2	Q3		Q4				
Decode	Read	Proces	SS	Write				
	register 'f'	Data	re	gister T				
Example:	MOVWF	reg, O						
Before Instru	iction							
W REG	= 4Fh = FFh							
After Instruct	tion							
W REG	= 4Fh = 4Fh							

RLNCF	Rotate Le	ft f (No C	arry)			
Syntax:	RLNCF	f {,d {,a}}				
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	j				
Operation:	$(f < n >) \rightarrow c$ $(f < 7 >) \rightarrow c$	lest <n +="" 1<br="">lest<0></n>	.>,			
Status Affected:	N, Z	N, Z				
Encoding:	0100	01da	ffff	ffff		
Description:	The conter one bit to t is placed in stored bac	nts of regi the left. If n W. If 'd' k in regist	ster 'f' are 'd' is '0', t is '1', the ter 'f' (def	e rotated he result result is ault).		
	If 'a' is '0', ' If 'a' is '1', ' GPR bank	the Acces the BSR is	s Bank is s used to	selected. select the		
	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 29.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details					
	4	regi	ster f]•		
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3		Q4		
Decode	Read register 'f'	Proces Data	ss V des	/rite to stination		
Example:	RLNCF	REG,	1, 0			
Before Instruc REG After Instructio REG	ction = 1010 1 on = 0101 (1011				
neo	0101 (/				

Syntax:RRCFf {.d {.a}}Operands: $0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$ Operation: $(f < n >) \rightarrow dest < n - 1 >$, $(f < 0 >) \rightarrow C$, $(C) \rightarrow dest < 7 >$ Status Affected:C, N, ZEncoding: 0011 $00da$ ffffDescription:The contents of register 'f' are rotation one bit to the right through the Carrial one bit to the right through the Carrial one bit is '1', the result is placed back register 'f' (default).If 'd' is '0', the Access Bank is select If 'a' is '0', the Access Bank is select If 'a' is '0' and the extended instruct set is enabled, this instruction oper in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 29.2.3 "Byte-Oriented an Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.Uvords:1Cycles:1Q Cycle Activity:Q1Q1Q2Q3Q4DecodeREG=Instruction REG=REG=1100110 CREG=0After Instruction WREG=11100110 WW=01110011 C0		RRCF
Operands: $0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$ Operation: $(f < n >) \rightarrow dest < n - 1 >$, $(f < 0 >) \rightarrow C$, $(C) \rightarrow dest < 7 >$ Status Affected:C, N, ZEncoding: 0011 $00da$ $ffff$ Description:The contents of register 'f' are rotal one bit to the right through the Carr flag. If 'd' is '0', the result is placed back register 'f' (default).If 'a' is '0', the result is placed back register 'f' (default).If 'a' is '0', the Access Bank is select If 'a' is '0' and the extended instruct set is enabled, this instruction oper in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 29.2.3 "Byte-Oriented an Bit-Oriented Instructions in Index Literal Offset Mode" for details.Vords:1Cycles:1Q Cycle Activity:Q1Q1Q2Q3Q4DecodeRead register 'f'ProcessWrite f destinatExample:RRCFREG=1100110 CREG=11100110 CW=01110011 C	RRCF f {,d {,a}}	Syntax: R
Operation: $(f<0>) \rightarrow dest,$ $(f<0>) \rightarrow C,$ $(C) \rightarrow dest<7>Status Affected:C, N, ZEncoding:0011 00da ffff ffDescription:The contents of register 'f' are rotatione bit to the right through the Carrifag. If 'd' is '0', the result is placed back register 'f' (default).If 'a' is '0', the result is placed back register 'f (default).If 'a' is '0', the Access Bank is selectIf 'a' is '0' and the extended instructs set is enabled, this instruction oper in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). SeeSection 29.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.Literal Offset Mode" for details.Literal Offset Mode" for details.Q Cycle Activity:Q1Q2Q3Q4DecodeReadProcessWrite for details.Example:RRCFREG= 1110 0110C= 0After InstructionREG= 1110 0110W= 0111 0011C= 0$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$	Operands: 0 d a
Status Affected:C, N, ZEncoding: 0011 $00da$ ffffffDescription:The contents of register 'f' are rotal one bit to the right through the Carr flag. If 'd' is '0', the result is placed back register 'f' (default).If 'a' is '0', the result is placed back register 'f' (default).If 'a' is '0', the Access Bank is select If 'a' is '0' and the extended instruct set is enabled, this instruction oper 	$(f < n >) \rightarrow dest < n - 1 >,$ $(f < 0 >) \rightarrow C,$ $(C) \rightarrow dest < 7 >$	Operation: (f- (f- (C
Encoding: 0011 $00da$ fffffffDescription:The contents of register 'f' are rotal one bit to the right through the Carn flag. If 'd' is '0', the result is placed in If 'd' is '1', the result is placed back register 'f' (default).If 'a' is '0', the Access Bank is select If 'a' is '1', the BSR is used to select GPR bank.If 'a' is '0' and the extended instruct set is enabled, this instruction oper in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 29.2.3 "Byte-Oriented and Bit-Oriented Instructions in Index Literal Offset Mode" for details.Words:1Quick Cycles:1Q Cycle Activity:Q1Q1Q2Q3Q4DecodeRead 	C, N, Z	Status Affected: C
Description: The contents of register 'f' are rotation one bit to the right through the Carifiag. If 'd' is '0', the result is placed back register 'f' (default). If 'a' is '0', the result is placed back register 'f' (default). If 'a' is '0', the Access Bank is seled If 'a' is '1', the BSR is used to seled GPR bank. If 'a' is '0' and the extended instruct set is enabled, this instruction oper in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 29.2.3 "Byte-Oriented an Bit-Oriented Instructions in Index Literal Offset Mode" for details. $\downarrow C \rightarrow register f$ Words: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process Write f register 'f' Data destinat Example: RRCF REG, 0, 0 Before Instruction REG = 1110 0110 C = 0 After Instruction REG = 1110 0110 W = 0111 0011 C = 0	0011 00da	Encoding:
If 'a' is '0', the Access Bank is select If 'a' is '1', the BSR is used to select GPR bank.If 'a' is '0' and the extended instruct set is enabled, this instruction oper in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 29.2.3 "Byte-Oriented an Bit-Oriented Instructions in Index Literal Offset Mode" for details.Words:1Cycles:1Q Cycle Activity:Q1Q1Q2Q3Q4DecodeRead register 'f'DatadestinatExample:RRCFREG=11100110 CC=0After Instruction REGREG=11100110 WQ=01110011 CC=0	The contents of register one bit to the right thro flag. If 'd' is '0', the resul If 'd' is '1', the result is register 'f' (default).	Description: Th or fla If re
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	If 'a' is '0', the Access If 'a' is '1', the BSR is ι GPR bank.	lf If G
Cregister fWords:1Cycles:1Q Cycle Activity: Q^1 Q2Q3Q4DecodeReadProcessWrite tregister 'f'DataDecodeReadregister 'f'DataDecodeReadregister 'f'DataC=0After InstructionREG=Ner InstructionREGREG=11100110W=01110011C=0	mode whenever f ≤ 95 Section 29.2.3 "Byte-	m Se
Words: 1 Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process Write to register 'f' Data destinat Example: RRCF REG, 0, 0 Before Instruction REG = 1110 0110 C = 0 After Instruction REG = 1110 0110 W = 0111 0011 C = 0	Literal Offset Mode"	Bi
Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process Write to destinate Example: RRCF REG, 0, 0 REG Before Instruction REG 1110 0110 C = 0 After Instruction REG = 1110 0110 W = 0111 0011 C = 0 0	Literal Offset Mode"	B
Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process Write to destinat Example: RRCF REG, 0, 0 Before Instruction REG = 1110 0110 C = 0 After Instruction REG = 1110 0110 W = 0111 0011 C = 0	Literal Offset Mode"	Bi Li Words: 1
Q1Q2Q3Q4DecodeRead register 'f'ProcessWrite t destinatExample:RRCFREG, 0, 0Before Instruction C=0After Instruction REG=1110REG=1110Q10110 Q=Q10111 Q0111 QQ10111 Q=	Literal Offset Mode"	B Li Words: 1 Cycles: 1
DecodeRead register 'f'Process DataWrite t destinatExample:RRCFREG, 0, 0Before Instruction $C = 0$ 1110 0110 $C = 0$ After Instruction $REG = 1110 0110$ $W = 0111 0011$ $C = 0$	Literal Offset Mode" C regis	Words: 1 Cycles: 1 Q Cycle Activity:
Example:RRCFREG, 0, 0Before InstructionREG = 1110 0110C = 0After InstructionREG = 1110 0110 0011 W = 0111 0011 0011	Literal Offset Mode" Literal Offset Mode" C regis 1 1 2 Q2 Q3	B Li Words: 1 Cycles: 1 Q Cycle Activity: Q1
Example: RRCF REG, 0, 0 Before Instruction REG = 1110 0110 C = 0 After Instruction REG = 1110 0110 W = 0111 0011 C = 0	Literal Offset Mode" Literal Offset Mode" C → regin 1 1 2 Q2 Q3 Read Process register 'f' Data	B Li Vords: 1 Cycles: 1 Q Cycle Activity: Q1 Decode f reg
Before Instruction $\begin{array}{rcl} REG &=& 1110 & 0110 \\ C &=& 0 \\ \end{array}$ After Instruction $\begin{array}{rcl} REG &=& 1110 & 0110 \\ W &=& 0111 & 0011 \\ C &=& 0 \\ \end{array}$	Literal Offset Mode" ↓ C → regi: 1 1 Q2 Q3 Read Process register 'f' Data	B Li Words: 1 Cycles: 1 Q Cycle Activity: Q1 Decode f rec
$\begin{array}{rcl} REG &=& 1110 & 0110 \\ C &=& 0 \\ \hline & & & \\ After Instruction \\ REG &=& 1110 & 0110 \\ W &=& 0111 & 0011 \\ C &=& 0 \\ \end{array}$	Literal Offset Mode" Literal Offset Mode" C → regis 1 1 2 Q2 Q3 Read Process register 'f' Data RRCF REG, 0	B Li Words: 1 Cycles: 1 Q Cycle Activity: Q1 Decode f rec Example: RI
After Instruction REG = 1110 0110 W = 0111 0011 C = 0	Literal Offset Mode" Literal Offset Mode" C regis 1 1 Q2 Q3 Read Process register 'f' Data RRCF REG, 0 tion	Bind Stress Stre
REG = 1110 0110 W = 0111 0011 C = 0	Literal Offset Mode" Literal Offset Mode" C regis 1 1 2 2 2 2 3 Read register 'f' Data RRCF REG, 0 tion = 1110 0110 = 0	Bind States Stat
$\mathbf{C} = 0$	Literal Offset Mode" Literal Offset Mode" 1 1 Q2 Q3 Read Process register 'f' Data RRCF REG, 0 tion = 1110 0110 = 0	Words: 1 Cycles: 1 Q Cycle Activity: Q1 Decode F Example: RI Before Instruction REG = C = After Instruction
	Literal Offset Mode" Literal Offset Mode" C regis 1 1 Q2 Q3 Read Process register 'f' Data RRCF REG, 0 tion = 1110 0110 = 0 m = 1110 0110 = 0111 0011	Words: 1 Cycles: 1 Q Cycle Activity: Q1 Decode f rec Example: RI Before Instruction REG = C = After Instruction REG = W =

RRN	CF	Rotate R	Rotate Right f (No Carry)				
Synta	ax:	RRNCF	f {	,d {,a}}			
Oper	ands:	$0 \le f \le 25$ $d \in [0,1]$ $a \in [0,1]$	5				
Oper	ation:	$(f < n >) \rightarrow$ $(f < 0 >) \rightarrow$	de de	st <n 1<br="" –="">st<7></n>	L>,		
Statu	s Affected:	N, Z					
Enco	ding:	0100		00da	ffi	ff ffff	
Desc	ription:	The cont one bit to is placed placed ba	ent the in ack	s of reg e right. W. If 'd' in regis	ister 'f If 'd' is is '1', ster 'f'	' are rotated 5 '0', the result the result is (default).	
		If 'a' is '0 selected, is '1', the per the B	', th ov n th SR	e Acce erriding ne bank value.	ss Bar the B will be	nk will be SR value. If 'a' e selected as	
		If 'a' is '0' and the extended instruction set is enabled, this instruction operate in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 29.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details					
		Γ	-	re	egister	f	
Word	ls:	1					
Cycle	es:	1					
QC	ycle Activity:						
	Q1	Q2		Q	3	Q4	
	Decode	Read register 'f'		Proce Dat	ess a	Write to destination	
<u>Exan</u>	nple 1:	RRNCF	R	EG, 1	, 0		
	Before Instruc REG	tion = 1101	0	111			
	REG	en 1110	1	011			
Example 2:							
<u>Exan</u>	nple 2:	RRNCF	R	EG, 0	, 0		
<u>Exan</u>	nple 2: Before Instruc	RRNCF	R	EG, 0	, 0		
<u>Exan</u>	nple 2: Before Instruc W REG After Instructio	RRNCF tion = ? = 1101	R 0:	EG, 0	, 0		

SETF		Set f					
Syntax:		SETF 1	f {,a}				
Operan	ds:	0 ≤ f ≤ 28 a ∈ [0.1]	55				
Operati	on:	$FFh \rightarrow f$					
Status A	Affected:	None					
Encodir	ng:	0110	1	L00a	fff	f	ffff
Descrip	tion:	The cont are set to	ents o FF	of the h.	specif	ied r	register
		lf 'a' is '0 If 'a' is '1 GPR bar	', the ', the nk.	e Acces e BSR i	ss Bar is useo	ik is d to s	selected. select the
		If 'a' is '0 set is ena in Indexe mode wh Section Bit-Orien Literal C	i' and able ed Li nene 29.2 nted Offse	d the e: d, this i teral O ver f ≤ 3 "By Instru	xtende instruc ffset A 95 (5F te-Ori te:Ori e" for o	ed in tion ddre h). S ente s in deta	struction operates essing See ed and Indexed ils.
Words:		1					
Cycles:		1					
Q Cycl	e Activity:						
	Q1	Q2		Q3	3		Q4
	Decode	Read register 'f	,	Proce Data	ess a	reę	Write gister 'f'
<u>Exampl</u> Be	<u>e:</u> fore Instruct REG	SETF ion =	5Ah	RE	G,1		
Απ	REG	n =	FFh				

31.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on MCLR with respect to Vss	0.3V to 9.0V
Voltage on any digital only I/O pin with respect to Vss (except VDD)	0.3V to 7.5V
Voltage on any combined digital and analog pin with respect to Vss (except VDD and MCLR)0.	.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss (PIC18F66K80)	0.3V to 7.5V
Voltage on VDD with respect to Vss (PIC18LF66K80)	0.3V to 3.66V
Total power dissipation (Note 1)	1W
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, Iık (Vı < 0 or Vı > VDD)	±20 mA
Output clamp current, Iok (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by PORTA<7:6> and any PORTB and PORTC I/O pins	25 mA
Maximum output current sunk by any PORTD and PORTE I/O pins	8 mA
Maximum output current sunk by PORTA<5:0> and any PORTF and PORTG I/O pins	2 mA
Maximum output current sourced by PORTA<7:6> and any PORTB and PORTC I/O pins	25 mA
Maximum output current sourced by any PORTD, PORTE and PORTJ I/O pins	8 mA
Maximum output current sourced by PORTA<5:0> and any PORTF, PORTG and PORTH I/O pins	2 mA
Maximum current sunk by all ports combined	200 mA

Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD $- \sum$ IOH} + \sum {(VDD - VOH) x IOH} + \sum (VOL x IOL)

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 31-12: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS

Standa Operati	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param No.	Sym	Charact	eristic	Min	Тур	Max	Units	Conditions
D420		HLVD Voltage on VDD	HLVDL<3:0> = 0000	1.80	1.85	1.90	V	
		Transition High-to-Low	HLVDL<3:0> = 0001	2.03	2.08	2.13	V	
			HLVDL<3:0> = 0010	2.24	2.29	2.35	V	
			HLVDL<3:0> = 0011	2.40	2.46	2.53	V	
			HLVDL<3:0> = 0100	2.50	2.56	2.62	V	
			HLVDL<3:0> = 0101	2.70	2.77	2.84	V	
			HLVDL<3:0> = 0110	2.82	2.89	2.97	V	
			HLVDL<3:0> = 0111	2.95	3.02	3.10	V	
			HLVDL<3:0> = 1000	3.24	3.32	3.41	V	
			HLVDL<3:0> = 1001	3.42	3.50	3.59	V	
			HLVDL<3:0> = 1010	3.61	3.70	3.79	V	
			HLVDL<3:0> = 1011	3.82	3.91	4.10	V	
			HLVDL<3:0> = 1100	4.06	4.16	4.26	V	
			HLVDL<3:0> = 1101	4.33	4.44	4.55	V	
			HLVDL<3:0> = 1110	4.64	4.75	4.87	V	

Configuration Mode	438
Configuration Register Protection	482
Core Features	
Easy Migration	12
Extended Instruction Set	11
Memory Options	11
nanoWatt Technology	11
Oscillator Options and Features	11
CPFSEQ	500
CPFSGT	501
CPFSLT	501
Crystal Oscillator/Ceramic Resonator	
Customer Change Notification Service	617
Customer Notification Service	617
Customer Support	617

D

Comparing Addressing Modes with the Extended In-
struction Set Enabled127
Direct
Indexed Literal Offset126
BSR128
Instructions Affected 126
Mapping Access Bank 128
Indirect 123
Inherent and Literal 123
Data EEPROM
Associated Registers 144
Code Protection
During Code-Protect
EEADR and EEADRH Registers
EECON1 and EECON2 Registers 139
Overview
Reading141
Spurious Write Protection
Using
Write Verity
Writing
Data EEPROM Memory
Operation During Code-Protect
Data Memory
Access Bank
Bank Select Register (BSR)
Extended Instruction Set
General Purpose Registers
DIC19EXEK90/X6K90 Dovisoo
PICTOFASROU/A0ROU Devices
Special Function Registers
Special Function Registers
Data Signal Modulator (DSM)
Carrier Signal Sources 107
Carrier Source
Pin Disable 200
Polarity Select 200
Carrier Synchronization 197
Effects of a Reset
Modulated Output Polarity 200
Modulator Signal Sources 197
Modulator Source Pin Disable 200
Operation 197
Operation in Sleep Mode 200
Programmable Modulator Data 200
Slew Rate Control
DAW

DC Characteristics	
CTMU Current Source Specifications	557
PIC18F66K80 Family (Industrial)5	55, 557
Power-Down and Supply Current	540
Supply Voltage	539
DCFSNZ	503
DECF	502
DECFSZ	503
Default System Clock	57
Details on Individual Family Members	12
Development Support	533
Device Overview	11
Features (28-Pin Devices)	13
Features (40/44-Pin Devices)	13
Features (64-Pin Devices)	14
Device Reset Timers	83
Oscillator Start-up Timer (OST)	83
PLL Lock Time-out	83
Power-up Timer (PWRT)	83
Direct Addressing	124
Disable/Sleep Mode	438

Е

ECAN Module	391
Baud Rate Setting	446
Bit Time Partitioning	446
Bit Timing Configuration Registers	452
Calculating To, Nominal Bit Rate and Nominal Bit Ti	me
449	
CAN Baud Rate Registers	430
CAN Control and Status Registers	393
CAN I/O Control Register	433
CAN Interrupt Registers	434
CAN Interrupts	453
Bus Activity Wake-up	454
Bus-Off	455
Code Bits	454
Error	454
Message Error	454
Receive	454
Receiver Bus Passive	455
Receiver Overflow	455
Receiver Warning	455
Transmit	454
Transmitter Bus Passive	455
Transmitter Warning	455
CAN Message Buffers	440
Dedicated Receive	440
Dedicated Transmit	440
Programmable Auto-RTR	441
Programmable Transmit/Receive	440
CAN Message Transmission	441
Aborting	441
Initiating	441
Priority	442
CAN Modes of Operation	438
CAN Registers	393
Configuration Mode	438
Dedicated CAN Receive Buffer Registers	406
Dedicated CAN Transmit Buffer Registers	400
Disable/Sleep Mode	438
Error Detection	452
Acknowledge	452
Bit	452
CRC	452
Error Modes and Counters	452

 $\ensuremath{\textcircled{}^{\circ}}$ 2010-2012 Microchip Technology Inc.