

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	ECANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6К х 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f25k80t-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-5:	PIC18F4XK80 PINOUT I/O DESCRIPTIONS (CONTINU	JED)
------------	--	------

	Pin Number		Dim	Duffer		
Pin Name	PDIP	QFN/ TQFP	Ріп Туре	Buffer Type	Description	
					PORTC is a bidirectional I/O port.	
RC0/SOSCO/SCLKI	15	32				
RC0			I/O	ST/ CMOS	Digital I/O.	
SOSCO			Ι	ST	SOSC oscillator output.	
SCLKI			I	ST	Digital SOSC input.	
RC1/SOSCI	16	35				
RC1			I/O	ST/ CMOS	Digital I/O.	
SOSCI			I	CMOS	SOSC oscillator input.	
RC2/T1G/CCP2	17	36				
RC2			I/O	ST/ CMOS	Digital I/O.	
T1G			Т	ST	Timer1 external clock gate input.	
CCP2			I/O	ST/ CMOS	Capture 2 input/Compare 2 output/PWM2 output.	
RC3/REFO/SCL/SCK	18	37				
RC3			I/O	ST/ CMOS	Digital I/O.	
REFO			0	CMOS	Reference clock out.	
SCL			I/O	l ² C	Synchronous serial clock input/output for I ² C mode.	
SCK			I/O	ST	Synchronous serial clock input/output for SPI mode.	
RC4/SDA/SDI	23	42				
RC4			I/O	ST/ CMOS	Digital I/O.	
SDA			I/O	I ² C	I ² C data input/output.	
SDI			I	ST	SPI data in.	
RC5/SDO	24	43				
RC5			I/O	ST/ CMOS	Digital I/O.	
SDO			0	CMOS	SPI data out.	
RC6/CANTX/TX1/CK1/ CCP3	25	44				
RC6			I/O	ST/ CMOS	Digital I/O.	
CANTX			0	CMOS	CAN bus TX.	
TX1			0	CMOS	EUSART synchronous transmit.	
CK1			I/O	ST	EUSART synchronous clock. (See related RX2/DT2.)	
CCP3			I/O	ST	Capture 3 input/Compare 3 output/PWM3 output.	
Legend: $I^2C^{TM} = I^2C/SMBus$ input bufferCMOS= CMOS compatible input or outputST= Schmitt Trigger input with CMOS levelsAnalog= Analog inputI= InputO= OutputP= PowerO= Output						

Pin Name	Pin Num	Pin Type	Buffer Type	Description		
MCLR/RE3	28					
MCLR		Ι	ST	Master Clear (input) or programming voltage (input). This pin is an active-low Reset to the device.		
RE3		Ι	ST	General purpose, input only pin.		
OSC1/CLKIN/RA7	46					
OSC1		Ι	ST	Oscillator crystal input.		
CLKIN		I	CMOS	External clock source input. Always associated with pin function, OSC1. (See related OSC1/CLKI, OSC2/CLKO pins.)		
RA7		I/O	ST/ CMOS	General purpose I/O pin.		
OSC2/CLKOUT/RA6	47					
OSC2		0	_	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.		
CLKOUT		0	_	In certain oscillator modes, OSC2 pin outputs CLKO, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.		
RA6		I/O	ST/ CMOS	General purpose I/O pin.		
Legend: $l^2 C^{TM} = l^2 C/SMBus input buffer CMOS = CMOS compatible input or output$						

TABLE 1-6:	PIC18F6XK80 PINOUT I/O DESCRIPTIONS

ST= Schmitt Trigger input with CMOS levelsAnalog= Analog inputI= InputO= OutputP= PowerO= Output

4.3 Sleep Mode

The power-managed Sleep mode in the PIC18F66K80 family of devices is identical to the legacy Sleep mode offered in all other PIC devices. It is entered by clearing the IDLEN bit (the default state on device Reset) and executing the SLEEP instruction. This shuts down the selected oscillator (Figure 4-5). All clock source status bits are cleared.

Entering Sleep mode from any other mode does not require a clock switch. This is because no clocks are needed once the controller has entered Sleep. If the WDT is selected, the LF-INTOSC source will continue to operate. If the SOSC oscillator is enabled, it will also continue to run.

When a wake event occurs in Sleep mode (by interrupt, Reset or WDT time-out), the device will not be clocked until the clock source selected by the SCS<1:0> bits becomes ready (see Figure 4-6). Alternately, the device will be clocked from the internal oscillator block if either the Two-Speed Start-up or the Fail-Safe Clock Monitor is enabled (see **Section 28.0 "Special Features of the CPU"**). In either case, the OSTS bit is set when the primary clock is providing the device clocks. The IDLEN and SCSx bits are not affected by the wake-up.

4.4 Idle Modes

The Idle modes allow the controller's CPU to be selectively shut down while the peripherals continue to operate. Selecting a particular Idle mode allows users to further manage power consumption.

If the IDLEN bit is set to a '1' when a SLEEP instruction is executed, the peripherals will be clocked from the clock source selected using the SCS<1:0> bits. The CPU, however, will not be clocked. The clock source status bits are not affected. This approach is a quick method to switch from a given Run mode to its corresponding Idle mode.

If the WDT is selected, the LF-INTOSC source will continue to operate. If the SOSC oscillator is enabled, it will also continue to run.

Since the CPU is not executing instructions, the only exits from any of the Idle modes are by interrupt, WDT time-out or a Reset. When a wake event occurs, CPU execution is delayed by an interval of TCSD (Parameter 38, Table 31-11) while it becomes ready to execute code. When the CPU begins executing code, it resumes with the same clock source for the current Idle mode. For example, when waking from RC_IDLE mode, the internal oscillator block will clock the CPU and peripherals (in other words, RC_RUN mode). The IDLEN and SCSx bits are not affected by the wake-up.

While in any Idle mode or Sleep mode, a WDT timeout will result in a WDT wake-up to the Run mode currently specified by the SCS<1:0> bits.

FIGURE 4-5: TRANSITION TIMING FOR ENTRY TO SLEEP MODE

PIC18F66K80 FAMILY

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PSPMD ⁽¹⁾	CTMUMD	ADCMD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	TMR0MD
bit 7							bit 0
r							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	PSPMD: Peri	pheral Module	Disable bit ⁽¹⁾	ragistors are b	old in Posot an	d aro not writch	
	1 = The PSP 0 = The PSP	module is enal	bled	registers are m			NC
bit 6	CTMUMD: PI	MD CTMU Disa	able bit				
	1 = The CTN 0 = The CTN	1U module is d 1U module is e	isabled; all CT nabled	MU registers a	are held in Rese	et and are not w	vritable
bit 5	ADCMD: A/D	Module Disab	le bit				
	1 = The A/D 0 = The A/D	module is disa module is enal	bled; all A/D re bled	egisters are he	ld in Reset and	are not writabl	e
bit 4	TMR4MD: TN	/IR4MD Disable	e bit				
	1 = The Time 0 = The Time	er4 module is d er4 module is e	lisabled; all Tir enabled	mer4 registers	are held in Res	et and are not	writable
bit 3	TMR3MD: TN	/IR3MD Disable	e bit				
	1 = The Time 0 = The Time	er3 module is d er3 module is e	lisabled; all Tir nabled	mer3 registers	are held in Res	et and are not	writable
bit 2	TMR2MD: TN	/IR2MD Disable	e bit				
	1 = The Time 0 = The Time	er2 module is d er2 module is e	lisabled; all Tir enabled	ner2 registers	are held in Res	et and are not	writable
bit 1	TMR1MD: TN	/IR1MD Disable	e bit				
	1 = The Time 0 = The Time	er1 module is d er1 module is e	lisabled; all Tir enabled	ner1 registers	are held in Res	et and are not	writable
bit 0	TMR0MD: Tir 1 = The Time 0 = The Time	mer0 Module D r0 module is di r0 module is el	visable bit isabled; all Tin nabled	ner0 registers a	are held in Rese	et and are not v	vritable

REGISTER 4-2: PMD1: PERIPHERAL MODULE DISABLE REGISTER 1

Note 1: This bit is unimplemented on 28-pin devices (PIC18F2XK80, PIC18LF2XK80).

7.3 Reading the Flash Program Memory

The TBLRD instruction is used to retrieve data from program memory and places it into data RAM. Table reads from program memory are performed one byte at a time.

TBLPTR points to a byte address in program space. Executing TBLRD places the byte pointed to into TABLAT. In addition, TBLPTR can be modified automatically for the next table read operation.

The internal program memory is typically organized by words. The Least Significant bit of the address selects between the high and low bytes of the word. Figure 7-4 shows the interface between the internal program memory and the TABLAT.

FIGURE 7-4: READS FROM FLASH PROGRAM MEMORY

EXAMPLE 7-1: READING A FLASH PROGRAM MEMORY WORD

	MOVLW MOVWF MOVLW MOVUF MOVLW MOVWF	CODE_ADDR_UPPER TBLPTRU CODE_ADDR_HIGH TBLPTRH CODE_ADDR_LOW TBLPTRL	;;	; Load TBLPTR with the base ; address of the word	
READ_WORD					
	TBLRD*-	F	;	; read into TABLAT and increment	
	MOVF	TABLAT, W	;	; get data	
	MOVWF	WORD_EVEN			
	TBLRD*-	F	;	; read into TABLAT and increment	
	MOVF	TABLAT, W	;	; get data	
	MOVF	WORD_ODD			

11.1.3 OPEN-DRAIN OUTPUTS

The output pins for several peripherals are also equipped with a configurable, open-drain output option. This allows the peripherals to communicate with external digital logic, operating at a higher voltage level, without the use of level translators.

The open-drain option is implemented on port pins specifically associated with the data and clock outputs of the USARTs, the MSSP module (in SPI mode) and the CCP modules. This option is selectively enabled by setting the open-drain control bits in the ODCON register.

When the open-drain option is required, the output pin must also be tied through an external pull-up resistor provided by the user to a higher voltage level, up to 5V (Figure 11-2). When a digital logic high signal is output, it is pulled up to the higher voltage level.

FIGURE 11-2:

USING THE OPEN-DRAIN OUTPUT (USARTx SHOWN AS EXAMPLE)

REGISTER 11-3: ODCON: PERIPHERAL OPEN-DRAIN CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSPOD	CCP5OD	CCP4OD	CCP3OD	CCP2OD	CCP10D	U2OD	U10D
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	SSPOD: SPI Open-Drain Output Enable bit 1 = Open-drain capability is enabled 0 = Open-drain capability is disabled
bit 6	CCP5OD: CCP5 Open-Drain Output Enable bit 1 = Open-drain capability is enabled
bit 5	 0 = Open-drain capability is disabled CCP4OD: CCP4 Open-Drain Output Enable bit 1 = Open-drain capability is enabled
bit 4	 0 = Open-drain capability is disabled CCP3OD: CCP3 Open-Drain Output Enable bit 1 = Open-drain capability is enabled
bit 3	 0 = Open-drain capability is disabled CCP2OD: CCP2 Open-Drain Output Enable bit 1 = Open-drain capability is enabled
bit 2	 Open-drain capability is disabled CCP1OD: CCP1 Open-Drain Output Enable bit
bit 1	 1 = Open-drain capability is enabled 0 = Open-drain capability is disabled U20D: UART2 Open-Drain Output Enable bit
	 1 = Open-drain capability is enabled 0 = Open-drain capability is disabled
dit U	 U1OD: UART1 Open-Drain Output Enable bit 1 = Open-drain capability is enabled 0 = Open-drain capability is disabled

11.4 PORTC, TRISC and LATC Registers

PORTC is an eight-bit wide, bidirectional port. The corresponding Data Direction and Output Latch registers are TRISC and LATC. Only PORTC pins, RC2 through RC7, are digital only pins.

PORTC is multiplexed with CCP, MSSP and EUSARTx peripheral functions (Table 11-5). The pins have Schmitt Trigger input buffers. The pins for CCP, SPI and EUSARTx are also configurable for open-drain output whenever these functions are active. Open-drain configuration is selected by setting the SSPOD, CCPxOD and U1OD control bits in the ODCON register.

RC1 is configurable for open-drain output when CCP2 is active on this pin. Open-drain configuration is selected by setting the CCP2OD control bit (ODCON<3>).

When enabling peripheral functions, use care in defining TRIS bits for each PORTC pin. Some peripherals can override the TRIS bit to make a pin an output or input. Consult the corresponding peripheral section for the correct TRIS bit settings.

Note: These pins are configured as digital inputs on any device Reset.

The contents of the TRISC register are affected by peripheral overrides. Reading TRISC always returns the current contents, even though a peripheral device may be overriding one or more of the pins.

EXAMPL	_E 11-3:	INITIALIZING PORTC
CLRF	PORTC	; Initialize PORTC by ; clearing output
		; data latches
CLRF	LATC	; Alternate method
		; to clear output
		; data latches
MOVLW	OCFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISC	; Set RC<3:0> as inputs
		; RC<5:4> as outputs
		; RC<7:6> as inputs

TABLE 11-5:	PORTC FUNCTIONS	(CONTINUED)
-		/

Pin Name	Function	TRIS Setting	I/O	l/O Type	Description			
RC7/CANRX/	RC7	0	0	DIG	LATC<7> data output.			
RX1/DT1/		1	Ι	ST	PORTC<7> data input.			
CCP4	CANRX ⁽²⁾	1	Ι	ST	CAN bus RX.			
	RX1 ⁽¹⁾	1	Ι	ST	Asynchronous serial receive data input (EUSARTx module).			
	DT1 ⁽¹⁾	1	0	DIG	Synchronous serial data output (EUSARTx module); takes priority over port data.			
		1	I	ST	Synchronous serial data input (EUSARTx module); user must configure as an input.			
	CCP4	0	0	DIG	CCP4 compare/PWM output; takes priority over port data.			
		1	Ι	ST	CCP4 capture input.			

Legend: O = Output; I = Input; $I^2C = I^2C/SMBus$; ANA = Analog Signal; DIG = CMOS Output; ST = Schmitt Trigger Buffer Input; x = Don't care (TRIS bit does not affect port direction or is overridden for this option)

Note 1: The pin assignment for 28, 40 and 44-pin devices (PIC18F2XK80 and PIC18F4XK80).

2: The alternate pin assignment for CANRX and CANTX on 28, 40 and 44-pin devices (PIC18F4XK80) when the CANMX Configuration bit is set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0
LATC	LATC7	LATBC6	LATC5	LATCB4	LATC3	LATC2	LATC1	LATC0
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0
ODCON	SSPOD	CCP50D	CCP4OD	CCP3OD	CCP2OD	CCP10D	U2OD	U10D

Legend: Shaded cells are not used by PORTC.

14.7 Resetting Timer1 Using the ECCP Special Event Trigger

If ECCP modules are configured to use Timer1 and to generate a Special Event Trigger in Compare mode (CCP1M<3:0> = 1011), this signal will reset Timer1. The trigger from ECCP will also start an A/D conversion if the A/D module is enabled. (For more information, see **Section 20.3.4 "Special Event Trigger"**.)

To take advantage of this feature, the module must be configured as either a timer or a synchronous counter. When used this way, the CCPR1H:CCPR1L register pair effectively becomes a Period register for Timer1.

If Timer1 is running in Asynchronous Counter mode, this Reset operation may not work.

In the event that a write to Timer1 coincides with a Special Event Trigger, the write operation will take precedence.

Note:	The Special Event Trigger from the ECCP
	module will only clear the TMR1 register's
	content, but not set the TMR1IF interrupt
	flag bit (PIR1<0>).

14.8 Timer1 Gate

Timer1 can be configured to count freely or the count can be enabled and disabled using the Timer1 gate circuitry. This is also referred to as Timer1 gate count enable.

Timer1 gate can also be driven by multiple selectable sources.

14.8.1 TIMER1 GATE COUNT ENABLE

The Timer1 Gate Enable mode is enabled by setting the TMR1GE bit of the T1GCON register. The polarity of the Timer1 Gate Enable mode is configured using the T1GPOL bit (T1GCON<6>).

When Timer1 Gate Enable mode is enabled, Timer1 will increment on the rising edge of the Timer1 clock source. When Timer1 Gate Enable mode is disabled, no incrementing will occur and Timer1 will hold the current count. See Figure 14-4 for timing details.

TABLE 14-3:	TIMER1 GATE ENABLE
	SELECTIONS

T1CLK ^(†)	T1GPOL (T1GCON<6>)	T1G Pin	Timer1 Operation
1	0	0	Counts
\uparrow	0	1	Holds Count
\uparrow	1	0	Holds Count
\uparrow	1	1	Counts

† The clock on which TMR1 is running. For more information, see Figure 14-1.

Note:	The CCP and ECCP modules use Timers,
	1 through 4, for some modes. The assign-
	ment of a particular timer to a CCP/ECCP
	module is determined by the Timer to CCP
	enable bits in the CCPTMRS register. For
	more details, see Register 20-2 and
	Register 19-2.

16.5.2 TIMER3 GATE SOURCE SELECTION

The Timer3 gate source can be selected from one of four different sources. Source selection is controlled by the T3GSS<1:0> bits (T3GCON<1:0>). The polarity for each available source is also selectable and is controlled by the T3GPOL bit (T3GCON<6>).

|--|

T3GSS<1:0>	Timer3 Gate Source		
00	Timerx Gate Pin		
01	TMR4 to Match PR4 (TMR4 increments to match PR4)		
10	Comparator 1 Output (comparator logic high output)		
11	Comparator 2 Output (comparator logic high output)		

16.5.2.1 T3G Pin Gate Operation

The T3G pin is one source for Timer3 gate control. It can be used to supply an external source to the Timerx gate circuitry.

16.5.2.2 Timer4 Match Gate Operation

The TMR4 register will increment until it matches the value in the PR4 register. On the very next increment cycle, TMR4 will be reset to 00h. When this Reset occurs, a low-to-high pulse will automatically be generated and internally supplied to the Timerx gate circuitry. The pulse will remain high for one instruction cycle and will return back to a low state until the next match.

Depending on T3GPOL, Timerx increments differently when TMR4 matches PR4. When T3GPOL = 1, Timer3 increments for a single instruction cycle following a TMR4 match with PR4. When T3GPOL = 0, Timer3 increments continuously, except for the cycle following the match, when the gate signal goes from low-to-high.

16.5.2.3 Comparator 1 Output Gate Operation

The output of Comparator 1 can be internally supplied to the Timer3 gate circuitry. After setting up Comparator 1 with the CM1CON register, Timer3 will increment depending on the transitions of the CMP1OUT (CMSTAT<6>) bit.

16.5.2.4 Comparator 2 Output Gate Operation

The output of Comparator 2 can be internally supplied to the Timer3 gate circuitry. After setting up Comparator 2 with the CM2CON register, Timer3 will increment depending on the transitions of the CMP2OUT (CMSTAT<7>) bit.

16.5.3 TIMER3 GATE TOGGLE MODE

When Timer3 Gate Toggle mode is enabled, it is possible to measure the full cycle length of a Timer3 gate signal, as opposed to the duration of a single level pulse.

The Timer3 gate source is routed through a flip-flop that changes state on every incrementing edge of the signal. (For timing details, see Figure 16-3.)

The T3GVAL bit will indicate when the Toggled mode is active and the timer is counting.

Timer3 Gate Toggle mode is enabled by setting the T3GTM bit (T3GCON<5>). When the T3GTM bit is cleared, the flip-flop is cleared and held clear. This is necessary in order to control which edge is measured.

FIGURE 16-3: TIMER3 GATE TOGGLE MODE

PIC18F66K80 FAMILY

FIGURE 20-11: EXAMPLE OF PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE

20.4.3 START-UP CONSIDERATIONS

When any PWM mode is used, the application hardware must use the proper external pull-up and/or pull-down resistors on the PWM output pins.

Note:	When the microcontroller is released from								
	Reset, all of the I/O pins are in the								
	high-impedance state. The external								
	circuits must keep the power switch								
	devices in the OFF state until the micro-								
	controller drives the I/O pins with the								
	proper signal levels or activates the PWM								
	output(s).								

The CCP1M<1:0> bits of the CCP1CON register allow the user to choose whether the PWM output signals are active-high or active-low for each pair of PWM output pins (P1A/P1C and P1B/P1D). The PWM output polarities must be selected before the PWM pin output drivers are enabled. Changing the polarity configuration while the PWM pin output drivers are enabled is not recommended since it may result in damage to the application circuits.

The P1A, P1B, P1C and P1D output latches may not be in the proper states when the PWM module is initialized. Enabling the PWM pin output drivers at the same time as the Enhanced PWM modes may cause damage to the application circuit. The Enhanced PWM modes must be enabled in the proper Output mode and complete a full PWM cycle before enabling the PWM pin output drivers. The completion of a full PWM cycle is indicated by the TMR2IF or TMR4IF bit of the PIR1 or PIR4 register being set as the second PWM period begins.

20.4.4 ENHANCED PWM AUTO-SHUTDOWN MODE

The PWM mode supports an Auto-Shutdown mode that will disable the PWM outputs when an external shutdown event occurs. Auto-Shutdown mode places the PWM output pins into a predetermined state. This mode is used to help prevent the PWM from damaging the application.

The auto-shutdown sources are selected using the ECCP1AS<2:0> bits (ECCP1AS<6:4>). A shutdown event may be generated by:

- A logic '0' on the pin that is assigned the FLT0 input function
- Comparator C1
- Comparator C2
- Setting the ECCP1ASE bit in firmware

PIC18F66K80 FAMILY

27.9.1 EXTERNAL CLOCK, INTERNAL CLOCK AND MEASURABLE JITTER IN HS-PLL BASED OSCILLATORS

The microcontroller clock frequency generated from a PLL circuit is subject to a jitter, also defined as Phase Jitter or Phase Skew. For its PIC18 Enhanced micro-controllers, Microchip specifies phase jitter (P_{jitter}) as being 2% (Gaussian distribution, within 3 standard deviations, see Parameter F13 in Table 31-7) and Total Jitter (T_{iitter}) as being 2 * P_{iitter} .

The CAN protocol uses a bit-stuffing technique that inserts a bit of a given polarity following five bits with the opposite polarity. This gives a total of 10 bits transmitted without resynchronization (compensation for jitter or phase error).

Given the random nature of the added jitter error, it can be shown that the total error caused by the jitter tends to cancel itself over time. For a period of 10 bits, it is necessary to add only two jitter intervals to correct for jitter induced error: one interval in the beginning of the 10-bit period and another at the end. The overall effect is shown in Figure 27-5.

FIGURE 27-5: EFFECTS OF PHASE JITTER ON THE MICROCONTROLLER CLOCK AND CAN BIT TIME

Once these considerations are taken into account, it is possible to show that the relation between the jitter and the total frequency error can be defined as:

EQUATION 27-4: JITTER AND TOTAL FREQUENCY ERROR

$$\Delta f = \frac{T_{\text{jitter}}}{10 \times \text{NBT}} = \frac{2 \times P_{\text{jitter}}}{10 \times \text{NBT}}$$

where jitter is expressed in terms of time and NBT is the Nominal Bit Time.

For example, assume a CAN bit rate of 125 Kb/s, which gives an NBT of 8 μ s. For a 16 MHz clock generated from a 4x PLL, the jitter at this clock frequency is:

EQUATION 27-5: 16 MHz CLOCK FROM 4x PLL JITTER:

and resultant frequency error is:

EQUATION 27-6: RESULTANT FREQUENCY ERROR:

$$\frac{2 \times (1.25 \times 10^{-9})}{10 \times (8 \times 10^{-6})} = 3.125 \times 10^{-5} = 0.0031\%$$

27.11 Programming Time Segments

Some requirements for programming of the time segments:

- Prop_Seg + Phase_Seg $1 \ge$ Phase_Seg 2
- Phase_Seg $2 \ge$ Sync Jump Width.

For example, assume that a 125 kHz CAN baud rate is desired, using 20 MHz for Fosc. With a Tosc of 50 ns, a baud rate prescaler value of 04h gives a Tq of 500 ns. To obtain a Nominal Bit Rate of 125 kHz, the Nominal Bit Time must be 8 μ s or 16 Tq.

Using 1 Tq for the Sync_Seg, 2 Tq for the Prop_Seg and 7 Tq for Phase Segment 1 would place the sample point at 10 Tq after the transition. This leaves 6 Tq for Phase Segment 2. By the rules above, the Sync Jump Width could be the maximum of 4 To. However, normally a large SJW is only necessary when the clock generation of the different nodes is inaccurate or unstable, such as using ceramic resonators. Typically, an SJW of 1 is enough.

27.12 Oscillator Tolerance

As a rule of thumb, the bit timing requirements allow ceramic resonators to be used in applications with transmission rates of up to 125 Kbit/sec. For the full bus speed range of the CAN protocol, a quartz oscillator is required. Refer to ISO11898-1 for oscillator tolerance requirements.

REGISTER 28-13: DEVID1: DEVICE ID REGISTER 1 FOR THE PIC18F66K80 FAMILY

R	R	R	R	R	R	R	R
DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0
bit 7	•		•				bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-5	DEV<2:0>: Device ID bits
	These bits are used with the DEV<10:3> bits in the Device ID Register 2 to identify the part number:
	000 = PIC18F46K80, PIC18LF26K80
	001 = PIC18F26K80, PIC18LF65K80
	010 = PIC18F65K80, PIC18LF45K80
	011 = PIC18F45K80, PIC18LF25K80
	100 = PIC18F25K80
	110 = PIC18LF66K80
	111 = PIC18F66K80, PIC18LF46K80
bit 4-0	REV<4:0>: Revision ID bits
	These bits are used to indicate the device revision.

REGISTER 28-14: DEVID2: DEVICE ID REGISTER 2 FOR THE PIC18F66K80 FAMILY

R	R	R	R	R	R	R	R
DEV10 ⁽¹⁾	DEV9 ⁽¹⁾	DEV8 ⁽¹⁾	DEV7 ⁽¹⁾	DEV6 ⁽¹⁾	DEV5 ⁽¹⁾	DEV4 ⁽¹⁾	DEV3 ⁽¹⁾
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	· Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-0 DEV<10:3>: Device ID bits⁽¹⁾

These bits are used with the DEV<2:0> bits in the Device ID Register 1 to identify the part number.

Note 1: These values for DEV<10:3> may be shared with other devices. The specific device is always identified by using the entire DEV<10:0> bit sequence.

31.2 DC Characteristics: Power-Down and Supply Current PIC18F66K80 Family (Industrial/Extended) (Continued)

PIC18F66K80 Family (Industrial/Extended)		Standard (Operating f									
Param No.	Device	Тур	Max	Units		Conditions					
	Supply Current (IDD) Co	nt. ^(2,3)									
	PIC18LFXXK80	274	600	μA	-40°C						
		274	600	μA	+25°C	(+ 0)(4)					
		274	600	μA	+60°C	VDD = 1.8V(*) Regulator Disabled					
		280	650	μA	+85°C						
		290	700	μA	+125°C						
	PIC18LFXXK80	410	820	μA	-40°C						
		410	820	μA	+25°C	V _{DD} = 3.3V ⁽⁴⁾ Regulator Disabled					
		410	820	μA	+60°C						
		420	840	μA	+85°C						
		430	990	μA	+125°C		Fosc = 1 MHz				
	PIC18FXXK80	490	860	μA	-40°C		HF-INTOSC)				
		490	860	μA	+25°C) (5)					
		490	860	μA	+60°C	$VDD = 3.3V^{(3)}$ Regulator Enabled					
		500	890	μA	+85°C						
		510	1060	μA	+125°C						
	PIC18FXXK80	490	910	μA	-40°C						
		490	910	μA	+25°C						
		490	910	μA	+60°C	VDD = 5V(3) Regulator Enabled					
		500	970	μA	+85°C						
		510	1125	μA	+125°C						

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or VSS, and all features that add delta current are disabled (such as WDT, SOSC oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

- 4: For LF devices, RETEN (CONFIG1L<0>) = 1.
- 5: For F devices, SRETEN (WDTCON<4>) = 1 and RETEN (CONFIG1L<0>) = 0.

31.4 DC Characteristics: PIC18F66K80 Family (Industrial)

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	SymbolCharacteristicMinTypMaxUnits				Conditions		
D160a	licl	Input Low Injection Current	0	—	₋₅ (1)	mA	All pins except VDD, Vss, AVDD, AVss, MCLR, VCAP, SOSCI, SOSCO
D160b	Іісн	Input High Injection Current	0	_	+5 ⁽¹⁾	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, SOSCI, SOSCO
D160c	∑Ііст	Total Input Injection Current (sum of all I/O and control pins)	-20 ^(1,2)	_	+20 ^(1,2)	mA	Absolute instantaneous sum of all input injection currents from all I/O pins $(IICL + IICH) \le \Sigma IICT$

Note 1: Injection currents > | 0 | can affect the A/D results.

2: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted.

31.5 DC Characteristics: CTMU Current Source Specifications

DC CHARACTERISTICS			Standard Operating Conditions: 1.8V to 5.5VOperating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Sym	Characteristic	Min Typ ⁽¹⁾ Max Units Condi				Conditions	
	IOUT1	CTMU Current Source, Base Range	_	550	_	nA	CTMUICON<1:0> = 01	
	IOUT2	CTMU Current Source, 10x Range	—	5.5	_	μA	CTMUICON<1:0> = 10	
	IOUT3	CTMU Current Source, 100x Range	_	55	_	μA	CTMUICON<1:0> = 11	

Note 1: Nominal value at center point of current trim range (CTMUICON<7:2> = 000000).

FIGURE 31-10: CAPTURE/COMPARE/PWM TIMINGS (ECCP1, ECCP2 MODULES)

TABLE 31-14: CAPTURE/COMPARE/PWM REQUIREMENTS (ECCP1, ECCP2 MODULES)

Param No.	Symbol	Characteristic		Min	Max	Units	Conditions
50	TccL	CCPx Input Low	No prescaler	0.5 TCY + 20	_	ns	
		Time	With prescaler	10	—	ns	
51 TccH C	CCPx Input	No prescaler	0.5 Tcy + 20		ns		
		High Time	With prescaler	10		ns	
52	TCCP	CCPx Input Period		<u>3 Tcy + 40</u>	_	ns	N = prescale
				N			value (1, 4 or 16)
53	TccR	CCPx Output Fall Time		—	25	ns	
54	TccF	CCPx Output Fal	I Time	_	25	ns	

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010-2012, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-62076-074-1

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.