

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	ECANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f25k80t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

TABLE 1-4: PIC18F2XK80 I/O DESCRIPTIONS

Pin Name	QFN	SSOP/ SPDIP /SOIC	Pin Type	Buffer Type	Description		
MCLR/RE3	26	1					
MCLR			Ι	ST	Master Clear (input) or programming voltage (input). This pin is an active-low Reset to the device.		
RE3			Ι	ST	General purpose, input only pin.		
OSC1/CLKIN/RA7	6	9					
OSC1			Т	ST	Oscillator crystal input.		
CLKIN			I	CMOS	External clock source input. Always associated with pin function, OSC1. (See related OSC1/CLKI, OSC2/CLKO pins.)		
RA7			I/O	ST/ CMOS	General purpose I/O pin.		
OSC2/CLKOUT/RA6	7	10					
OSC2			0	—	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.		
CLKOUT			0	_	In certain oscillator modes, OSC2 pin outputs CLKO, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.		
RA6 I/O ST/ General purpose I/O pin. CMOS					General purpose I/O pin.		
Legend: CMOS = CMOS ST = Schm	S comp itt Trigg	atible inp er input	out or o with C	output MOS leve	I ² C™ = I ² C/SMBus input buffer els Analog = Analog input		

L = Input

Ρ = Power

= Output 0

TABLE 1-5: PIC18F4XK80 PINOUT I/O DESCRIPTIONS (CONTINUED)

	Pin Number		Din Duffer					
Pin Name	PDIP	QFN/ TQFP	Туре	Туре	Description			
Vss	12	29	Р					
Vss					Ground reference for logic and I/O pins.			
Vss	31	6						
Vss					Ground reference for logic and I/O pins.			
VDDCORE/VCAP	6	23	Р					
VDDCORE					External filter capacitor connection			
VCAP					External filter capacitor connection			
VDD	11	28	Р					
Vdd					Positive supply for logic and I/O pins.			
Vdd	32	7	Р					
Vdd					Positive supply for logic and I/O pins.			
Legend: $I^2C^{TM} = I^2C/SM$	Legend: $l^2C^{\text{TM}} = l^2C/\text{SMBus input buffer}$ CMOS = CMOS compatible input or output							

= I²C/SMBus input buffer ST = Schmitt Trigger input with CMOS levels

I = Input

Ρ = Power Analog = Analog input = Output

0

The use of the flag and control bits in the OSCCON register is discussed in more detail in **Section 4.0** "Power-Managed Modes".

- Note 1: The Timer1/3/5/7 oscillator must be enabled to select the secondary clock source. The Timerx oscillator is enabled by setting the SOSCEN bit in the Timerx Control register (TxCON<3>). If the Timerx oscillator is not enabled, then any attempt to select a secondary clock source when executing a SLEEP instruction will be ignored.
 - 2: It is recommended that the Timerx oscillator be operating and stable before executing the SLEEP instruction or a very long delay may occur while the Timerx oscillator starts.

3.3.2.1 System Clock Selection and Device Resets

Since the SCSx bits are cleared on all forms of Reset, this means the primary oscillator defined by the FOSC<3:0> Configuration bits is used as the primary clock source on device Resets. This could either be the internal oscillator block by itself, or one of the other primary clock sources (HS, EC, XT, LP, External RC and PLL-enabled modes).

In those cases when the internal oscillator block, without PLL, is the default clock on Reset, the Fast RC Oscillator (INTOSC) will be used as the device clock source. It will initially start at 8 MHz; the postscaler selection that corresponds to the Reset value of the IRCF<2:0> bits ('110').

Regardless of which primary oscillator is selected, INTOSC will always be enabled on device power-up. It serves as the clock source until the device has loaded its configuration values from memory. It is at this point that the FOSCx Configuration bits are read and the oscillator selection of the operational mode is made.

Note that either the primary clock source or the internal oscillator will have two bit setting options for the possible values of the SCS<1:0> bits, at any given time.

3.3.3 OSCILLATOR TRANSITIONS

PIC18F66K80 family devices contain circuitry to prevent clock "glitches" when switching between clock sources. A short pause in the device clock occurs during the clock switch. The length of this pause is the sum of two cycles of the old clock source and three to four cycles of the new clock source. This formula assumes that the new clock source is stable.

Clock transitions are discussed in greater detail in Section 4.1.2 "Entering Power-Managed Modes".

3.4 RC Oscillator

For timing-insensitive applications, the RC and RCIO Oscillator modes offer additional cost savings. The actual oscillator frequency is a function of several factors:

- · Supply voltage
- Values of the external resistor (REXT) and capacitor (CEXT)
- · Operating temperature

Given the same device, operating voltage and temperature, and component values, there will also be unit to unit frequency variations. These are due to factors such as:

- · Normal manufacturing variation
- Difference in lead frame capacitance between package types (especially for low CEXT values)
- Variations within the tolerance of the limits of $\ensuremath{\mathsf{Rext}}$ and $\ensuremath{\mathsf{Cext}}$

In the RC Oscillator mode, the oscillator frequency, divided by 4, is available on the OSC2 pin. This signal may be used for test purposes or to synchronize other logic. Figure 3-2 shows how the R/C combination is connected.

The RCIO Oscillator mode (Figure 3-3) functions like the RC mode, except that the OSC2 pin becomes an additional general purpose I/O pin. The I/O pin becomes bit 6 of PORTA (RA6).

FIGURE 3-3: RCIO OSO

Register	А	pplicable Devic	es	Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt
PMD1	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 0000	0000 0000	uuuu uuuu
PMD2	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000	0000	uuuu
PADCFG1	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	00000	00000	uuuuu
CTMUCONH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0-00 0000	0-00 0000	u-uu uuuu
CTMUCONL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 0000	0000 0000	uuuu uuuu
CTMUICON	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 0000	0000 0000	uuuu uuuu
CCPR2H	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	xxxx xxxx	uuuu uuuu
CCPR2L	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	xxxx xxxx	uuuu uuuu
CCP2CON	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	00 0000	00 0000	uu uuuu
CCPR3H	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	XXXX XXXX	uuuu uuuu
CCPR3L	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	XXXX XXXX	uuuu uuuu
CCP3CON	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	00 0000	00 0000	uu uuuu
CCPR4H	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	XXXX XXXX	uuuu uuuu
CCPR4L	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	XXXX XXXX	uuuu uuuu
CCP4CON	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	00 0000	00 0000	uu uuuu
CCPR5H	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	XXXX XXXX	uuuu uuuu
CCPR5L	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	XXXX XXXX	uuuu uuuu
CCP5CON	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	00 0000	00 0000	uu uuuu
PSPCON	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000	0000	uuuu
MDCON	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0010 00	0010 00	uuuu uu
MDSRC	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0 xxxx	0 xxxx	u uuuu
MDCARH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0xx- xxxx	0xx- xxxx	uuu- uuuu
MDCARL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0xx- xxxx	0xx- xxxx	uuu- uuuu
CANCON_RO0	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	1000 0000	1000 0000	uuuu uuuu
CANSTAT_RO0	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	1000 0000	1000 0000	uuuu uuuu
RXB1D7	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXB1D6	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXB1D5	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXB1D4	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXB1D3	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXB1D2	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	XXXX XXXX	uuuu uuuu	uuuu uuuu
RXB1D1	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	սսսս սսսս	uuuu uuuu
RXB1D0	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXB1DLC	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	xxxx xxxx

TABLE 5-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged; x = unknown; - = unimplemented bit, read as '0'; q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 5-3 for Reset value for specific conditions.

5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read as '0'.

R/W-1	1 R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
RBPL	J INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP	
bit 7							bit 0	
Legend:								
R = Read	Jable bit	W = Writable	bit	U = Unimplem	nented bit, rear	d as '0'		
-n = Valu	e at POR	'1' = Bit is set	<u>.</u>	'0' = Bit is clea	ared	x = Bit is unkr	nown	
· ·· -		- -						
bit 7		TB Pull-up Enar	ble bit					
	\perp = All PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled by individual port TRIS values							
bit 6	INTEDG0: E>	xternal Interrup	t 0 Edge Selec	ct bit				
	1 = Interrupt	on rising edge		• • • • •				
	0 = Interrupt	on falling edge	;					
bit 5	INTEDG1: Ex	xternal Interrup	t 1 Edge Selec	st bit				
	1 = Interrupt	on rising edge						
hit 4	INTEDG2: Ex	vtornal Interrup	+ 2 Edge Selec	ot hit				
	1 = Interrupt	on rising edge	. 2 Lugo 00.00					
	0 = Interrupt	on falling edge	;					
bit 3	INTEDG3: Ex	xternal Interrup	t 3 Edge Selec	t bit				
	1 = Interrupt	on rising edge						
		on falling eage						
bit 2	I M K U F: UV F $1 = High pric$	R0 Oveniow ini	errupt Phoney	bit				
	0 = Low prior	brity						
bit 1	INT3IP: INT3	3 External Interr	upt Priority bit	,				
	1 = High prio	ority						
	0 = Low prior	rity	· · · · · ·					
bit 0	RBIP: RB Por	rt Change Inter	rupt Priority bit	t				
	1 = Hign prio ∩ = Low prio	ority vrity						
		ity						
·								
Note:	Interrupt flag bits	are set when	an interrupt co	ondition occurs	regardless of t	the state of its	corresponding	
	are clear prior to	enabling an int	errupt. This fe	ature allows for	software pollir	appropriate int .ng.	enupi nay ono	

REGISTER 10-2: INTCON2: INTERRUPT CONTROL REGISTER 2

NOTES:

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP
INTCON3	INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF
ODCON	SSPOD	CCP5OD	CCP4OD	CCP3OD	CCP2OD	CCP10D	U2OD	U10D
ANCON1	_	ANSEL14	ANSEL13	ANSEL12	ANSEL11	ANSEL10	ANSEL9	ANSEL8

TABLE 11-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Legend: Shaded cells are not used by PORTB.

11.5 PORTD, TRISD and LATD Registers

PORTD is an 8-bit wide, bidirectional port. The corresponding Data Direction and Output Latch registers are TRISD and LATD.

NOTE: PORTED IS UNAVAILABLE OF 20-pin devices	Note:	PORTD is unavailable on 28-pin devices.
--	-------	---

All pins on PORTD are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

Note: These pins are configured as digital inputs on any device Reset.

Each of the PORTD pins has a weak internal pull-up. A single control bit can turn off all the pull-ups. This is performed by setting bit, RDPU (PADCFG1<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on all device Resets.

PORTD can also be configured as an 8-bit wide microprocessor port (Parallel Slave Port) by setting control bit, PSPMODE (PSPCON<4>). In this mode, the input buffers are ST. For additional information, see **Section 11.9 "Parallel Slave Port"**.

RD3 has a CTMU functionality.

EXAIVIPL	E 11-4:	INITIALIZING PORTD
CLRF	PORTD	; Initialize PORTD by ; clearing output ; data latches
CLRF	LATD	; Alternate method ; to clear output ; data latches
MOVLW	OCFh	; Value used to ; initialize data ; direction
MOVWF	TRISD	; Set RD<3:0> as inputs ; RD<5:4> as outputs ; RD<7:6> as inputs

16.5.2 TIMER3 GATE SOURCE SELECTION

The Timer3 gate source can be selected from one of four different sources. Source selection is controlled by the T3GSS<1:0> bits (T3GCON<1:0>). The polarity for each available source is also selectable and is controlled by the T3GPOL bit (T3GCON<6>).

|--|

T3GSS<1:0>	Timer3 Gate Source
00	Timerx Gate Pin
01	TMR4 to Match PR4 (TMR4 increments to match PR4)
10	Comparator 1 Output (comparator logic high output)
11	Comparator 2 Output (comparator logic high output)

16.5.2.1 T3G Pin Gate Operation

The T3G pin is one source for Timer3 gate control. It can be used to supply an external source to the Timerx gate circuitry.

16.5.2.2 Timer4 Match Gate Operation

The TMR4 register will increment until it matches the value in the PR4 register. On the very next increment cycle, TMR4 will be reset to 00h. When this Reset occurs, a low-to-high pulse will automatically be generated and internally supplied to the Timerx gate circuitry. The pulse will remain high for one instruction cycle and will return back to a low state until the next match.

Depending on T3GPOL, Timerx increments differently when TMR4 matches PR4. When T3GPOL = 1, Timer3 increments for a single instruction cycle following a TMR4 match with PR4. When T3GPOL = 0, Timer3 increments continuously, except for the cycle following the match, when the gate signal goes from low-to-high.

16.5.2.3 Comparator 1 Output Gate Operation

The output of Comparator 1 can be internally supplied to the Timer3 gate circuitry. After setting up Comparator 1 with the CM1CON register, Timer3 will increment depending on the transitions of the CMP1OUT (CMSTAT<6>) bit.

16.5.2.4 Comparator 2 Output Gate Operation

The output of Comparator 2 can be internally supplied to the Timer3 gate circuitry. After setting up Comparator 2 with the CM2CON register, Timer3 will increment depending on the transitions of the CMP2OUT (CMSTAT<7>) bit.

16.5.3 TIMER3 GATE TOGGLE MODE

When Timer3 Gate Toggle mode is enabled, it is possible to measure the full cycle length of a Timer3 gate signal, as opposed to the duration of a single level pulse.

The Timer3 gate source is routed through a flip-flop that changes state on every incrementing edge of the signal. (For timing details, see Figure 16-3.)

The T3GVAL bit will indicate when the Toggled mode is active and the timer is counting.

Timer3 Gate Toggle mode is enabled by setting the T3GTM bit (T3GCON<5>). When the T3GTM bit is cleared, the flip-flop is cleared and held clear. This is necessary in order to control which edge is measured.

FIGURE 16-3: TIMER3 GATE TOGGLE MODE

22.3.2 EUSARTx ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 22-6. The data is received on the RXx pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc. This mode would typically be used in RS-232 systems.

To set up an Asynchronous Reception:

- Initialize the SPBRGHx:SPBRGx registers for 1. the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- Enable the asynchronous serial port by clearing 2 bit, SYNC, and setting bit, SPEN.
- 3. If interrupts are desired, set enable bit, RCxIE.
- 4. If 9-bit reception is desired, set bit, RX9.
- 5. Enable the reception by setting bit, CREN.
- 6. Flag bit, RCxIF, will be set when reception is complete and an interrupt will be generated if enable bit, RCxIE, was set.
- 7. Read the RCSTAx register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREGx register.
- If any error occurred, clear the error by clearing 9. enable bit, CREN.
- 10. If using interrupts, ensure that the GIE and PEIE bits (INTCON<7:6>) are set.

SETTING UP 9-BIT MODE WITH 22.3.3 ADDRESS DETECT

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- Initialize the SPBRGHx:SPBRGx registers for 1. the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- If interrupts are required, set the RCEN bit and 3. select the desired priority level with the RCxIP bit.
- 4. Set the RX9 bit to enable 9-bit reception.
- 5. Set the ADDEN bit to enable address detect.
- 6. Enable reception by setting the CREN bit.
- 7. The RCxIF bit will be set when reception is complete. The interrupt will be Acknowledged if the RCxIE and GIE bits are set.
- 8. Read the RCSTAx register to determine if any error occurred during reception, as well as read bit 9 of data (if applicable).
- 9. Read RCREGx to determine if the device is being addressed.
- 10. If any error occurred, clear the CREN bit.
- 11. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and interrupt the CPU.

FIGURE 22-6: EUSARTX RECEIVE BLOCK DIAGRAM

FIGURE 22-12: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

TABLE 22-8:	REGISTERS ASSOCIATED	WITH SYNCHRONOUS	MASTER TRANSMISSION
TABLE 22-8:	REGISTERS ASSOCIATED	WITH SYNCHRONOUS	MASTER TRANSMISSIO

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
PIR1	PSPIF	ADIF	RC1IF	TX1IF	SSPIF	TMR1GIF	TMR2IF	TMR1IF
PIE1	PSPIE	ADIE	RC1IE	TX1IE	SSPIE	TMR1GIE	TMR2IE	TMR1IE
IPR1	PSPIP	ADIP	RC1IP	TX1IP	SSPIP	TMR1GIP	TMR2IP	TMR1IP
PIR3	_	_	RC2IF	TX2IF	CTMUIF	CCP2IF	CCP1IF	
PIE3	_	_	RC2IE	TX2IE	CTMUIE	CCP2IE	CCP1IE	—
IPR3	—	—	RC2IP	TX2IP	CTMUIP	CCP2IP	CCP1IP	—
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
TXREG1	EUSART1 Transmit Register							
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D
BAUDCON1	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN
SPBRGH1	EUSART1 Baud Rate Generator Register High Byte							
SPBRG1	EUSART1 Baud Rate Generator Register Low Byte							
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
TXREG2	EUSART2 T	ransmit Regis	ster					
TXSTA2	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D
BAUDCON2	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN
SPBRGH2	EUSART2 Baud Rate Generator Register High Byte							
SPBRG2	EUSART2 E	Baud Rate Ge	nerator Regi	ster Low Byte	9			
PMD0	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	UART2MD	UART1MD	SSPMD
ODCON	SSPOD	CCP5OD	CCP4OD	CCP3OD	CCP2OD	CCP10D	U2OD	U10D

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

REGISTER 23-9: ANCON1: A/D PORT CONFIGURATION REGISTER 1

U-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	ANSEL14 ⁽¹⁾	ANSEL13 ⁽¹⁾	ANSEL12 ⁽¹⁾	ANSEL11 ⁽¹⁾	ANSEL10	ANSEL9	ANSEL8
bit 7							bit 0

1					
Legend:					
R = Readab	le bit	W = Writable bit	U = Unimplemented bit	, read as '0'	
-n = Value a	t POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	
bit 7	Unimpleme	nted: Read as '0'			
bit 6	ANSEL14:	RD3/C2INB Pin Analog Er	nable bit ⁽¹⁾		
	1 = Pin is co 0 = Pin is co	onfigured as an analog cha onfigured as a digital port	annel; digital input is disabled	and any inputs read as '0'	
bit 5	ANSEL13:	RD2/C2INA Pin Analog Er	nable bit ⁽¹⁾		
 1 = Pin is configured as an analog channel; digital input is disabled and any inputs read as '0' 0 = Pin is configured as a digital port 					
bit 4	ANSEL12:	RD1/C1INB Pin Analog Er	nable bit ⁽¹⁾		
1 = Pin is configured as an analog cha			annel; digital input is disabled	and any inputs read as '0'	

0 = Pin is configured as a digital port

bit 3 ANSEL11: RD0/C1INA Pin Analog Enable bit⁽¹⁾

- 1 = Pin is configured as an analog channel: digital input disabled and any inputs read as '0'
 - 0 = Pin is configured as a digital port

bit 2-0 **ANSEL11<10:8>:** Analog Port Configuration bits (AN10 through AN8)

- 1 = Pin is configured as an analog channel; digital input is disabled and any inputs read as '0'
 0 = Pin configured as a digital port
- **Note 1:** AN14 through AN11 and AN7 to AN5 are implemented only on 40/44-pin and 64-pin devices. For 28-pin devices, the corresponding ANSELx bits are still implemented for these channels, but have no effect.

The analog reference voltage is software selectable to either the device's positive and negative supply voltage (AVDD and AVSS) or the voltage level on the RA3/VREF+/AN3 and RA2/VREF-/AN2 pins. VREF+ has two additional internal voltage reference selections: 2.0V and 4.1V.

The A/D Converter can uniquely operate while the device is in Sleep mode. To operate in **Sleep**, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The output of the sample and hold is the input into the converter, which generates the result via successive approximation.

Each port pin associated with the A/D Converter can be configured as an analog input or a digital I/O. The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH:ADRESL register pair, the GO/DONE bit (ADCON0<1>) is cleared and the A/D Interrupt Flag bit, ADIF (PIR1<6>), is set.

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off and any conversion in progress is aborted. The value in the ADRESH:ADRESL register pair is not modified for a Power-on Reset. These registers will contain unknown data after a Power-on Reset.

The block diagram of the A/D module is shown in Figure 23-4.

The module is enabled by setting the HLVDEN bit (HLVDCON<4>). Each time the HLVD module is enabled, the circuitry requires some time to stabilize. The IRVST bit (HLVDCON<5>) is a read-only bit used to indicate when the circuit is stable. The module can only generate an interrupt after the circuit is stable and IRVST is set.

The VDIRMAG bit (HLVDCON<7>) determines the overall operation of the module. When VDIRMAG is cleared, the module monitors for drops in VDD below a predetermined set point. When the bit is set, the module monitors for rises in VDD above the set point.

26.1 Operation

When the HLVD module is enabled, a comparator uses an internally generated reference voltage as the set point. The set point is compared with the trip point, where each node in the resistor divider represents a trip point voltage. The "trip point" voltage is the voltage level at which the device detects a high or low-voltage event, depending on the configuration of the module.

When the supply voltage is equal to the trip point, the voltage tapped off of the resistor array is equal to the internal reference voltage generated by the voltage reference module. The comparator then generates an interrupt signal by setting the HLVDIF bit.

The trip point voltage is software programmable to any one of 16 values. The trip point is selected by programming the HLVDL<3:0> bits (HLVDCON<3:0>).

The HLVD module has an additional feature that allows the user to supply the trip voltage to the module from an external source. This mode is enabled when bits, HLVDL<3:0>, are set to '1111'. In this state, the comparator input is multiplexed from the external input pin, HLVDIN. This gives users the flexibility of configuring the High/Low-Voltage Detect interrupt to occur at any voltage in the valid operating range.

27.2.2 DEDICATED CAN TRANSMIT BUFFER REGISTERS

This section describes the dedicated CAN Transmit Buffer registers and their associated control registers.

REGISTER 27-5: TXBnCON: TRANSMIT BUFFER n CONTROL REGISTERS $[0 \le n \le 2]$

Mada 0	U-0	R-0	R-0	R-0	R/W-0	U-0	R/W-0	R/W-0
wode u	TXBIF	TXABT ⁽¹⁾	TXLARB ⁽¹⁾	TXERR ⁽¹⁾	TXREQ ⁽²⁾	_	TXPRI1 ⁽³⁾	TXPRI0 ⁽³⁾

Mode 1.2	R/C-0	R-0	R-0	R-0	R/W-0	U-0	R/W-0	R/W-0
wode 1,2	TXBIF	TXABT ⁽¹⁾	TXLARB ⁽¹⁾	TXERR ⁽¹⁾	TXREQ ⁽²⁾	_	TXPRI1 ⁽³⁾	TXPRI0 ⁽³⁾
	bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

b	oit 7	TXBIF: Transmit Buffer Interrupt Flag bit 1 = Transmit buffer has completed transmission of a message and may be reloaded 0 = Transmit buffer has not completed transmission of a message
b	oit 6	TXABT: Transmission Aborted Status bit ⁽¹⁾
		1 = Message was aborted 0 = Message was not aborted
b	oit 5	TXLARB: Transmission Lost Arbitration Status bit ⁽¹⁾
		 1 = Message lost arbitration while being sent 0 = Message did not lose arbitration while being sent
b	oit 4	TXERR: Transmission Error Detected Status bit ⁽¹⁾
		 1 = A bus error occurred while the message was being sent 0 = A bus error did not occur while the message was being sent
b	it 3	TXREQ: Transmit Request Status bit ⁽²⁾
		 1 = Requests sending a message; clears the TXABT, TXLARB and TXERR bits 0 = Automatically cleared when the message is successfully sent
b	it 2	Unimplemented: Read as '0'
b	it 1-0	TXPRI<1:0>: Transmit Priority bits ⁽³⁾
		<pre>11 = Priority Level 3 (highest priority) 10 = Priority Level 2 01 = Priority Level 1 00 = Priority Level 0 (lowest priority)</pre>
Ν	lote 1:	This bit is automatically cleared when TXREQ is set.
	2:	While TXREQ is set, Transmit Buffer registers remain read-only. Clearing this bit in software while the bit is

- set will request a message abort.
- **3:** These bits define the order in which transmit buffers will be transferred. They do not alter the CAN message identifier.

$\label{eq:register27-26:BnSIDL: TX/RX BUFFER `n' STANDARD IDENTIFIER REGISTERS, \\ LOW BYTE IN RECEIVE MODE [0 \le n \le 5, TXnEN (BSEL0<n>) = 0]^{(1)}$

R-x R-x R-x R-x R-x R-x R-x R-x SID2 SID1 SID0 SRR EXIDE — EID17 EID16 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7-5 SID<2:0>: Standard Identifier bits (if EXID = 0) Extended Identifier bits, EID<20:18> (if EXID = 1). bit 4 SRR: Substitute Remote Transmission Request bit This bit is always '1' when EXID = 1 or equal to the value of RXRTRRO (BnCON<5>) when EXID = 0. bit 3 EXIDE: Extended Identifier Enable bit 1 = Received message is an extended identifier frame (SID<10:0> are EID<28:18>) 0 = Received message is a standard identifier frame bit 2 Unimplemented: Read as '0' bit 1-0 EID<17:16>: Extended Identifier bits Note 1: These registers are available in Mode 1 and 2 only.									
SID2 SID1 SID0 SRR EXIDE — EID17 EID16 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7-5 SID<2:0>: Standard Identifier bits (if EXID = 0) Extended Identifier bits, EID<20:18> (if EXID = 1). bit 4 SRR: Substitute Remote Transmission Request bit This bit is always '1' when EXID = 1 or equal to the value of RXRTRRO (BnCON<5>) when EXID = 0. bit 3 EXIDE: Extended Identifier Enable bit 1 = Received message is an extended identifier frame (SID<10:0> are EID<28:18>) 0 = Received message is a standard identifier frame BID<10:0> are EID<28:18>) bit 2 Unimplemented: Read as '0' bit 1-0 EID<17:16>: Extended Identifier bits Note 1: These registers are available in Mode 1 and 2 only.	R-x	R-x	R-x	R-x	R-x	U-0	R-x	R-x	
bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7-5 SID<2:0>: Standard Identifier bits (if EXID = 0) x = Bit is unknown bit 7-5 SID<2:0>: Standard Identifier bits (if EXID = 0) x = Bit is unknown bit 4 SRR: Substitute Remote Transmission Request bit This bit is always '1' when EXID = 1 or equal to the value of RXRTRRO (BnCON<5>) when EXID = 0. bit 3 EXIDE: Extended Identifier Enable bit 1 = Received message is an extended identifier frame (SID<10:0> are EID<28:18>) 0 = Received message is a standard identifier frame Dit 2 Unimplemented: Read as '0' bit 1-0 EID<17:16>: Extended Identifier bits Note 1: These registers are available in Mode 1 and 2 only.	SID2	SID1	SID0	SRR	EXIDE	—	EID17	EID16	
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7-5 SID<2:0>: Standard Identifier bits (if EXID = 0) Extended Identifier bits, EID<20:18> (if EXID = 1). bit 4 SRR: Substitute Remote Transmission Request bit This bit is always '1' when EXID = 1 or equal to the value of RXRTRRO (BnCON<5>) when EXID = 0. bit 3 EXIDE: Extended Identifier Enable bit 1 = Received message is an extended identifier frame (SID<10:0> are EID<28:18>) 0 = Received message is a standard identifier frame bit 2 Unimplemented: Read as '0' bit 1-0 EID<17:16>: Extended Identifier bits	bit 7							bit 0	
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7-5 SID<2:0>: Standard Identifier bits (if EXID = 0) Extended Identifier bits, EID<20:18> (if EXID = 1). bit 4 SRR: Substitute Remote Transmission Request bit This bit is always '1' when EXID = 1 or equal to the value of RXRTRRO (BnCON<5>) when EXID = 0. bit 3 EXIDE: Extended Identifier Enable bit 1 = Received message is an extended identifier frame (SID<10:0> are EID<28:18>) 0 = Received message is a standard identifier frame bit 2 Unimplemented: Read as '0' bit 1-0 EID<17:16>: Extended Identifier bits									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7-5 SID<2:0>: Standard Identifier bits (if EXID = 0) Extended Identifier bits, EID<20:18> (if EXID = 1). bit 4 SRR: Substitute Remote Transmission Request bit This bit is always '1' when EXID = 1 or equal to the value of RXRTRRO (BnCON<5>) when EXID = 0. bit 3 EXIDE: Extended Identifier Enable bit 1 = Received message is an extended identifier frame (SID<10:0> are EID<28:18>) 0 = Received message is a standard identifier frame bit 2 Unimplemented: Read as '0' bit 1-0 EID<17:16>: Extended Identifier bits	Legend:								
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7-5 SID<2:0>: Standard Identifier bits (if EXID = 0) Extended Identifier bits, EID<20:18> (if EXID = 1). bit 4 SRR: Substitute Remote Transmission Request bit This bit is always '1' when EXID = 1 or equal to the value of RXRTRRO (BnCON<5>) when EXID = 0. bit 3 EXIDE: Extended Identifier Enable bit 1 = Received message is an extended identifier frame (SID<10:0> are EID<28:18>) 0 = Received message is a standard identifier frame bit 2 Unimplemented: Read as '0' bit 1-0 EID<17:16>: Extended Identifier bits Note 1: These registers are available in Mode 1 and 2 only.	R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
bit 7-5 SID<2:0>: Standard Identifier bits (if EXID = 0) Extended Identifier bits, EID<20:18> (if EXID = 1). bit 4 SRR: Substitute Remote Transmission Request bit This bit is always '1' when EXID = 1 or equal to the value of RXRTRRO (BnCON<5>) when EXID = 0. bit 3 EXIDE: Extended Identifier Enable bit 1 = Received message is an extended identifier frame (SID<10:0> are EID<28:18>) 0 = Received message is a standard identifier frame bit 2 Unimplemented: Read as '0' bit 1-0 EID<17:16>: Extended Identifier bits	-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
 bit 3 EXIDE: Extended Identifier Enable bit 1 = Received message is an extended identifier frame (SID<10:0> are EID<28:18>) 0 = Received message is a standard identifier frame bit 2 Unimplemented: Read as '0' bit 1-0 EID<17:16>: Extended Identifier bits Note 1: These registers are available in Mode 1 and 2 only. 	bit 7-5 bit 4	SID<2:0>: Sta Extended Ider SRR: Substitu	andard Identifie ntifier bits, EID ute Remote Tra	er bits (if EXID <20:18> (if EX ansmission Re	= 0) (ID = 1). equest bit				
Note 1: These registers are available in Mode 1 and 2 only.	 bit 3 EXIDE: Extended Identifier Enable bit 1 = Received message is an extended identifier frame (SID<10:0> are EID<28:18>) 0 = Received message is a standard identifier frame bit 2 Unimplemented: Read as '0' 								
	bit 1-0 EID<17:16>: Extended Identifier bits								

R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
SID2	SID1	SID0	—	EXIDE	—	EID17	EID16
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	SID<2:0>: Standard Identifier bits (if EXIDE (TXBnSIDL<3>) = 0)
	Extended Identifier bits, EID<20:18> (if EXIDE = 1).
bit 4	Unimplemented: Read as '0'
bit 3	EXIDE: Extended Identifier Enable bit
	 1 = Message will transmit extended ID, SID<10:0> bits become EID<28:18> 0 = Received will transmit standard ID, EID<17:0> are ignored
bit 2	Unimplemented: Read as '0'
bit 1-0	EID<17:16>: Extended Identifier bits

Note 1: These registers are available in Mode 1 and 2 only.

PYERCONO	R/W-0							
KAFBCONU	F1BP_3	F1BP_2	F1BP_1	F1BP_0	F0BP_3	F0BP_2	F0BP_1	F0BP_0
PYERCON1	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-1
	F3BP_3	F3BP_2	F3BP_1	F3BP_0	F2BP_3	F2BP_2	F2BP_1	F2BP_0
RYEBCON2	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-1
	F5BP_3	F5BP_2	F5BP_1	F5BP_0	F4BP_3	F4BP_2	F4BP_1	F4BP_0
r								
PYERCON3	R/W-0							
KAFBCON3	F7BP_3	F7BP_2	F7BP_1	F7BP_0	F6BP_3	F6BP_2	F6BP_1	F6BP_0
r								
PYERCONA	R/W-0							
	F9BP_3	F9BP_2	F9BP_1	F9BP_0	F8BP_3	F8BP_2	F8BP_1	F8BP_0
	1							
RYEBCON5	R/W-0							
	F11BP_3	F11BP_2	F11BP_1	F11BP_0	F10BP_3	F10BP_2	F10BP_1	F10BP_0
r	1							
RYEBCONG	R/W-0							
	F13BP_3	F13BP_2	F13BP_1	F13BP_0	F12BP_3	F12BP_2	F12BP_1	F12BP_0
r	1							
RXFBCON7	R/W-0							
KAFBCON/	F15BP_3	F15BP_2	F15BP_1	F15BP_0	F14BP_3	F14BP_2	F14BP_1	F14BP_0
	bit 7							bit 0

REGISTER 27-47: RXFBCONn: RECEIVE FILTER BUFFER CONTROL REGISTER 'n'⁽¹⁾

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 F<15:2>BP_<3:0>: Filter n Buffer Pointer Nibble bits

0000 = Filter n is associated with RXB0

0001 = Filter n is associated with RXB1

0010 = Filter n is associated with B0

0011 = Filter n is associated with B1

0111 = Filter n is associated with B5 1111-1000 = Reserved

Note 1: This register is available in Mode 1 and 2 only.

...

27.7 Message Reception

27.7.1 RECEIVING A MESSAGE

Of all receive buffers, the MAB is always committed to receiving the next message from the bus. The MCU can access one buffer while the other buffer is available for message reception or holding a previously received message.

Note:	The entire contents of the MAB are moved
	into the receive buffer once a message is
	accepted. This means that regardless of
	the type of identifier (standard or
	extended) and the number of data bytes
	received, the entire receive buffer is over-
	written with the MAB contents. Therefore,
	the contents of all registers in the buffer
	must be assumed to have been modified
	when any message is received.

When a message is moved into either of the receive buffers, the associated RXFUL bit is set. This bit must be cleared by the MCU when it has completed processing the message in the buffer in order to allow a new message to be received into the buffer. This bit provides a positive lockout to ensure that the firmware has finished with the message before the module attempts to load a new message into the receive buffer. If the receive interrupt is enabled, an interrupt will be generated to indicate that a valid message has been received.

Once a message is loaded into any matching buffer, user firmware may determine exactly what filter caused this reception by checking the filter hit bits in the RXBnCON or BnCON registers. In Mode 0, FILHIT<2:0> of RXBnCON serve as filter hit bits. In Mode 1 and 2. FILHIT<4:0> bits of BnCON serve as filter hit bits. The same registers also indicate whether the current message is an RTR frame or not. A received message is considered a standard identifier message if the EXID/EXIDE bit in the RXBnSIDL or the BnSIDL register is cleared. Conversely, a set EXID bit indicates an extended identifier message. If the received message is a standard identifier message, user firmware needs to read the SIDL and SIDH registers. In the case of an extended identifier message, firmware should read the SIDL, SIDH, EIDL and EIDH registers. If the RXBnDLC or BnDLC register contain non-zero data count. user firmware should also read the corresponding number of data bytes by accessing the RXBnDm or the BnDm registers. When a received message is an RTR, and if the current buffer is not configured for automatic RTR handling, user firmware must take appropriate action and respond manually.

Each receive buffer contains RXM bits to set special Receive modes. In Mode 0, RXM<1:0> bits in RXBnCON define a total of four Receive modes. In Mode 1 and 2, RXM1 bit, in combination with the EXID mask and filter bit, define the same four receive modes.

Normally, these bits are set to '00' to enable reception of all valid messages as determined by the appropriate acceptance filters. In this case, the determination of whether or not to receive standard or extended messages is determined by the EXIDE bit in the acceptance filter register. In Mode 0, if the RXM bits are set to '01' or '10', the receiver will accept only messages with standard or extended identifiers, respectively. If an acceptance filter has the EXIDE bit set, such that it does not correspond with the RXM mode, that acceptance filter is rendered useless. In Mode 1 and 2, setting EXID in the SIDL Mask register will ensure that only standard or extended identifiers are received. These two modes of RXM bits can be used in systems where it is known that only standard or extended messages will be on the bus. If the RXM bits are set to '11' (RXM1 = 1 in Mode 1 and 2), the buffer will receive all messages regardless of the values of the acceptance filters. Also, if a message has an error before the end of frame, that portion of the message assembled in the MAB before the error frame will be loaded into the buffer. This mode may serve as a valuable debugging tool for a given CAN network. It should not be used in an actual system environment as the actual system will always have some bus errors and all nodes on the bus are expected to ignore them.

In Mode 1 and 2, when a programmable buffer is configured as a transmit buffer and one or more acceptance filters are associated with it, all incoming messages matching this acceptance filter criteria will be discarded. To avoid this scenario, user firmware must make sure that there are no acceptance filters associated with a buffer configured as a transmit buffer.

27.7.2 RECEIVE PRIORITY

When in Mode 0, RXB0 is the higher priority buffer and has two message acceptance filters associated with it. RXB1 is the lower priority buffer and has four acceptance filters associated with it. The lower number of acceptance filters makes the match on RXB0 more restrictive and implies a higher priority for that buffer. Additionally, the RXB0CON register can be configured such that if RXB0 contains a valid message and another valid message is received, an overflow error will not occur and the new message will be moved into RXB1 regardless of the acceptance criteria of RXB1. There are also two programmable acceptance filter masks available, one for each receive buffer (see Section 27.5 "CAN Message Buffers").

In Mode 1 and 2, there are a total of 16 acceptance filters available and each can be dynamically assigned to any of the receive buffers. A buffer with a lower number has higher priority. Given this, if an incoming message matches with two or more receive buffer acceptance criteria, the buffer with the lower number will be loaded with that message.

29.2.5 SPECIAL CONSIDERATIONS WITH MICROCHIP MPLAB[®] IDE TOOLS

The latest versions of Microchip's software tools have been designed to fully support the extended instruction set for the PIC18F66K80 family. This includes the MPLAB C18 C Compiler, MPASM assembly language and MPLAB Integrated Development Environment (IDE).

When selecting a target device for software development, MPLAB IDE will automatically set default Configuration bits for that device. The default setting for the XINST Configuration bit is '0', disabling the extended instruction set and Indexed Literal Offset Addressing. For proper execution of applications developed to take advantage of the extended instruction set, XINST must be set during programming.

To develop software for the extended instruction set, the user must enable support for the instructions and the Indexed Addressing mode in their language tool(s). Depending on the environment being used, this may be done in several ways:

- A menu option or dialog box within the environment that allows the user to configure the language tool and its settings for the project
- · A command line option
- · A directive in the source code

These options vary between different compilers, assemblers and development environments. Users are encouraged to review the documentation accompanying their development systems for the appropriate information.

Configuration Mode	438
Configuration Register Protection	482
Core Features	
Easy Migration	12
Extended Instruction Set	11
Memory Options	11
nanoWatt Technology	11
Oscillator Options and Features	11
CPFSEQ	500
CPFSGT	501
CPFSLT	501
Crystal Oscillator/Ceramic Resonator	
Customer Change Notification Service	617
Customer Notification Service	617
Customer Support	

D

Comparing Addressing Modes with the Extended In-
struction Set Enabled127
Direct
Indexed Literal Offset126
BSR128
Instructions Affected 126
Mapping Access Bank 128
Indirect 123
Inherent and Literal 123
Data EEPROM
Associated Registers 144
Code Protection
During Code-Protect
EEADR and EEADRH Registers
EECON1 and EECON2 Registers
Overview
Reading141
Spurious Write Protection
Using
Write Verity
Writing
Data EEPROM Memory
Operation During Code-Protect
Data Memory
Access Bank
Bank Select Register (BSR)
Extended Instruction Set
General Purpose Registers
Memory Maps
PICTOFASROU/A0ROU Devices
Special Function Registers
Special Function Registers
Data Signal Modulator (DSM)
Carrier Signal Sources 107
Carrier Source
Pin Disable 200
Polarity Select 200
Carrier Synchronization 197
Effects of a Reset
Modulated Output Polarity 200
Modulator Signal Sources 197
Modulator Source Pin Disable 200
Operation 197
Operation in Sleep Mode 200
Programmable Modulator Data 200
Slew Rate Control
DAW

DC Characteristics	
CTMU Current Source Specifications	557
PIC18F66K80 Family (Industrial) 555	5, 557
Power-Down and Supply Current	540
Supply Voltage	539
DCFSNZ	503
DECF	502
DECFSZ	503
Default System Clock	57
Details on Individual Family Members	12
Development Support	533
Device Overview	11
Features (28-Pin Devices)	13
Features (40/44-Pin Devices)	13
Features (64-Pin Devices)	14
Device Reset Timers	83
Oscillator Start-up Timer (OST)	83
PLL Lock Time-out	83
Power-up Timer (PWRT)	83
Direct Addressing	
Disable/Sleep Mode	438

Е

ECAN Module	391
Baud Rate Setting	446
Bit Time Partitioning	446
Bit Timing Configuration Registers	452
Calculating To, Nominal Bit Rate and Nominal Bit Ti	me
449	
CAN Baud Rate Registers	430
CAN Control and Status Registers	393
CAN I/O Control Register	433
CAN Interrupt Registers	434
CAN Interrupts	453
Bus Activity Wake-up	454
Bus-Off	455
Code Bits	454
Error	454
Message Error	454
Receive	454
Receiver Bus Passive	455
Receiver Overflow	455
Receiver Warning	455
Transmit	454
Transmitter Bus Passive	455
Transmitter Warning	455
CAN Message Buffers	440
Dedicated Receive	440
Dedicated Transmit	440
Programmable Auto-RTR	441
Programmable Transmit/Receive	440
CAN Message Transmission	441
Aborting	441
Initiating	441
Priority	442
CAN Modes of Operation	438
CAN Registers	393
Configuration Mode	438
Dedicated CAN Receive Buffer Registers	406
Dedicated CAN Transmit Buffer Registers	400
Disable/Sleep Mode	438
Error Detection	452
Acknowledge	452
Bit	452
CRC	452
Error Modes and Counters	452

 $\ensuremath{\textcircled{}^{\circ}}$ 2010-2012 Microchip Technology Inc.