

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

:XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	ECANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f26k80-e-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Peripheral Highlights:

- Five CCP/ECCP modules:
 - Four Capture/Compare/PWM (CCP) modules
 - One Enhanced Capture/Compare/PWM (ECCP) module
- Five 8/16-Bit Timer/Counter modules:
 - Timer0: 8/16-bit timer/counter with 8-bit programmable prescaler
 - Timer1, Timer3: 16-bit timer/counter
 - Timer2, Timer4: 8-bit timer/counter
- Two Analog Comparators
- Configurable Reference Clock Output
- Charge Time Measurement Unit (CTMU):
 - Capacitance measurement
 - Time measurement with 1 ns typical resolution
 - Integrated voltage reference

- High-Current Sink/Source 25 mA/25 mA (PORTB and PORTC)
- · Up to Four External Interrupts
- One Master Synchronous Serial Port (MSSP) module:
 - 3/4-wire SPI (supports all four SPI modes)
 - I^2C^{TM} Master and Slave modes
- Two Enhanced Addressable USART modules:
 LIN/J2602 support
 - Auto-Baud Detect (ABD)
- 12-Bit A/D Converter with up to 11 Channels:
- Auto-acquisition and Sleep operation
- Differential Input mode of operation
- Data Signal Modulator module:
 - Select modulator and carrier sources from various module outputs
- Integrated Voltage Reference

2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS, is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1 μ F (100 nF), 10-20V capacitor is recommended. The capacitor should be a low-ESR device, with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1 μ F in parallel with 0.001 μ F).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits, including microcontrollers, to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μF to 47 μF .

2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: Device Reset, and Device Programming and Debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented, depending on the application's requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the $\overline{\text{MCLR}}$ pin should be placed within 0.25 inch (6 mm) of the pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

Overstress (EOS). Ensure that the MCLR pin

VIH and VIL specifications are met.

NOTES:

6.3.4 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. SFRs start at the top of data memory (FFFh) and extend downward to occupy all of Bank 15 (F00h to FFFh) and the top part of Bank 14 (EF4h to EFFh).

A list of these registers is given in Table 6-1 and Table 6-2.

The SFRs can be classified into two sets: those associated with the "core" device functionality (ALU, Resets and interrupts) and those related to the peripheral functions. The Reset and Interrupt registers are described in their respective chapters, while the ALU's STATUS register is described later in this section. Registers related to the operation of the peripheral features are described in the chapter for that peripheral.

The SFRs are typically distributed among the peripherals whose functions they control. Unused SFR locations are unimplemented and read as '0's.

TABLE 6-1:SPECIAL FUNCTION REGISTER MAP FOR PIC18F66K80 FAMILY

Addr.	Name	Addr.	Name	Addr.	Name	Addr.	Name	Addr.	Name	Addr.	Name
FFFh	TOSU	FDFh	INDF2 ⁽¹⁾	FBFh	ECCP1AS	F9Fh	IPR1	F7Fh	EECON1	F5Fh	CM1CON ⁽⁵⁾
FFEh	TOSH	FDEh	POSTINC2 ⁽¹⁾	FBEh	ECCP1DEL	F9Eh	PIR1	F7Eh	EECON2	F5Eh	CM2CON ⁽⁵⁾
FFDh	TOSL	FDDh	POSTDEC2 ⁽¹⁾	FBDh	CCPR1H	F9Dh	PIE1	F7Dh	SPBRGH1	F5Dh	ANCON0 ⁽⁵⁾
FFCh	STKPTR	FDCh	PREINC2 ⁽¹⁾	FBCh	CCPR1L	F9Ch	PSTR1CON	F7Ch	SPBRGH2	F5Ch	ANCON1 ⁽⁵⁾
FFBh	PCLATU	FDBh	PLUSW2 ⁽¹⁾	FBBh	CCP1CON	F9Bh	OSCTUNE	F7Bh	SPBRG2	F5Bh	WPUB ⁽⁵⁾
FFAh	PCLATH	FDAh	FSR2H	FBAh	TXSTA2	F9Ah	REFOCON	F7Ah	RCREG2	F5Ah	IOCB ⁽⁵⁾
FF9h	PCL	FD9h	FSR2L	FB9h	BAUDCON2	F99h	CCPTMRS	F79h	TXREG2	F59h	PMD0 ⁽⁵⁾
FF8h	TBLPTRU	FD8h	STATUS	FB8h	IPR4	F98h	TRISG ⁽³⁾	F78h	IPR5	F58h	PMD1 ⁽⁵⁾
FF7h	TBLPTRH	FD7h	TMR0H	FB7h	PIR4	F97h	TRISF ⁽³⁾	F77h	PIR5	F57h	PMD2 ⁽⁵⁾
FF6h	TBLPTRL	FD6h	TMR0L	FB6h	PIE4	F96h	TRISE ⁽⁴⁾	F76h	PIE5	F56h	PADCFG1 ⁽⁵⁾
FF5h	TABLAT	FD5h	TOCON	FB5h	CVRCON	F95h	TRISD ⁽⁴⁾	F75h	EEADRH	F55h	CTMUCONH ⁽⁵⁾
FF4h	PRODH	FD4h	(2)	FB4h	CMSTAT	F94h	TRISC	F74h	EEADR	F54h	CTMUCONL ⁽⁵⁾
FF3h	PRODL	FD3h	OSCCON	FB3h	TMR3H	F93h	TRISB	F73h	EEDATA	F53h	CTMUICONH ⁽⁵⁾
FF2h	INTCON	FD2h	OSCCON2	FB2h	TMR3L	F92h	TRISA	F72h	ECANCON	F52h	CCPR2H ⁽⁵⁾
FF1h	INTCON2	FD1h	WDTCON	FB1h	T3CON	F91h	ODCON	F71h	COMSTAT	F51h	CCPR2L ⁽⁵⁾
FF0h	INTCON3	FD0h	RCON	FB0h	T3GCON	F90h	SLRCON	F70h	CIOCON	F50h	CCP2CON ^(4,5)
FEFh	INDF0 ⁽¹⁾	FCFh	TMR1H	FAFh	SPBRG1	F8Fh	LATG ⁽³⁾	F6Fh	CANCON	F4Fh	CCPR3H ^(4,5)
FEEh	POSTINC0 ⁽¹⁾	FCEh	TMR1L	FAEh	RCREG1	F8Eh	LATF ⁽³⁾	F6Eh	CANSTAT	F4Eh	CCPR3L ^(4,5)
FEDh	POSTDEC0 ⁽¹⁾	FCDh	T1CON	FADh	TXREG1	F8Dh	LATE ⁽⁴⁾	F6Dh	RXB0D7	F4Dh	CCP3CON ⁽⁵⁾
FECh	PREINC0 ⁽¹⁾	FCCh	TMR2	FACh	TXSTA1	F8Ch	LATD ⁽⁴⁾	F6Ch	RXB0D6	F4Ch	CCPR4H ⁽⁵⁾
FEBh	PLUSW0 ⁽¹⁾	FCBh	PR2	FABh	RCSTA1	F8Bh	LATC	F6Bh	RXB0D5	F4Bh	CCPR4L ⁽⁵⁾
FEAh	FSR0H	FCAh	T2CON	FAAh	T1GCON	F8Ah	LATB	F6Ah	RXB0D4	F4Ah	CCP4CON ⁽⁵⁾
FE9h	FSR0L	FC9h	SSPBUF	FA9h	PR4	F89h	LATA	F69h	RXB0D3	F49h	CCPR5H ⁽⁵⁾
FE8h	WREG	FC8h	SSPADD	FA8h	HLVDCON	F88h	T4CON	F68h	RXB0D2	F48h	CCPR5L ⁽⁵⁾
FE7h	INDF1 ⁽¹⁾	FC8h	SSPMSK	FA7h	BAUDCON1	F87h	TMR4	F67h	RXB0D1	F47h	CCP5CON ⁽⁵⁾
FE6h	POSTINC1 ⁽¹⁾	FC7h	SSPSTAT	FA6h	RCSTA2	F86h	PORTG ⁽³⁾	F66h	RXB0D0	F46h	PSPCON ^(4,5)
FE5h	POSTDEC1 ⁽¹⁾	FC6h	SSPCON1	FA5h	IPR3	F85h	PORTF ⁽³⁾	F65h	RXB0DLC	F45h	MDCON ^(3,5)
FE4h	PREINC1 ⁽¹⁾	FC5h	SSPCON2	FA4h	PIR3	F84h	PORTE	F64h	RXB0EIDL	F44h	MDSRC ^(3,5)
FE3h	PLUSW1 ⁽¹⁾	FC4h	ADRESH	FA3h	PIE3	F83h	PORTD ⁽⁴⁾	F63h	RXB0EIDH	F43h	MDCARH ^(3,5)
FE2h	FSR1H	FC3h	ADRESL	FA2h	IPR2	F82h	PORTC	F62h	RXB0SIDL	F42h	MDCARL ^(3,5)
FE1h	FSR1L	FC2h	ADCON0	FA1h	PIR2	F81h	PORTB	F61h	RXB0SIDH	F41h	_(2)
FE0h	BSR	FC1h	ADCON1	FA0h	PIE2	F80h	PORTA	F60h	RXB0CON	F40h	_(2)
_		FC0h	ADCON2			-		-		-	

Note 1: This is not a physical register.

2: Unimplemented registers are read as '0'.

3: This register is only available on devices with 64 pins.

4: This register is not available on devices with 28 pins.

5: Addresses, E41h through F5Fh, are also used by the SFRs, but are not part of the Access RAM. To access these registers, users must always load the proper BSR value.

6.4.3.1 FSR Registers and the INDF Operand

At the core of Indirect Addressing are three sets of registers: FSR0, FSR1 and FSR2. Each represents a pair of 8-bit registers: FSRnH and FSRnL. The four upper bits of the FSRnH register are not used, so each FSR pair holds a 12-bit value. This represents a value that can address the entire range of the data memory in a linear fashion. The FSR register pairs, then, serve as pointers to data memory locations.

Indirect Addressing is accomplished with a set of Indirect File Operands, INDF0 through INDF2. These can be thought of as "virtual" registers. The operands are

FIGURE 6-8: INDIRECT ADDRESSING

mapped in the SFR space, but are not physically implemented. Reading or writing to a particular INDF register actually accesses its corresponding FSR register pair. A read from INDF1, for example, reads the data at the address indicated by FSR1H:FSR1L.

Instructions that use the INDF registers as operands actually use the contents of their corresponding FSR as a pointer to the instruction's target. The INDF operand is just a convenient way of using the pointer.

Because Indirect Addressing uses a full 12-bit address, data RAM banking is not necessary. Thus, the current contents of the BSR and the Access RAM bit have no effect on determining the target address.

12.0 DATA SIGNAL MODULATOR

Note: The Data Signal Modulator is only available on 64-pin devices (PIC18F6XK80).

The Data Signal Modulator (DSM) is a peripheral which allows the user to mix a data stream, also known as a modulator signal, with a carrier signal to produce a modulated output.

Both the carrier and the modulator signals are supplied to the DSM module, either internally from the output of a peripheral, or externally through an input pin.

The modulated output signal is generated by performing a logical "AND" operation of both the carrier and modulator signals and then it is provided to the MDOUT pin.

The carrier signal is comprised of two distinct and separate signals: a carrier high (CARH) signal and a carrier low (CARL) signal. During the time in which the modulator (MOD) signal is in a logic high state, the DSM mixes the carrier high signal with the modulator signal. When the modulator signal is in a logic low state, the DSM mixes the carrier low signal with the modulator signal. Using this method, the DSM can generate the following types of key modulation schemes:

- Frequency-Shift Keying (FSK)
- Phase-Shift Keying (PSK)
- On-Off Keying (OOK)

Additionally, the following features are provided within the DSM module:

- Carrier Synchronization
- · Carrier Source Polarity Select
- Carrier Source Pin Disable
- Programmable Modulator Data
- Modulator Source Pin Disable
- Modulated Output Polarity Select
- Slew Rate Control

Figure 12-1 shows a simplified block diagram of the Data Signal Modulator peripheral.

14.1 Timer1 Gate Control Register

The Timer1 Gate Control register (T1GCON), displayed in Register 14-2, is used to control the Timer1 gate.

REGISTER 14-2: T1GCON: TIMER1 GATE CONTROL REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-x	R/W-0	R/W-0
TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/T1DONE	T1GVAL	T1GSS1	T1GSS0
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplemente	d bit, read as	'0'	
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is cleared		x = Bit is unkr	nown
hit 7	TMR1GE: Tir	ner1 Gate En	ahla hit				
	If TMR10N =						
	This bit is ign	ored.					
	If TMR10N =	1:					
	1 = Timer1 co	ounting is con	trolled by the	Timer1 gate function	I		
	0 = Timer1 co	ounts regardle	ss of Timer1	gate function			
bit 6	T1GPOL: Tin	ner1 Gate Pol	arity bit				
	1 = Timer1 g	ate is active-h	igh (Timer1 co	ounts when gate is h	igh)		
L:1 C			w (limeri co	unts when gate is io	w)		
DIL 5	1 = Timor1 (eri Gale Togg	ie wode bit odo io opoblo	d			
	1 = Timer 1 G 0 = Timer 1 G	ate Toggle m Sate Toggle m	ode is enable	u d and toggle flip-flor) is cleared		
	Timer1 gate f	lip-flop toggle	s on every ris	ing edge.			
bit 4	T1GSPM: Tir	ner1 Gate Sin	gle Pulse Mo	de bit			
	1 = Timer1 G	ate Single Pu	lse mode is e	nabled and is contro	lling Timer1 ga	ate	
	0 = Timer1 G	ate Single Pu	lse mode is di	isabled			
bit 3	T1GGO/T1D	ONE: Timer1	Gate Single P	Pulse Acquisition Stat	tus bit		
	1 = Timer1 g	ate single pul	se acquisition	is ready, waiting for	an edge	e ut e el	
	0 = Timer1 g	ate single pui omatically cle	se acquisition ared when T1	nas completed or na	as not been st	arted	
hit 2		er1 Gate Cur	rent State hit				
	Indicates the	current state	of the Timer1	gate that could be r	provided to TM	R1H·TMR1I ·	unaffected by
	Timer1 Gate	Enable (TMR	1GE) bit.	gate that could be p			
bit 1-0	T1GSS<1:0>	: Timer1 Gate	Source Sele	ct bits			
	11 = Compar	ator 2 output					
	10 = Compar	ator 1 output					
	01 = TMR2 to	o match PR2	output				
	uu = nmerr	yate pin					
Note 1: F	Programming th	e T1GCON p	rior to T1CON	l is recommended.			

15.2 Timer2 Interrupt

Timer2 can also generate an optional device interrupt. The Timer2 output signal (TMR2 to PR2 match) provides the input for the four-bit output counter/postscaler. This counter generates the TMR2 match interrupt flag, which is latched in TMR2IF (PIR1<1>). The interrupt is enabled by setting the TMR2 Match Interrupt Enable bit, TMR2IE (PIE1<1>).

A range of 16 postscaler options (from 1:1 through 1:16 inclusive) can be selected with the postscaler control bits, T2OUTPS<3:0> (T2CON<6:3>).

15.3 Timer2 Output

The unscaled output of TMR2 is available primarily to the ECCP modules, where it is used as a time base for operations in PWM mode.

Timer2 can optionally be used as the shift clock source for the MSSP module operating in SPI mode. Additional information is provided in Section 21.0 "Master Synchronous Serial Port (MSSP) Module".

FIGURE 15-1: TIMER2 BLOCK DIAGRAM

TABLE 15-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
PIR1	PSPIF	ADIF	RC1IF	TX1IF	SSPIF	TMR1GIF	TMR2IF	TMR1IF
PIE1	PSPIE	ADIE	RC1IE	TX1IE	SSPIE	TMR1GIE	TMR2IE	TMR1IE
IPR1	PSPIP	ADIP	RC1IP	TX1IP	SSPIP	TMR1GIP	TMR2IP	TMR1IP
TMR2	Timer2 Reg	ister						
T2CON	—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0
PR2	Timer2 Peri	od Register						
PMD1	PSPMD	CTMUMD	ADCMD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	TMR0MD

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.

17.0 TIMER4 MODULES

The Timer4 timer modules have the following features:

- Eight-bit Timer register (TMR4)
- Eight-bit Period register (PR4)
- Readable and writable (all registers)
- Software programmable prescaler (1:1, 1:4, 1:16)
- Software programmable postscaler (1:1 to 1:16)
- · Interrupt on TMR4 match of PR4

The Timer4 modules have a control register shown in Register 17-1. Timer4 can be shut off by clearing control bit, TMR4ON (T4CON<2>), to minimize power consumption. The prescaler and postscaler selection of Timer4 also are controlled by this register. Figure 17-1 is a simplified block diagram of the Timer4 modules.

17.1 Timer4 Operation

Timer4 can be used as the PWM time base for the PWM mode of the ECCP modules. The TMR4 registers are readable and writable, and are cleared on any device Reset. The input clock (Fosc/4) has a prescale option of 1:1, 1:4 or 1:16, selected by control bits, T4CKPS<1:0> (T4CON<1:0>). The match output of

TMR4 goes through a four-bit postscaler (that gives a 1:1 to 1:16 inclusive scaling) to generate a TMR4 interrupt, latched in the flag bit, TMR4IF. Table 17-1 gives each module's flag bit.

The interrupt can be enabled or disabled by setting or clearing the Timer4 Interrupt Enable bit (TMR4IE), shown in Table 17-1.

The prescaler and postscaler counters are cleared when any of the following occurs:

- · A write to the TMR4 register
- · A write to the T4CON register
- Any device Reset Power-on Reset (POR), MCLR Reset, Watchdog Timer Reset (WDTR) or Brown-out Reset (BOR)

A TMR4 is not cleared when a T4CON is written.

Note: The CCP and ECCP modules use Timers, 1 through 4, for some modes. The assignment of a particular timer to a CCP/ECCP module is determined by the Timer to CCP enable bits in the CCPTMRS register. For more details, see Register 20-2 and Register 19-2.

REGISTER 17-1: T4CON: TIMER4 CONTROL REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR4ON	T4CKPS1	T4CKPS0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Dit 7	Unimplemented: Read as 10
bit 6-3	T4OUTPS<3:0>: Timer4 Output Postscale Select bits
	0000 = 1:1 Postscale
	0001 = 1:2 Postscale
	•
	•
	•
	1111 = 1:16 Postscale
bit 2	TMR4ON: Timer4 On bit
	1 = Timer4 is on
	0 = Timer4 is off
bit 1-0	T4CKPS<1:0>: Timer4 Clock Prescale Select bits
	00 = Prescaler is 1
	01 = Prescaler is 4
	1x = Prescaler is 16

19.0 CAPTURE/COMPARE/PWM (CCP) MODULES

PIC18F66K80 family devices have four CCP (Capture/Compare/PWM) modules, designated CCP2 through CCP5. All the modules implement standard Capture, Compare and Pulse-Width Modulation (PWM) modes.

Note: Throughout this section, generic references are used for register and bit names that are the same, except for an 'x' variable that indicates the item's association with the specific CCP module. For example, the control register is named CCPxCON and refers to CCP2CON through CCP5CON.

Each CCP module contains a 16-bit register that can operate as a 16-bit Capture register, a 16-bit Compare register or a PWM Master/Slave Duty Cycle register. For the sake of clarity, all CCP module operation in the following sections is described with respect to CCP2, but is equally applicable to CCP3 through CCP5.

REGISTER 19-1: CCPxCON: CCPx CONTROL REGISTER (CCP2-CCP5 MODULES)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	DCxB1	DCxB0	CCPxM3 ⁽¹⁾	CCPxM2 ⁽¹⁾	CCPxM1 ⁽¹⁾	CCPxM0 ⁽¹⁾
bit 7							bit 0

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as '0'
bit 5-4	DCxB<1:0>: PWM Duty Cycle bit 1 and bit 0 for CCPx Module bits
	Capture mode:
	Unused.
	Compare mode:
	Unused.
	PWM mode:
	These bits are the two Least Significant bits (bit 1 and bit 0) of the 10-bit PWM duty cycle. The eight Most Significant bits (DCx<9:2>) of the duty cycle are found in CCPRxL.
bit 3-0	CCPxM<3:0>: CCPx Module Mode Select bits ⁽¹⁾
	0000 = Capture/Compare/PWM disabled (resets CCPx module) 0001 = Reserved
	0010 = Compare mode: toggle output on match (CCPXIF bit is set)
	0011 = Reserved 0100 = Capture mode: every falling edge or CAN message received (time-stamp) ⁽²⁾
	0101 = Capture mode: every rising edge or CAN message received (time-stamp) ⁽²⁾
	0110 = Capture mode: every 4th rising edge or on every fourth CAN message received (time-stamp) ⁽²⁾
	0111 = Capture mode: every 16th rising edge or on every 16th CAN message received (time-stamp) ⁽²⁾
	1000 = Compare mode: initialize CCPx pin low; on compare match, force CCPx pin high (CCPxIF bit is set)
	1001 = Compare mode: Initialize CCPX pin nigh; on compare match, force CCPX pin low (CCPXIF bit is set)
	reflects I/O state)
	1011 = Compare mode: Special Event Trigger; reset timer on CCPx match (CCPxIF bit is set)
	11xx = PWM mode
Note 1:	CCPxM<3:0> = 1011 will only reset the timer and not start an A/D conversion on CCPx match.

2: Available only on CCP2. Selected by the CANCAP (CIOCON<4>) bit. Overrides the CCP2 input pin source.

ECCP Mode	P1M<1:0>	P1A	P1B	P1C	P1D
Single	00	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾
Half-Bridge	10	Yes	Yes	No	No
Full-Bridge, Forward	01	Yes	Yes	Yes	Yes
Full-Bridge, Reverse	11	Yes	Yes	Yes	Yes

TABLE 20-2: EXAMPLE PIN ASSIGNMENTS FOR VARIOUS PWM ENHANCED MODES

Note 1: Outputs are enabled by pulse steering in Single mode (see Register 20-5).

FIGURE 20-4: EXAMPLE PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS (ACTIVE-HIGH STATE)

	P1M<1:0>	Signal	0	Pulse Width	▶	PR2 + 1
			1 1 1	4	Period	
00	(Single Output)	P1A Modulated		D. (1)		
		P1A Modulated	; ;			
10	(Half-Bridge)	P1B Modulated				
		P1A Active				<u> </u>
01	(Full-Bridge,	P1B Inactive			1 1 1	
01	Forward)	P1C Inactive			1 1 	[
		P1D Modulated	— —		-i	
		P1A Inactive			 	
11	(Full-Bridge,	P1B Modulated			-j	
	Reverse)	P1C Active -				
		P1D Inactive –			1 1	

Relationships:

Period = 4 * Tosc * (PR2 + 1) * (TMR2 Prescale Value)
Pulse Width = Tosc * (CCPR1L<7:0>:CCP1CON<5:4>) * (TMR2 Prescale Value)
Delay = 4 * Tosc * (ECCP1DEL<6:0>)

Note 1: Dead-band delay is programmed using the ECCP1DEL register (Section 20.4.6 "Programmable Dead-Band Delay Mode").

20.4.2 FULL-BRIDGE MODE

In Full-Bridge mode, all four pins are used as outputs. An example of a full-bridge application is provided in Figure 20-8.

In the Forward mode, the P1A pin is driven to its active state and the P1D pin is modulated, while the P1B and P1C pins are driven to their inactive state, as provided in Figure 20-9.

FIGURE 20-8: EXAMPLE OF FULL-BRIDGE APPLICATION

In the Reverse mode, the P1C pin is driven to its active state and the P1B pin is modulated, while the P1A and P1D pins are driven to their inactive state, as provided Figure 20-9.

The P1A, P1B, P1C and P1D outputs are multiplexed with the port data latches. The associated TRIS bits must be cleared to configure the P1A, P1B, P1C and P1D pins as outputs.

20.4.8 OPERATION IN POWER-MANAGED MODES

In Sleep mode, all clock sources are disabled. Timer2/4 will not increment and the state of the module will not change. If the ECCP1 pin is driving a value, it will continue to drive that value. When the device wakes up, it will continue from this state. If Two-Speed Start-ups are enabled, the initial start-up frequency from HF-INTOSC and the postscaler may not be stable immediately.

In PRI_IDLE mode, the primary clock will continue to clock the ECCP1 module without change.

20.4.8.1 Operation with Fail-Safe Clock Monitor (FSCM)

If the Fail-Safe Clock Monitor (FSCM) is enabled, a clock failure will force the device into the power-managed RC_RUN mode and the OSCFIF bit of the PIR2 register will be set. The ECCP1 will then be clocked from the internal oscillator clock source, which may have a different clock frequency than the primary clock.

20.4.9 EFFECTS OF A RESET

Both Power-on Reset and subsequent Resets will force all ports to Input mode and the ECCP registers to their Reset states.

This forces the ECCP module to reset to a state compatible with previous, non-enhanced CCP modules used on other PIC18 and PIC16 devices.

21.3.9 OPERATION IN POWER-MANAGED MODES

In SPI Master mode, module clocks may be operating at a different speed than when in full-power mode; in the case of the Sleep mode, all clocks are halted.

In Idle modes, a clock is provided to the peripherals. That clock can be from the primary clock source, the secondary clock (SOSC oscillator) or the INTOSC source. See **Section 3.3** "**Clock Sources and Oscillator Switching**" for additional information.

In most cases, the speed that the master clocks SPI data is not important; however, this should be evaluated for each system.

If MSSP interrupt is enabled, it can wake the controller from Sleep mode, or one of the Idle modes, when the master completes sending data. If an exit from Sleep or Idle mode is not desired, MSSP interrupts should be disabled.

If the Sleep mode is selected, all module clocks are halted and the transmission/reception will remain in that state until the device wakes. After the device returns to Run mode, the module will resume transmitting and receiving data.

In SPI Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in any power-managed mode and data to be shifted into the SPI Transmit/Receive Shift register. When all 8 bits have been received, the MSSP interrupt flag bit will be set, and if enabled, will wake the device.

21.3.10 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

21.3.11 BUS MODE COMPATIBILITY

Table 21-1 shows the compatibility between the standard SPI modes, and the states of the CKP and CKE control bits.

Standard SPI Mode	Control Bits State				
Terminology	СКР	CKE			
0, 0	0	1			
0, 1	0	0			
1, 0	1	1			
1, 1	1	0			

TABLE 21-1: SPI BUS MODES

There is also an SMP bit which controls when the data is sampled.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
PIR1	PSPIF	ADIF	RC1IF	TX1IF	SSPIF	TMR1GIF	TMR2IF	TMR1IF
PIE1	PSPIE	ADIE	RC1IE	TX1IE	SSPIE	TMR1GIE	TMR2IE	TMR1IE
IPR1	PSPIP	ADIP	RC1IP	TX1IP	SSPIP	TMR1GIP	TMR2IP	TMR1IP
TRISA	TRISA7	TRISA6	TRISA5	—	TRISA3	TRISA2	TRISA1	TRISA0
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0
SSPBUF	MSSP Receive Buffer/Transmit Register							
SSPCON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0
SSPSTAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF
ODCON	SSPOD	CCP5OD	CCP4OD	CCP3OD	CCP2OD	CCP10D	U2OD	U10D
PMD0	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	UART2MD	UART1MD	SSPMD

TABLE 21-2: REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: Shaded cells are not used by the MSSP module in SPI mode.

REGISTER 23-4: ADRESH: A/D RESULT HIGH BYTE REGISTER, LEFT JUSTIFIED (ADFM = 0)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
ADRES11	ADRES10	ADRES9	ADRES8	ADRES7	ADRES6	ADRES5	ADRES4
bit 7							

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-0 ADRES<11:4>: A/D Result High Byte bits

REGISTER 23-5: ADRESL: A/D RESULT LOW BYTE REGISTER, LEFT JUSTIFIED (ADFM = 0)

R/W-x	R/W-x	R/W-x	R/W-x	U-x	U-x	U-x	U-x
ADRES3	ADRES2	ADRES1	ADRES0	ADSGN3	ADSGN2	ADSGN1	ADSGN0
bit 7							

Legend:					
R = Readable bit	le bit W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

ADSGN<3:0>: A/D Result Sign bits

1 = A/D result is negative

0 = A/D result is positive

REGISTER 23-6: ADRESH: A/D RESULT HIGH BYTE REGISTER, RIGHT JUSTIFIED (ADFM = 1)

U-x	U-x	U-x	U-x	R/W-x	R/W-x	R/W-x	R/W-x
ADSGN7	ADSGN6	ADSGN5	ADSGN4	ADRES11	ADRES10	ADRES9	ADRES8
bit 7							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4 ADSGN<7:4>: A/D Result Sign bits 1 = A/D result is negative 0 = A/D result is positive

bit 3-0 ADRES<11:8>: A/D Result High Byte bits

bit 3-0

TABLE 29-1: OPCODE FIELD DESCRIPTIONS

a RAM access bit: a = 0: RAM location in Access RAM (BSR register is ignored) a = 1: RAM bank is specified by BSR register bbb Bit address within an 8-bit file register (0 to 7). BSR Bank Select Register. Used to select the current RAM bank. C, DC, Z, OV, N ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative. d Destination select bit: d = 0: store result in WREG d = 1: store result in WREG register or the specified register file location. f 8-bit register file address (00h to FFh), or 2-bit FSR designator (0h to 3h). f_a 12-bit register file address (00h to FFh). This is the source address. f_d 12-bit register file address (00h to FFFh). This is the destination address. GIIE Global Interrupt Enable bit. k Literal filed, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value). label Label name. mm The mode of the TBLPTR register for the table read and table write instructions. ** Post-Increment register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such a
bbb Bit address within an 8-bit file register (0 to 7). BSR Bank Select Register. Used to select the current RAM bank. C, DC, Z, OV, N ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative. d Destination select bit: d = 0: store result in WREG d = 1: store result in file register f dest Destination: either the WREG register or the specified register file location. f 8-bit register file address (00h to FFh), or 2-bit FSR designator (0h to 3h). f g f_a 12-bit register file address (00h to FFFh). This is the source address. f_d 12-bit register file address (00h to FFFh). This is the destination address. GIE Global Interrupt Enable bit. k Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value). labe1 Label name. mm The mode of the TBLPTR register for the table read and table write instructions. only used with table read and table write instructions. ** No Change to register (such as TBLPTR with table reads and writes) *+ Post-Increment register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-D
BSR Bank Select Register. Used to select the current RAM bank. C, DC, Z, OV, N ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative. d Destination select bit: d = 0: store result in WREG d = 1: store result in WREG d = 1: store result in file register of the specified register file location. f 8-bit register file address (00h to FFh), or 2-bit FSR designator (0h to 3h). f_g 12-bit register file address (00h to FFh). This is the source address. GIE Global Interrupt Enable bit. k Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value). label Label name. mm The mode of the TBLPTR register for the table read and table write instructions. Only used with table read and table write instructions. ** No Change to register (such as TBLPTR with table reads and writes) *- Post-Increment register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-address (2's complement number) f
C, DC, Z, OV, N ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative. d Destination select bit: d = 0: store result in WREG d = 1: store result in file register f dest Destination: either the WREG register or the specified register file location. £ 8-bit register file address (00h to FFh), or 2-bit FSR designator (0h to 3h). f_g 12-bit register file address (00h to FFFh). This is the source address. f_d 12-bit register file address (00h to FFFh). This is the destination address. GIE Global Interrupt Enable bit. k Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value). labe1 Label name. mm The mode of the TBLPTR register for the table read and table write instructions. Only used with table read and table write instructions: * No Change to register (such as TBLPTR with table reads and writes) *- Post-Increment register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-Increment register (such as TBLPTR with table reads and writes) *- Post-Increment register (such as TBLPTR with table reads and writes) *- Pre-Increment register (such as TBLPTR with table reads and writes) n The relati
d Destination select bit: d = 0: store result in WREG d = 1: store result in file register f dest Destination: either the WREG register or the specified register file location. f 8-bit register file address (00h to FFh), or 2-bit FSR designator (0h to 3h). f_a 12-bit register file address (00h to FFFh). This is the source address. f_d 12-bit register file address (00h to FFFh). This is the destination address. GIE Global Interrupt Enable bit. k Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value). labe1 Label name. mm The mode of the TBLPTR register for the table read and table write instructions. Only used with table read and table write instructions: * No Change to register (such as TBLPTR with table reads and writes) *- Post-Increment register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Procement register (such as TBLPTR with table reads and writes) *- Procement register (such as TBLPTR with table read
dest Destination: either the WREG register or the specified register file location. f 8-bit register file address (00h to FFh), or 2-bit FSR designator (0h to 3h). f _s 12-bit register file address (000h to FFh). This is the source address. f_d 12-bit register file address (000h to FFFh). This is the destination address. GIE Global Interrupt Enable bit. k Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value). label Label name. mm The mode of the TBLPTR register for the table read and table write instructions. only used with table read and table write instructions: * ** No Change to register (such as TBLPTR with table reads and writes) *- Post-Increment register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) n The relative address (2's complement number) for relative branch instructions or the direct address for Call/Branch and Return instruct
f 8-bit register file address (00h to FFh), or 2-bit FSR designator (0h to 3h). f_s 12-bit register file address (000h to FFFh). This is the source address. f_d 12-bit register file address (000h to FFFh). This is the destination address. GIE Global Interrupt Enable bit. k Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value). labe1 Label name. mm The mode of the TBLPTR register for the table read and table write instructions. Only used with table read and table write instructions: * No Change to register (such as TBLPTR with table reads and writes) *- Post-Increment register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) ** Pre-Increment register (such as TBLPTR with table reads and writes) ** Post-Increment register (such as TBLPTR with table reads and writes) ** Pre-Increment register (such as TBLPTR with table reads and writes) ** Pre-Increment register (such as TBLPTR with table reads and writes) ** Pre-Increment register (such as TBLPTR with table reads and writes) n The relative address (2's complement number) for relative branch instructions or the direct address for Call/Branch and Return instructions. <
£s 12-bit register file address (000h to FFFh). This is the source address. fd 12-bit register file address (000h to FFFh). This is the destination address. GIE Global Interrupt Enable bit. k Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value). labe1 Label name. mm The mode of the TBLPTR register for the table read and table write instructions. Only used with table read and table write instructions: * No Change to register (such as TBLPTR with table reads and writes) *+ Post-Increment register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) ** Pre-Increment register (such as TBLPTR with table reads and writes) ** Pre-Increment register (such as TBLPTR with table reads and writes) ** Pre-Increment register (such as TBLPTR with table reads and writes) ** Pre-Increment register (such as TBLPTR with table reads and writes) ** Pre-Increment register (such as TBLPTR with table reads and writes) ** Pre-Increment register (such as TBLPTR with table reads and writes) * Pre-Increment register (such as TBLPTR with table reads and writes) PC Program Counter. PCL
f_d 12-bit register file address (000h to FFFh). This is the destination address. GIE Global Interrupt Enable bit. k Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value). labe1 Label name. mm The mode of the TBLPTR register for the table read and table write instructions. Only used with table read and table write instructions: * No Change to register (such as TBLPTR with table reads and writes) *+ Post-Increment register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) ** Pre-Increment register (such as TBLPTR with table reads and writes) ** Pre-Increment register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) n The relative address (2's complement number) for relative branch instructions or the direct address for Call/Branch and Return instructions. PC Program Counter. PCL Program Counter Low Byte. PCH Program Counter Low Byte. PCH Program Counter High Byte Latch. PCLATH Program Counter High Byte Latch.
GIE Global Interrupt Enable bit. k Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value). labe1 Label name. mm The mode of the TBLPTR register for the table read and table write instructions. Only used with table read and table write instructions: * No Change to register (such as TBLPTR with table reads and writes) *+ Post-Increment register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) +* Pre-Increment register (such as TBLPTR with table reads and writes) n The relative address (2's complement number) for relative branch instructions or the direct address for Call/Branch and Return instructions. PC Program Counter. PCL Program Counter Low Byte. PCH Program Counter High Byte. PCLATH Program Counter High Byte Latch. PCLATH Program Counter High Byte Latch. PD Power-Down bit.
k Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value). labe1 Label name. mm The mode of the TBLPTR register for the table read and table write instructions. Only used with table read and table write instructions: * No Change to register (such as TBLPTR with table reads and writes) *+ Post-Increment register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Pre-Increment register (such as TBLPTR with table reads and writes) *- Pre-Increment register (such as TBLPTR with table reads and writes) n The relative address (2's complement number) for relative branch instructions or the direct address for Call/Branch and Return instructions. PC Program Counter. PCL Program Counter Low Byte. PCH Program Counter High Byte. PCLATH Program Counter High Byte. PCLATU Program Counter High Byte Latch. PD Power-Down bit.
labe1Label name.mmThe mode of the TBLPTR register for the table read and table write instructions. Only used with table read and table write instructions: * * No Change to register (such as TBLPTR with table reads and writes) *+ *- Post-Increment register (such as TBLPTR with table reads and writes) *- ** Post-Decrement register (such as TBLPTR with table reads and writes) ** ** Pre-Increment register (such as TBLPTR with table reads and writes) n The relative address (2's complement number) for relative branch instructions or the direct address for Call/Branch and Return instructions.PCProgram Counter. PCLPCLProgram Counter Low Byte.PCHProgram Counter High Byte.PCLATTHProgram Counter High Byte Latch.PCLATTUProgram Counter Upper Byte Latch.PDPower-Down bit.
mm The mode of the TBLPTR register for the table read and table write instructions. Only used with table read and table write instructions: * No Change to register (such as TBLPTR with table reads and writes) *+ Post-Increment register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) +* Pre-Increment register (such as TBLPTR with table reads and writes) n The relative address (2's complement number) for relative branch instructions or the direct address for Call/Branch and Return instructions. PC Program Counter. PCL Program Counter Low Byte. PCH Program Counter High Byte. PCLATH Program Counter High Byte Latch. PCLATU Program Counter Upper Byte Latch. PD Power-Down bit.
* No Change to register (such as TBLPTR with table reads and writes) *+ Post-Increment register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) +* Pre-Increment register (such as TBLPTR with table reads and writes) n The relative address (2's complement number) for relative branch instructions or the direct address for Call/Branch and Return instructions. PC Program Counter. PCL Program Counter Low Byte. PCH Program Counter High Byte. PCLATH Program Counter High Byte Latch. PCLATU Program Counter Upper Byte Latch. PD Power-Down bit.
*+ Post-Increment register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) +* Pre-Increment register (such as TBLPTR with table reads and writes) n The relative address (2's complement number) for relative branch instructions or the direct address for Call/Branch and Return instructions. PC Program Counter. PCL Program Counter Low Byte. PCH Program Counter High Byte. PCLATH Program Counter High Byte Latch. PCLATU Program Counter Upper Byte Latch. PD Power-Down bit.
- Post-Decrement register (such as TBLPTR with table reads and writes) + Pre-Increment register (such as TBLPTR with table reads and writes) n The relative address (2's complement number) for relative branch instructions or the direct address for Call/Branch and Return instructions. PC Program Counter. PCL Program Counter Low Byte. PCH Program Counter High Byte. PCLATH Program Counter High Byte Latch. PCLATU Program Counter Upper Byte Latch. PD Power-Down bit.
+* Pre-Increment register (such as TBLPTR with table reads and writes) n The relative address (2's complement number) for relative branch instructions or the direct address for Call/Branch and Return instructions. PC Program Counter. PCL Program Counter Low Byte. PCH Program Counter High Byte. PCLATH Program Counter High Byte Latch. PCLATU Program Counter Upper Byte Latch. PD Power-Down bit.
n The relative address (2's complement number) for relative branch instructions or the direct address for Call/Branch and Return instructions. PC Program Counter. PCL Program Counter Low Byte. PCH Program Counter High Byte. PCLATH Program Counter High Byte Latch. PCLATU Program Counter Upper Byte Latch. PD Power-Down bit.
PC Program Counter. PCL Program Counter Low Byte. PCH Program Counter High Byte. PCLATH Program Counter High Byte Latch. PCLATU Program Counter Upper Byte Latch. PD Power-Down bit.
PCL Program Counter Low Byte. PCH Program Counter High Byte. PCLATH Program Counter High Byte Latch. PCLATU Program Counter Upper Byte Latch. PD Power-Down bit.
PCH Program Counter High Byte. PCLATH Program Counter High Byte Latch. PCLATU Program Counter Upper Byte Latch. PD Power-Down bit.
PCLATH Program Counter High Byte Latch. PCLATU Program Counter Upper Byte Latch. PD Power-Down bit.
PCLATU Program Counter Upper Byte Latch. PD Power-Down bit.
PD Power-Down bit.
PRODH Product of Multiply High Byte.
PRODL Product of Multiply Low Byte.
s Fast Call/Return mode select bit: s = 0: do not update into/from shadow registers s = 1: certain registers loaded into/from shadow registers (Fast mode)
TBLPTR 21-bit Table Pointer (points to a Program Memory location).
TABLAT 8-bit Table Latch.
TO Time-out bit.
TOS Top-of-Stack.
u Unused or Unchanged.
WDT Watchdog Timer.
WREG Working register (accumulator).
x Don't care ('0' or '1'). The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
z _s 7-bit offset value for Indirect Addressing of register files (source).
Zd 7-bit offset value for Indirect Addressing of register files (destination).
{ } Optional argument.
[text] Indicates an Indexed Address.
(text) The contents of text.
[expr] <n> Specifies bit n of the register indicated by the pointer expr.</n>
\rightarrow Assigned to.
< > Register bit field.
∈ In the set of.
italics User-defined term (font is Courier New).

CLRF		Clear f				с	LRWDT		Clear \	Vato	hdog Ti	imer		
Syntax:		CLRF f{,;	a}			S	Syntax: CLRWDT							
Operands	3 :	0 ≤ f ≤ 255 a ∈ [0,1]		0	perands:									
Operatior	1:	$\begin{array}{l} 000h \rightarrow f, \\ 1 \rightarrow Z \end{array}$		0			$\begin{array}{l} 000h \rightarrow \text{WDT postscaler,} \\ 1 \rightarrow \overline{\text{DO}}, \\ 1 \rightarrow \overline{\text{PD}} \end{array}$							
Status Aff	fected:	Z			1 0	atus Affectes	J.	$1 \rightarrow Pl$	5					
Encoding	:	0110	101a	ffff	ffff	5	atus Anecteo	1:	TO, PL	,			_	
Descriptio	on:	Clears the	contents	of the spe	ecified	E	ncoding:		000		0000	000		0100
		If 'a' is '0', t If 'a' is '1', t GPR bank.	he Acces he BSR i	ss Bank is is used to	s selected. select the	escription.		Watche post <u>sca</u> and PE	$\log \frac{1}{2}$	Timer. It of the W e set.	also res DT. Sta	sets th tus bit	e s, TO	
		lf 'a' is '0' a	nd the e	xtended ir	nstruction	W	/ords:		1					
		set is enabl	ed, this i	instructior	operates	С	ycles:		1					
		in Indexed	Literal Of	ffset Addr 95 (5Eb)	essing	(Q Cycle Activi	ity:						
		Section 29	.2.3 "By	te-Orient	ed and		Q1		Q2		Q	3	C	<u>)</u> 4
		Bit-Oriente Literal Offs	ed Instru set Mode	ictions in e" for deta	Indexed ails.		Decode	е	No operatio	on	Proce Dat	ess a	N opera	o ation
Words:		1												
Cycles:		1				<u>E</u>	xample:		CLRWD	Г				
Q Cycle	Activity:						Before Ins	structi	on		0			
,	Q1	Q2	Q3	3	Q4		WDT Counter = ?							
D	ecode	Read register 'f'	Proce Data	ess a re	Write gister 'f']	$\frac{\text{Arter instruction}}{\text{WDT Counter}} = 00h$ $\frac{\text{WDT Postscaler}}{\text{WDT}} = 0$							
							TO			=	1			
Example:		CLRF	FLAG_	_REG,1			PD			=	1			
Befc After	ore Instruc FLAG_RI r Instructic FLAG_RI	tion EG = 5A on EG = 00	.h h											

SLEEP Enter Sleep Mode							
Syntax:	SLEEP						
Operands:							
Operation:	$\begin{array}{l} 00h \rightarrow WE \\ 0 \rightarrow WDT \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$	$\begin{array}{l} \text{O0h} \rightarrow \text{WDT,} \\ 0 \rightarrow \text{WDT postscaler,} \\ 1 \rightarrow \overline{\text{TO}}, \\ 0 \rightarrow \overline{\text{PD}} \end{array}$					
Status Affected: TO, PD							
Encoding:	0000	0000 000	00 0011				
Description: The Power-Down status bit (PD) is cleared. The Time-out status bit (TO is set. The Watchdog Timer and its postscaler are cleared.							
The processor is put into Sleep mode with the oscillator stopped.							
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	Q4				
Decode	No	Process	Go to				
	operation	Dala	Sleep				
Example:	SLEEP						
Before Instruction $ \frac{\overline{TO}}{\overline{PD}} = ? $ After Instruction $ \overline{TO} = 1 \ddagger $							
PD = † If WDT causes v	0 wake-up, this t	bit is cleared.					

	Subtract f from W with Borrow		
Syntax:	SUBFWB	f {,d {,a}}	
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$		
Operation:	$(W)-(f)-(\overline{C})\to dest$		
Status Affected:	N, OV, C, DC, Z		
Encoding:	0101	01da fff	f ffff
Description:	Subtract register 'f' and Carry flag (borrow) from W (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored in register 'f' (default).		
	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank.		
	If 'a' is '0' an set is enable Indexed Lite whenever f = Section 29.2 Bit-Oriented Literal Offse	d the extended d, this instruction ral Offset Addre 5 (5Fh). See 2.3 "Byte-Orien d Instructions et Mode" for de	I instruction on operates in essing mode nted and in Indexed etails.
Words:	1		
Cycles:	1		
Q Cycle Activity:			
Q1	Q2	Q3	Q4
Decode	Read register 'f'	Process Data	Write to destination
	logicitei i		
Evample 1.	CIIDEWD		acoundation
Example 1: Before Instruct	SUBFWB	REG, 1, 0	
Example 1: Before Instruc REG	SUBFWB tion = 3	REG, 1, 0	
Example 1: Before Instruct REG W C	SUBFWB etion = 3 = 2 = 1	REG, 1, 0	
Example 1: Before Instruct REG W C After Instruction	SUBFWB etion = 3 = 2 = 1	REG, 1, 0	
Example 1: Before Instruct W C After Instruction REG W	SUBFWB = 3 = 2 = 1 on = FF = 2	REG, 1, 0	
Example 1: Before Instruct W C After Instruction REG W C	SUBFWB = 3 = 2 = 1 on = FF = 2 = 0	REG, 1, 0	
Example 1: Before Instruct W C After Instructio REG W C Z N	SUBFWB = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 1	REG, 1, 0	<i>(</i> e
Example 1: Before Instruct REG W C After Instructio REG W C Z N Example 2:	SUBFWB tion = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 1; SUBFWB	REG, 1, 0	/e
Example 1: Before Instruct W C After Instruction REG W C Z N Example 2: Before Instruct	SUBFWB = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 0 = 1 ; SUBFWB ttion	REG, 1, 0 result is negativ REG, 0, 0	/e
Example 1: Before Instruct W C After Instruction REG W C Z N Example 2: Before Instruct REG	SUBFWB tion = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 1; SUBFWB tion = 2	REG, 1, 0	/e
Example 1: Before Instruct W C After Instruction REG W C Z N N Example 2: Before Instruct REG W C	SUBFWB = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 1 ; SUBFWB tion = 2 = 1 = 2 = 1 = 0 = 1 ; SUBFWB	REG, 1, 0	/e
Example 1: Before Instruct REG W C After Instruction REG W Example 2: Before Instruct REG W C After Instruction	SUBFWB tion = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 0 = 1; SUBFWB tion = 2 = 1; SUBFWB	REG, 1, 0	/e
Example 1: Before Instruct W C After Instruction REG W Example 2: Before Instruct REG W C After Instruction REG W	SUBFWB tion = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 0 = 1; SUBFWB tion = 2 = 1 on = 2 = 0 = 0 = 1 ; SUBFWB tion = 2 = 0 = 1 on = 2 = 0 = 1 ; SUBFWB tion = 2 = 1 on = 2 = 0 = 1 ; SUBFWB tion = 2 = 1 ; SUBFWB	REG, 1, 0	/e
Example 1: Before Instruct W C After Instruction REG W C Z N Example 2: Before Instruction REG W C After Instruction REG W C	SUBFWB tion = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 0 = 1; SUBFWB tion = 2 = 5 = 1 on = 2 = 3 = 1 = 2 = 1 = 0 = 0 = 1 = 2 = 1 = 0 = 0 = 1 = 1 = 2 = 1 = 0 = 0 = 1 = 1 = 2 = 0 = 1 = 1 = 2 = 0 = 0 = 1 = 1 = 2 = 0 = 0 = 1 = 1 = 2 = 0 = 1 = 1 = 1 = 0 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1	REG, 1, 0	/e
Example 1: Before Instruct W C After Instruction REG W C Z N Example 2: Before Instruct REG W C After Instruction REG W C Z N	SUBFWB tion = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 1; SUBFWB tion = 2 = 1; SUBFWB tion = 2 = 1 = 0 = 0 = 1 = 0 = 1 = 0 = 0 = 0 = 1 = 0 = 0 = 0 = 1 = 0 = 0 = 0 = 0 = 1 = 0 = 0 = 0 = 0 = 0 = 1 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0	REG, 1, 0	/e
Example 1: Before Instruct REG W C After Instruction REG W C Z N Example 2: Before Instruction REG W C After Instruction REG W C After Instruction REG W C After Instruction REG W C After Instruction REG W C After Instruction REG W C Z N Example 2: Before Instruction REG W C Z N Example 3: Example 3:	SUBFWB tion = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 1; SUBFWB tion = 2 = 5 = 1 on = 2 = 0; SUBFWB	REG, 1, 0 result is negativ REG, 0, 0	/e e
Example 1: Before Instruct REG W C After Instruction REG W C Z N Example 2: Before Instruction REG W C After Instruction REG W C After Instruction REG W C After Instruction REG W C Before Instruction REG W C Before Instruction REG W C Before Instruction REG W C Before Instruction REG W C S Before Instruction REG W C S S Before Instruction REG W C S S Before Instruction REG W C S S Before Instruction REG W C S S S S S S S S S S S S S S S S S S	SUBFWB tion = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 0 = 1; SUBFWB tion = 2 = 1 = 0 = 0 = 0; SUBFWB	REG, 1, 0 result is negativ REG, 0, 0 result is positiv REG, 1, 0	/e e
Example 1: Before Instruct REG W C After Instruction REG W C Z N Example 2: Before Instructor REG W C Z After Instructor REG W C Z N Example 3: Before Instructor REG	SUBFWB tion = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 0 = 1; SUBFWB tion = 2 = 3 = 1 on = 2 = 0 = 0; SUBFWB tion = 1 = 1 = 2 = 0 = 0; SUBFWB	REG, 1, 0 result is negativ REG, 0, 0 result is positiv REG, 1, 0	/e e
Example 1: Before Instruct REG W C After Instruction REG W C Example 2: Before Instruction REG W C After Instruction REG W C After Instruction REG W C After Instruction REG W C Z N Example 3: Before Instruction REG W C Z REG W C Z REG W C Z Before Instruction REG W C Z Before Instruction REG W C	SUBFWB tion = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 0 = 1; SUBFWB tion = 2 = 3 = 1 on = 2 = 0 = 0; SUBFWB tion = 2 = 0; = 0; SUBFWB tion = 2 = 0; SUBFWB tion = 2 = 0; SUBFWB tion = 2 = 1; SUBFWB tion = 2 = 1; SUBFWB tion = 2 = 1; SUBFWB tion = 2 = 0; SUBFWB	REG, 1, 0 result is negativ REG, 0, 0	/e e
Example 1: Before Instruction REG W C After Instruction REG W C Example 2: Before Instruction REG W C After Instruction REG W C Z N Example 3: Before Instruction REG W C After Instruction REG N After Instruction REG N After Instruction REG N After Instruction REG N After Instruction REG N After Instruction REG N After Instruction REG W C After Instruction REG W C After Instruction REG W C	SUBFWB tion = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 1; SUBFWB tion = 2 = 5 = 1 on = 2 = 0; SUBFWB tion = 0; SUBFWB tion = 0; SUBFWB tion = 1; SUBFWB tion = 0; SUBFWB tion = 0; SUBFWB tion = 0; SUBFWB tion = 0; SUBFWB tion = 0; SUBFWB tion = 0; SUBFWB tion = 0; SUBFWB tion = 0; SUBFWB	REG, 1, 0 result is negativ REG, 0, 0	/e e
Example 1: Before Instruct REG W C After Instruction REG W C Z N Example 2: Before Instruction REG W C After Instruction REG W C Z N Example 3: Before Instruction REG W C After Instruction REG W C Z N Example 3: Before Instruction REG W C Z N Example 3: REG W C Z N Example 3: REG W C Z N Example 3: REG W C Z N Example 3: REG W C Z N Example 3: REG W C Z N Example 3: REG W C Z N Example 3: REG W C Z N Example 3: REG W C Z N Example 3: N Example 3: Example 3: N Example 3: Example 3: Example 3: Exam	SUBFWB tion = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 1; SUBFWB tion = 2 = 3 = 1 = 0 = 0; SUBFWB tion = 2 = 3 = 1 on = 2 = 0; SUBFWB tion = 2 = 0; SUBFWB tion = 2 = 0; SUBFWB tion = 0; SUBFWB tion = 0; SUBFWB	REG, 1, 0 result is negativ REG, 0, 0	/e e
Example 1: Before Instruct REG W C After Instruction REG W C Z N Example 2: Before Instruction REG W C After Instruction REG W C Z N Example 3: Before Instruction REG W C After Instruction REG W C C Z N N Example 2: C Z N N C C Z N C C C Z N C C C Z N C C C Z N C C C C	SUBFWB tion = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 0 = 1; SUBFWB tion = 2 = 3 = 1 on = 2 = 3 = 1 on = 2 = 0; SUBFWB tion = 2 = 0; SUBFWB tion = 1 = 2 = 0; SUBFWB tion = 2 = 1 = 0; SUBFWB tion = 2 = 1 = 0; SUBFWB tion = 2 = 1 = 0; SUBFWB tion = 2 = 1; SUBFWB tion = 0; SUBFWB tion = 1 = 0; SUBFWB tion	REG, 1, 0 result is negativ REG, 0, 0	/e e

29.2.5 SPECIAL CONSIDERATIONS WITH MICROCHIP MPLAB[®] IDE TOOLS

The latest versions of Microchip's software tools have been designed to fully support the extended instruction set for the PIC18F66K80 family. This includes the MPLAB C18 C Compiler, MPASM assembly language and MPLAB Integrated Development Environment (IDE).

When selecting a target device for software development, MPLAB IDE will automatically set default Configuration bits for that device. The default setting for the XINST Configuration bit is '0', disabling the extended instruction set and Indexed Literal Offset Addressing. For proper execution of applications developed to take advantage of the extended instruction set, XINST must be set during programming.

To develop software for the extended instruction set, the user must enable support for the instructions and the Indexed Addressing mode in their language tool(s). Depending on the environment being used, this may be done in several ways:

- A menu option or dialog box within the environment that allows the user to configure the language tool and its settings for the project
- · A command line option
- · A directive in the source code

These options vary between different compilers, assemblers and development environments. Users are encouraged to review the documentation accompanying their development systems for the appropriate information.