

Welcome to E-XFL.COM

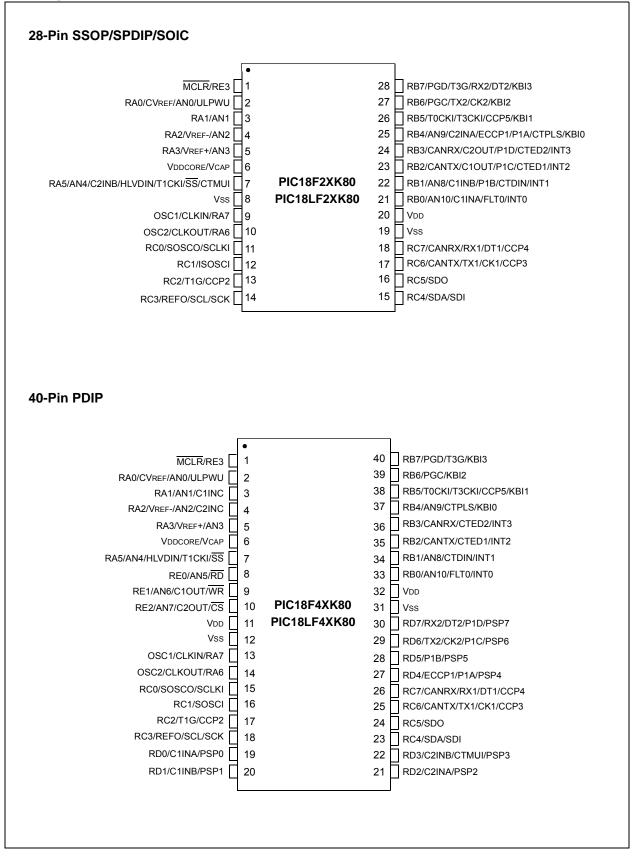
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI


Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	ECANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f26k80-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC18F66K80 FAMILY

Pin Diagrams (Continued)

TABLE 4-4:EXIT DELAY ON WAKE-UP BY RESET FROM SLEEP MODE OR ANY IDLE MODE
(BY CLOCK SOURCES)

Power-Managed Mode	Clock Source ⁽⁵⁾	Exit Delay	Clock Ready Status Bits
	LP, XT, HS		
PRI_IDLE mode	HSPLL		OSTS
	EC, RC	TCSD ⁽¹⁾	
	HF-INTOSC ⁽²⁾	ICSD**	HFIOFS
	MF-INTOSC ⁽²⁾		
	LF-INTOSC		None
SEC_IDLE mode	SOSC	TCSD ⁽¹⁾	SOSCRUN
	HF-INTOSC ⁽²⁾		HFIOFS
RC_IDLE mode	MF-INTOSC ⁽²⁾	Tcsd ⁽¹⁾	MFIOFS
	LF-INTOSC		None
	LP, XT, HS	Tost ⁽³⁾	
	HSPLL	Tost + t _{rc} (3)	OSTS
Sleep mode	EC, RC	TCSD ⁽¹⁾	
Sleep mode	HF-INTOSC ⁽²⁾		HFIOFS
	MF-INTOSC ⁽²⁾	TIOBST ⁽⁴⁾	MFIOFS
	LF-INTOSC		None

Note 1: TCSD (Parameter 38, Table 31-11) is a required delay when waking from Sleep and all Idle modes, and runs concurrently with any other required delays (see **Section 4.4 "Idle Modes"**).

2: Includes postscaler derived frequencies. On Reset, INTOSC defaults to HF-INTOSC at 8 MHz.

3: TOST is the Oscillator Start-up Timer (Parameter 32, Table 31-11). TRC is the PLL Lock-out Timer (Parameter F12, Table 31-7); it is also designated as TPLL.

4: Execution continues during TIOBST (Parameter 39, Table 31-11), the INTOSC stabilization period.

5: The clock source is dependent upon the settings of the SCSx (OSCCON<1:0>), IRCFx (OSCCON<6:4>) and FOSCx (CONFIG1H<3:0>) bits.

PIC18F66K80 FAMILY

TABLE 6-2: PIC18F66K80 FAMILY REGISTER FILE SUMMARY (CONTINUED)

Addr.	E 6-2: P	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR on page
F09h	TXB2D3	TXB2D37	TXB2D36	TXB2D35	TXB2D34	TXB2D33	TXB2D32	TXB2D31	TXB2D30	95
F08h	TXB2D2	TXB2D27	TXB2D26	TXB2D25	TXB2D24	TXB2D23	TXB2D22	TXB2D21	TXB2D20	95
F07h	TXB2D2	TXB2D27	TXB2D20	TXB2D25	TXB2D24	TXB2D23	TXB2D22 TXB2D12	TXB2D21 TXB2D11	TXB2D10	95
F06h	TXB2D1 TXB2D0	TXB2D17 TXB2D07	TXB2D10	TXB2D15	TXB2D14	TXB2D13	TXB2D12	TXB2D11 TXB2D01	TXB2D10	95
F05h	TXB2D0	TXB2D07	TXRTR		TAB2D04	DLC3	DLC2	DLC1	DLC0	95
F04h	TXB2DLC	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	95
F0411 F03h	TXB2EIDL TXB2EIDH	EID7 EID15	EID0 EID14	EID3	EID4 EID12	EID3 EID11	EID2 EID10	EID1 EID9	EID0 EID8	95 95
F02h	TXB2EIDH	SID2	SID14	SIDO	SRR	EXID	EIDIU	EID9 EID17	EID8 EID16	95 95
F0211	TXB2SIDL TXB2SIDH	SID2 SID10	SID1	SID0	SID7	SID6	SID5	SID4	SID3	95 95
	1	TXBIF					3105	TXPRI1		
F00h	TXB2CON		TXABT	TXLARB	TXERR	TXREQ			TXPRI0	95
EFFh	RXM1EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	95
EFEh	RXM1EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	95
EFDh	RXM1SIDL	SID2	SID1	SID0	-	EXIDEN	-	EID17	EID16	95
EFCh	RXM1SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	95
EFBh	RXM0EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	95
EFAh	RXM0EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	95
EF9h	RXM0SIDL	SID2	SID1	SID0	—	EXIDEN	—	EID17	EID16	95
EF8h	RXM0SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	95
EF7h	RXF5EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	95
EF6h	RXF5EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	95
EF5h	RXF5SIDL	SID2	SID1	SID0	—	EXIDEN	—	EID17	EID16	95
EF4h	RXF5SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	95
EF3h	RXF4EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	95
EF2h	RXF4EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	95
EF1h	RXF4SIDL	SID2	SID1	SID0	—	EXIDEN	—	EID17	EID16	95
EF0h	RXF4SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	95
EEFh	RXF3EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	95
EEEh	RXF3EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	95
EEDh	RXF3SIDL	SID2	SID1	SID0	—	EXIDEN	—	EID17	EID16	95
EECh	RXF3SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	95
EEBh	RXF2EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	95
EEAh	RXF2EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	95
EE9h	RXF2SIDL	SID2	SID1	SID0	_	EXIDEN	_	EID17	EID16	95
EE8h	RXF2SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	95
EE7h	RXF1EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	95
EE6h	RXF1EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	95
EE5h	RXF1SIDL	SID2	SID1	SID0	_	EXIDEN	_	EID17	EID16	95
EE4h	RXF1SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	95
EE3h	RXF0EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	95
EE2h	RXF0EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	95
EE1h	RXF0SIDL	SID2	SID1	SID0	_	EXIDEN	_	EID17	EID16	95
EE0h	RXF0SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	95
EDFh	CANCON RO4	CANCON_R		5.20	5.51	5.20	5.20	5.5 1	0.20	95
EDEh	CANSTAT RO4	CANSTAT R								95
EDDh	B5D7	B5D77	B5D76	B5D75	B5D74	B5D73	B5D72	B5D71	B5D70	95 95
EDCh	B5D6	B5D67	B5D66	B5D65	B5D64	B5D63	B5D62	B5D61	B5D60	95 95
EDBh	B5D6 B5D5									95 95
	1	B5D57	B5D56	B5D55	B5D54	B5D53	B5D52	B5D51	B5D50	
EDAh	B5D4	B5D47	B5D46	B5D45	B5D44	B5D43	B5D42	B5D41	B5D40	95
ED9h	B5D3	B5D37	B5D36	B5D35	B5D34	B5D33	B5D32	B5D31	B5D30	95
ED8h	B5D2	B5D27	B5D26	B5D25	B5D24	B5D23	B5D22	B5D21	B5D20	95
ED7h	B5D1	B5D17	B5D16	B5D15	B5D14	B5D13	B5D12	B5D11	B5D10	95

8.0 DATA EEPROM MEMORY

The data EEPROM is a nonvolatile memory array, separate from the data RAM and program memory, that is used for long-term storage of program data. It is not directly mapped in either the register file or program memory space, but is indirectly addressed through the Special Function Registers (SFRs). The EEPROM is readable and writable during normal operation over the entire VDD range.

Five SFRs are used to read and write to the data EEPROM, as well as the program memory. They are:

- · EECON1
- EECON2
- EEDATA
- EEADR
- EEADRH

The data EEPROM allows byte read and write. When interfacing to the data memory block, EEDATA holds the 8-bit data for read/write and the EEADRH:EEADR register pair holds the address of the EEPROM location being accessed.

The EEPROM data memory is rated for high erase/write cycle endurance. A byte write automatically erases the location and writes the new data (erase-before-write). The write time is controlled by an on-chip timer; it will vary with voltage and temperature, as well as from chip-to-chip. Please refer to Parameter D122 (Table 31-1 in **Section 31.0** "**Electrical Characteristics**") for exact limits.

8.1 EEADR and EEADRH Registers

The EEADRH:EEADR register pair is used to address the data EEPROM for read and write operations. EEADRH holds the two MSbs of the address; the upper 6 bits are ignored. The 10-bit range of the pair can address a memory range of 1024 bytes (00h to 3FFh).

8.2 EECON1 and EECON2 Registers

Access to the data EEPROM is controlled by two registers: EECON1 and EECON2. These are the same registers which control access to the program memory and are used in a similar manner for the data EEPROM.

The EECON1 register (Register 8-1) is the control register for data and program memory access. Control bit, EEPGD, determines if the access will be to program memory or data EEPROM memory. When clear, operations will access the data EEPROM memory. When set, program memory is accessed.

Control bit, CFGS, determines if the access will be to the Configuration registers or to program memory/data EEPROM memory. When set, subsequent operations access Configuration registers. When CFGS is clear, the EEPGD bit selects either program Flash or data EEPROM memory.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set in hardware when the WREN bit is set and cleared, when the internal programming timer expires and the write operation is complete.

Note:	During normal operation, the WRERR is
	read as '1'. This can indicate that a write
	operation was prematurely terminated by
	a Reset, or a write operation was
	attempted improperly.

The WR control bit initiates write operations. The bit cannot be cleared, only set, in software; it is cleared in hardware at the completion of the write operation.

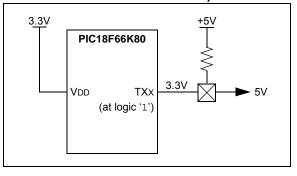
Note:	The EEIF interrupt flag bit (PIR4<6>) is
	set when the write is complete. It must be
	cleared in software.

Control bits, RD and WR, start read and erase/write operations, respectively. These bits are set by firmware and cleared by hardware at the completion of the operation.

The RD bit cannot be set when accessing program memory (EEPGD = 1). Program memory is read using table read instructions. See **Section 7.1 "Table Reads and Table Writes"** regarding table reads.

The EECON2 register is not a physical register. It is used exclusively in the memory write and erase sequences. Reading EECON2 will read all '0's.

11.1.3 OPEN-DRAIN OUTPUTS


The output pins for several peripherals are also equipped with a configurable, open-drain output option. This allows the peripherals to communicate with external digital logic, operating at a higher voltage level, without the use of level translators.

The open-drain option is implemented on port pins specifically associated with the data and clock outputs of the USARTs, the MSSP module (in SPI mode) and the CCP modules. This option is selectively enabled by setting the open-drain control bits in the ODCON register.

When the open-drain option is required, the output pin must also be tied through an external pull-up resistor provided by the user to a higher voltage level, up to 5V (Figure 11-2). When a digital logic high signal is output, it is pulled up to the higher voltage level.

FIGURE 11-2:

USING THE OPEN-DRAIN OUTPUT (USARTx SHOWN AS EXAMPLE)

REGISTER 11-3: ODCON: PERIPHERAL OPEN-DRAIN CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSPOD	CCP5OD	CCP4OD	CCP3OD	CCP2OD	CCP10D	U2OD	U10D
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	SSPOD: SPI Open-Drain Output Enable bit
	 1 = Open-drain capability is enabled 0 = Open-drain capability is disabled
bit 6	CCP5OD: CCP5 Open-Drain Output Enable bit
	 1 = Open-drain capability is enabled 0 = Open-drain capability is disabled
bit 5	CCP4OD: CCP4 Open-Drain Output Enable bit
	1 = Open-drain capability is enabled
	0 = Open-drain capability is disabled
bit 4	CCP3OD: CCP3 Open-Drain Output Enable bit
	1 = Open-drain capability is enabled
	0 = Open-drain capability is disabled
bit 3	CCP2OD: CCP2 Open-Drain Output Enable bit
	1 = Open-drain capability is enabled
	0 = Open-drain capability is disabled
bit 2	CCP10D: CCP1 Open-Drain Output Enable bit
	1 = Open-drain capability is enabled
	0 = Open-drain capability is disabled
bit 1	U20D: UART2 Open-Drain Output Enable bit
	1 = Open-drain capability is enabled
	0 = Open-drain capability is disabled
bit 0	U10D: UART1 Open-Drain Output Enable bit
	1 = Open-drain capability is enabled
	0 = Open-drain capability is disabled

16.6 Timer3 Interrupt

The TMR3 register pair (TMR3H:TMR3L) increments from 0000h to FFFFh and overflows to 0000h. The Timer3 interrupt, if enabled, is generated on overflow and is latched in the interrupt flag bit, TMR3IF. Table 16-3 gives each module's flag bit.

This interrupt can be enabled or disabled by setting or clearing the TMR3IE bit. Table 16-3 displays each module's enable bit.

16.7 Resetting Timer3 Using the ECCP Special Event Trigger

If the ECCP modules are configured to use Timer3 and to generate a Special Event Trigger in Compare mode (CCP3M<3:0> = 1011), this signal will reset Timer3. The trigger from ECCP will also start an A/D conversion if the A/D module is enabled (For more information, see **Section 20.3.4 "Special Event Trigger"**.) The module must be configured as either a timer or synchronous counter to take advantage of this feature. When used this way, the CCPR3H:CCPR3L register pair effectively becomes a Period register for Timer3.

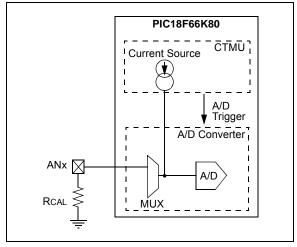
If Timer3 is running in Asynchronous Counter mode, the Reset operation may not work.

In the event that a write to Timer3 coincides with a Special Event Trigger from an ECCP module, the write will take precedence.

- **Note:** The Special Event Triggers from the ECCPx module will only clear the TMR3 register's content, but not set the TMR3IF interrupt flag bit (PIR2<1>).
- Note: The CCP and ECCP modules use Timers, 1 through 4, for some modes. The assignment of a particular timer to a CCP/ECCP module is determined by the Timer to CCP enable bits in the CCPTMRS register. For more details, see Register 20-2 and Register 19-2.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
PIR5	IRXIF	WAKIF	ERRIF	TXB2IF	TXB1IF	TXB0IF	RXB1IF	RXB0IF
PIE5	IRXIE	WAKIE	ERRIE	TX2BIE	TXB1IE	TXB0IE	RXB1IE	RXB0IE
PIR2	OSCFIF				BCLIF	HLVDIF	TMR3IF	TMR3GIF
PIE2	OSCFIE	_	_	_	BCLIE	HLVDIE	TMR3IE	TMR3GIE
TMR3H	Timer3 Regi	ster High Byte	9					
TMR3L	Timer3 Regi	ster Low Byte	•					
T3GCON	TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/ T3DONE	T3GVAL	T3GSS1	T3GSS0
T3CON	TMR3CS1	TMR3CS0	T3CKPS1	T3CKPS0	SOSCEN	T3SYNC	RD16	TMR3ON
OSCCON2	—	SOSCRUN	_	SOSCDRV	SOSCGO	_	MFIOFS	MFIOSEL
PMD1	PSPMD	CTMUMD	ADCMD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	TMR0MD

TABLE 16-3: REGISTERS ASSOCIATED WITH TIMER3 AS A TIMER/COUNTER


Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer3 module.

The CTMU current source may be trimmed with the trim bits in CTMUICON, using an iterative process to get the exact current desired. Alternatively, the nominal value without adjustment may be used. That value may be stored by software, for use in all subsequent capacitive or time measurements.

To calculate the optimal value for RCAL, the nominal current must be chosen.

For example, if the A/D Converter reference voltage is 3.3V, use 70% of full scale (or 2.31V) as the desired approximate voltage to be read by the A/D Converter. If the range of the CTMU current source is selected to be 0.55 μ A, the resistor value needed is calculated as RCAL = 2.31V/0.55 μ A, for a value of 4.2 MΩ. Similarly, if the current source is chosen to be 5.5 μ A, RCAL would be 420,000Ω, and 42,000Ω if the current source is set to 55 μ A.

FIGURE 18-2: CTMU CURRENT SOURCE CALIBRATION CIRCUIT

A value of 70% of full-scale voltage is chosen to make sure that the A/D Converter is in a range that is well above the noise floor. If an exact current is chosen to incorporate the trimming bits from CTMUICON, the resistor value of RCAL may need to be adjusted accordingly. RCAL also may be adjusted to allow for available resistor values. RCAL should be of the highest precision available, in light of the precision needed for the circuit that the CTMU will be measuring. A recommended minimum would be 0.1% tolerance.

The following examples show a typical method for performing a CTMU current calibration.

• Example 18-1 demonstrates how to initialize the A/D Converter and the CTMU.

This routine is typical for applications using both modules.

• Example 18-2 demonstrates one method for the actual calibration routine.

This method manually triggers the A/D Converter to demonstrate the entire step-wise process. It is also possible to automatically trigger the conversion by setting the CTMU's CTTRIG bit (CTMUCONH<0>).

19.0 CAPTURE/COMPARE/PWM (CCP) MODULES

PIC18F66K80 family devices have four CCP (Capture/Compare/PWM) modules, designated CCP2 through CCP5. All the modules implement standard Capture, Compare and Pulse-Width Modulation (PWM) modes.

Note: Throughout this section, generic references are used for register and bit names that are the same, except for an 'x' variable that indicates the item's association with the specific CCP module. For example, the control register is named CCPxCON and refers to CCP2CON through CCP5CON.

Each CCP module contains a 16-bit register that can operate as a 16-bit Capture register, a 16-bit Compare register or a PWM Master/Slave Duty Cycle register. For the sake of clarity, all CCP module operation in the following sections is described with respect to CCP2, but is equally applicable to CCP3 through CCP5.

REGISTER 19-1: CCPxCON: CCPx CONTROL REGISTER (CCP2-CCP5 MODULES)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	DCxB1	DCxB0	CCPxM3 ⁽¹⁾	CCPxM2 ⁽¹⁾	CCPxM1 ⁽¹⁾	CCPxM0 ⁽¹⁾
bit 7							bit 0

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as '0'
bit 5-4	DCxB<1:0>: PWM Duty Cycle bit 1 and bit 0 for CCPx Module bits
	Capture mode:
	Unused.
	Compare mode:
	Unused.
	PWM mode:
	These bits are the two Least Significant bits (bit 1 and bit 0) of the 10-bit PWM duty cycle. The eight Most Significant bits (DCx<9:2>) of the duty cycle are found in CCPRxL.
bit 3-0	CCPxM<3:0>: CCPx Module Mode Select bits ⁽¹⁾
	0000 = Capture/Compare/PWM disabled (resets CCPx module) 0001 = Reserved
	0001 – Reserved 0010 = Compare mode: toggle output on match (CCPxIF bit is set)
	0011 = Reserved
	0100 = Capture mode: every falling edge or CAN message received (time-stamp) ⁽²⁾
	0101 = Capture mode: every rising edge or CAN message received (time-stamp) ⁽²⁾
	0110 = Capture mode: every 4th rising edge or on every fourth CAN message received (time-stamp) $\binom{2}{2}$
	0111 = Capture mode: every 16th rising edge or on every 16th CAN message received (time-stamp) ⁽²⁾
	1000 = Compare mode: initialize CCPx pin low; on compare match, force CCPx pin high (CCPxIF bit is set)
	1001 = Compare mode: initialize CCPx pin high; on compare match, force CCPx pin low (CCPxIF bit is set) 1010 = Compare mode: generate software interrupt on compare match (CCPxIF bit is set, CCPx pin
	reflects I/O state)
	1011 = Compare mode: Special Event Trigger; reset timer on CCPx match (CCPxIF bit is set)
	11xx = PWM mode
Note 1:	CCPxM<3:0> = 1011 will only reset the timer and not start an A/D conversion on CCPx match.
	Available only on CCP2. Selected by the CANCAP (CIOCON/A) bit Overrides the CCP2 input pin

2: Available only on CCP2. Selected by the CANCAP (CIOCON<4>) bit. Overrides the CCP2 input pin source.

REGISTER 21-2: SSPCON1: MSSP CONTROL REGISTER 1 (SPI MODE)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
WCOL	SSPOV ⁽¹⁾	SSPEN ⁽²⁾	CKP	SSPM3 ⁽³⁾	SSPM2 ⁽³⁾	SSPM1 ⁽³⁾	SSPM0 ⁽³⁾					
bit 7					•	• •	bit (
Legend:												
R = Reada		W = Writable b	bit	-	nented bit, rea							
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown					
bit 7	WCOL: Write	Collision Detec	t bit									
	software)		written while	it is still transm	itting the previ	ious word (mus	t be cleared ir					
		0 = No collision										
bit 6	SSPOV: Receive Overflow Indicator bit ⁽¹⁾											
		SPI Slave mode: 1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of over-										
		flow, the data in SSPSR is lost. Overflow can only occur in Slave mode. The user must read the										
				ta, to avoid settir								
	0 = No overfl	ow	c		•							
bit 5	SSPEN: Master Synchronous Serial Port Enable bit ⁽²⁾											
				SCK, SDO, SD these pins as I		erial port pins						
bit 4	CKP: Clock F	CKP: Clock Polarity Select bit										
	1 = Idle state for clock is a high level											
	0 = Idle state	for clock is a lov	w level									
bit 3-0	SSPM<3:0>:	Master Synchro	nous Serial I	Port Mode Selec	ct bits ⁽³⁾							
		1010 = SPI Master mode: clock = Fosc/8										
				<u>SS</u> pin control		an be used as l	I/O pin					
		0100 = SPI Slave mode: clock = SCK pin; SS pin control enabled 0011 = SPI Master mode: clock = TMR2 output/2										
		laster mode: clo laster mode: clo		•								
		laster mode: clo										
		laster mode: clo										
	n Master mode, t writing to the SSF		is not set sind	ce each new rec	eption (and tra	ansmission) is i	nitiated by					
	When enabled th	0	n nronerly c	onfigured as inn	ute or outpute							

- 2: When enabled, these pins must be properly configured as inputs or outputs.
- **3:** Bit combinations not specifically listed here are either reserved or implemented in I²C mode only.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
PIR1	PSPIF	ADIF	RC1IF	TX1IF	SSPIF	TMR1GIF	TMR2IF	TMR1IF
PIE1	PSPIE	ADIE	RC1IE	TX1IE	SSPIE	TMR1GIE	TMR2IE	TMR1IE
IPR1	PSPIP	ADIP	RC1IP	TX1IP	SSPIP	TMR1GIP	TMR2IP	TMR1IP
ADRESH	A/D Result	Register High	n Byte					
ADRESL	A/D Result	Register Low	Byte					
ADCON0	—	CHS4	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON
ADCON1	TRIGSEL1	TRIGSEL0	VCFG1	VCFG0	VNCFG	CHSN2	CHSN1	CHSN0
ADCON2	ADFM		ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0
ANCON0	ANSEL7	ANSEL6	ANSEL5	ANSEL4	ANSEL3	ANSEL2	ANSEL1	ANSEL0
ANCON1	—	ANSEL14	ANSEL13	ANSEL12	ANSEL11	ANSEL10	ANSEL9	ANSEL8
PORTA	RA7 ⁽¹⁾	RA6 ⁽¹⁾	RA5	_	RA3	RA2	RA1	RA0
TRISA	TRISA7 ⁽¹⁾	TRISA6 ⁽¹⁾	TRISA5	_	TRISA3	TRISA2	TRISA1	TRISA0
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0
PORTE	RE7	RE6	RE5	RE4	RE3	_	RE1	RE0
TRISE	TRISE7	TRISE6	TRISE5	TRISE4	_	TRISE2	TRISE1	TRISE0
PMD1	PSPMD	CTMUMD	ADCMD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	TMR0MD

TABLE 23-2:	REGISTERS ASSOCIATED WITH THE A/D MODULE
-------------	---

Legend: — = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: These bits are available only in certain oscillator modes when the FOSC2 Configuration bit = 0. If that Configuration bit is cleared, this signal is not implemented.

25.0 COMPARATOR VOLTAGE REFERENCE MODULE

The comparator voltage reference is a 32-tap resistor ladder network that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it may also be used independently of them.

A block diagram of the module is shown in Figure 25-1. The resistor ladder is segmented to provide a range of CVREF values and has a power-down function to conserve power when the reference is not being used. The module's supply reference can be provided from either device VDD/VSS or an external voltage reference.

25.1 Configuring the Comparator Voltage Reference

The comparator voltage reference module is controlled through the CVRCON register (Register 25-1). The comparator voltage reference provides a range of output voltage with 32 levels.

The CVR<4:0> selection bits (CVRCON<4:0>) offer a range of output voltages. Equation 25-1 shows the how the comparator voltage reference is computed.

EQUATION 25-1:

$$\frac{\text{If CVRSS} = 1:}{\text{CVREF}} = \left(\text{VREF} + \frac{\text{CVR} < 4:0>}{32}\right) \cdot (\text{VREF} + - \text{VREF})$$

$$\frac{\text{If CVRSS} = 0:}{\text{CVREF}} = \left(\text{AVSS} + \frac{\text{CVR} < 4:0>}{32}\right) \cdot (\text{AVDD} - \text{AVSS})$$

The comparator reference supply voltage can come from either VDD and Vss, or the external VREF+ and VREF- that are multiplexed with RA3 and RA2. The voltage source is selected by the CVRSS bit (CVRCON<5>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output (see Table 31-2 in **Section 31.0** "**Electrical Characteristics**").

REGISTER 25-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CVREN	CVROE	CVRSS	CVR4	CVR3	CVR2	CVR1	CVR0			
bit 7	-						bit (
Legend:										
R = Readable	e bit	W = Writable b	pit	U = Unimplem	nented bit, rea	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 7		nparator Voltage		nable bit						
	1 = CVREF circuit powered on									
	0 = CVREF circuit powered down									
bit 6	CVROE: Cor	mparator VREF C	output Enable	bit						
	1 = CVREF voltage level is output on CVREF pin									
	0 = CVREF voltage level is disconnected from CVREF pin									
bit 5	CVRSS: Con	nparator VREF S	ource Selection	on bit						
	1 = Comparator reference source, CVRSRC = VREF+ – VREF-									
	0 = Comparator reference source, CVRSRC = AVDD – AVSS									
bit 4-0 CVR<4:0>: Comparator VREF Value Selection $0 \le CVR<4:0> \le 31$ bits										
	When CVRSS = 1:									
	CVREF = (VRI	EF-) + (CVR<4:0	>/32) • (VREF	+ – Vref-)						
	When CVRS		(00) (1) (
	CVREF = (AV	ss) + (CVR<4:0	>/32) • (AVDD	– AVSS)						

27.2.2 DEDICATED CAN TRANSMIT BUFFER REGISTERS

This section describes the dedicated CAN Transmit Buffer registers and their associated control registers.

REGISTER 27-5: TXBnCON: TRANSMIT BUFFER n CONTROL REGISTERS $[0 \le n \le 2]$

Mode 0	U-0	R-0	R-0	R-0	R/W-0	U-0	R/W-0	R/W-0
	TXBIF	TXABT ⁽¹⁾	TXLARB ⁽¹⁾	TXERR ⁽¹⁾	TXREQ ⁽²⁾		TXPRI1 ⁽³⁾	TXPRI0 ⁽³⁾

Mode 1,2	R/C-0	R-0	R-0	R-0	R/W-0	U-0	R/W-0	R/W-0
wode 1,2	TXBIF	TXABT ⁽¹⁾	TXLARB ⁽¹⁾	TXERR ⁽¹⁾	TXREQ ⁽²⁾	_	TXPRI1 ⁽³⁾	TXPRI0 ⁽³⁾
	bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

b	oit 7	TXBIF: Transmit Buffer Interrupt Flag bit 1 = Transmit buffer has completed transmission of a message and may be reloaded 0 = Transmit buffer has not completed transmission of a message
b	oit 6	TXABT: Transmission Aborted Status bit ⁽¹⁾
		1 = Message was aborted 0 = Message was not aborted
b	oit 5	TXLARB: Transmission Lost Arbitration Status bit ⁽¹⁾
		 1 = Message lost arbitration while being sent 0 = Message did not lose arbitration while being sent
b	oit 4	TXERR: Transmission Error Detected Status bit ⁽¹⁾
		 1 = A bus error occurred while the message was being sent 0 = A bus error did not occur while the message was being sent
b	it 3	TXREQ: Transmit Request Status bit ⁽²⁾
		 1 = Requests sending a message; clears the TXABT, TXLARB and TXERR bits 0 = Automatically cleared when the message is successfully sent
b	it 2	Unimplemented: Read as '0'
b	it 1-0	TXPRI<1:0>: Transmit Priority bits ⁽³⁾
		<pre>11 = Priority Level 3 (highest priority) 10 = Priority Level 2 01 = Priority Level 1 00 = Priority Level 0 (lowest priority)</pre>
Ν	lote 1:	This bit is automatically cleared when TXREQ is set.
	2:	While TXREQ is set, Transmit Buffer registers remain read-only. Clearing this bit in software while the bit is

- set will request a message abort.
- **3:** These bits define the order in which transmit buffers will be transferred. They do not alter the CAN message identifier.

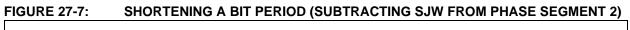
PIC18F66K80 FAMILY

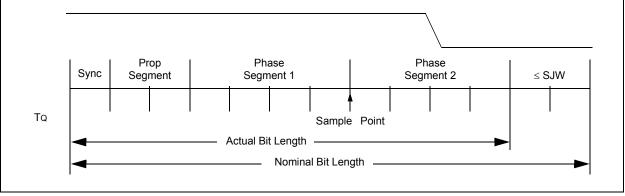
$\label{eq:register27-26:BnSIDL: TX/RX BUFFER `n' STANDARD IDENTIFIER REGISTERS, \\ LOW BYTE IN RECEIVE MODE [0 \le n \le 5, TXnEN (BSEL0<n>) = 0]^{(1)}$

R-x	R-x	R-x	R-x	R-x	U-0	R-x	R-x
SID2	SID1	SID0	SRR	EXIDE	_	EID17	EID16
bit 7			-				bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 4	SRR: Substitu	ntifier bits, EID [.] ute Remote Tra ays '1' when E2	insmission Re	equest bit	of RXRTRRO (BnCON<5>) w	hen EXID = 0.
bit 3 EXIDE: Extended Identifier Enable bit 1 = Received message is an extended identifier frame (SID<10:0> are EID<28:18>) 0 = Received message is a standard identifier frame							
bit 2	Unimplemented: Read as '0'						
bit 1-0	EID<17:16>:	Extended Iden	tifier bits				
Note 1: The	ese registers are	e available in M	lode 1 and 2	only.			

R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
SID2	SID1	SID0	—	EXIDE		EID17	EID16
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


bit 7-5	SID<2:0>: Standard Identifier bits (if EXIDE (TXBnSIDL<3>) = 0)
	Extended Identifier bits, EID<20:18> (if EXIDE = 1).
bit 4	Unimplemented: Read as '0'
bit 3	EXIDE: Extended Identifier Enable bit
	 1 = Message will transmit extended ID, SID<10:0> bits become EID<28:18> 0 = Received will transmit standard ID, EID<17:0> are ignored
bit 2	Unimplemented: Read as '0'
bit 1-0	EID<17:16>: Extended Identifier bits


Note 1: These registers are available in Mode 1 and 2 only.

Mode 0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
Mode U	IRXIP	WAKIP	ERRIP	TXB2IP	TXB1IP ⁽¹⁾	TXB0IP ⁽¹⁾	RXB1IP	RXB0IP		
	DAM 4		D 44/ 4							
Mode 1,2	R/W-1	R/W-1 WAKIP	R/W-1 ERRIP	R/W-1 TXBnIP	R/W-1 TXB1IP ⁽¹⁾	R/W-1 TXB0IP ⁽¹⁾	R/W-1 RXBnIP	R/W-1 FIFOWMIP		
	bit 7	WANIF		IADIIIF	IND IIF (I ADUIF (RADIIIF	bit (
Legend:										
R = Readal	ole bit		W = Writabl	e bit	U = Unimple	emented bit, r	ead as '0'			
-n = Value a	at POR		'1' = Bit is s	et	'0' = Bit is cl	eared	x = Bit is un	known		
bit 7	IRXIP: CAN 1 = High pri 0 = Low prio		essage Rece	ived Interrup	ot Priority bit					
bit 6	WAKIP: CA 1 = High pri 0 = Low price		y Wake-up In	terrupt Prior	ity bit					
bit 5	ERRIP: CAI 1 = High pri 0 = Low pric		or Interrupt P	riority bit						
bit 4	When CAN is in Mode 0: TXB2IP: CAN Transmit Buffer 2 Interrupt Priority bit 1 = High priority 0 = Low priority									
				ot Priority bit						
bit 3	TXB1IP: CA 1 = High pri 0 = Low price		Buffer 1 Interr	upt Priority t	_{Dit} (1)					
bit 2	TXB0IP: CA	AN Transmit E ority	Buffer 0 Interr	upt Priority t	bit ⁽¹⁾					
bit 1	RXB1IP: CA 1 = High prid 0 = Low prid	<u>is in Mode 0:</u> AN Receive B ority		upt Priority b	it					
		AN Receive B ority		ots Priority bi	t					
bit 0	RXB0IP: CA 1 = High prid 0 = Low prid When CAN			upt Priority b	it					
			nark Interrup	t Priority bit						

REGISTER 27-58: IPR5: PERIPHERAL INTERRUPT PRIORITY REGISTER 5

Note 1: In CAN Mode 1 and 2, these bits are forced to '0'.

27.11 Programming Time Segments

Some requirements for programming of the time segments:

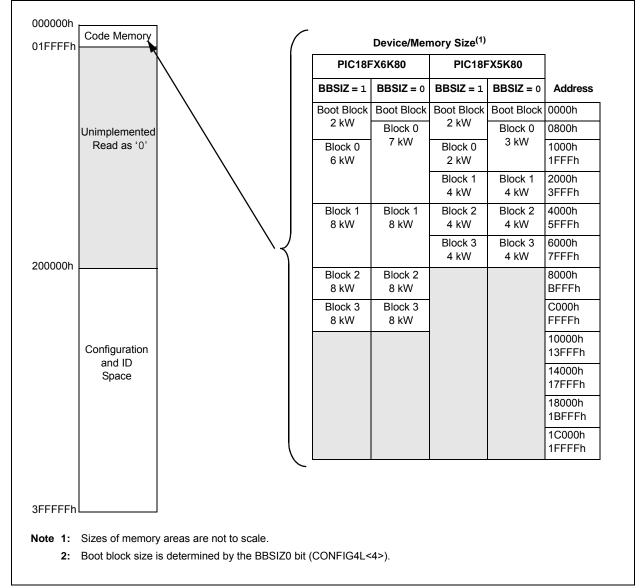
- Prop_Seg + Phase_Seg $1 \ge$ Phase_Seg 2
- Phase_Seg $2 \ge$ Sync Jump Width.

For example, assume that a 125 kHz CAN baud rate is desired, using 20 MHz for Fosc. With a Tosc of 50 ns, a baud rate prescaler value of 04h gives a Tq of 500 ns. To obtain a Nominal Bit Rate of 125 kHz, the Nominal Bit Time must be 8 μ s or 16 Tq.

Using 1 Tq for the Sync_Seg, 2 Tq for the Prop_Seg and 7 Tq for Phase Segment 1 would place the sample point at 10 Tq after the transition. This leaves 6 Tq for Phase Segment 2. By the rules above, the Sync Jump Width could be the maximum of 4 To. However, normally a large SJW is only necessary when the clock generation of the different nodes is inaccurate or unstable, such as using ceramic resonators. Typically, an SJW of 1 is enough.

27.12 Oscillator Tolerance

As a rule of thumb, the bit timing requirements allow ceramic resonators to be used in applications with transmission rates of up to 125 Kbit/sec. For the full bus speed range of the CAN protocol, a quartz oscillator is required. Refer to ISO11898-1 for oscillator tolerance requirements.


28.6 Program Verification and Code Protection

The user program memory is divided into four blocks. One of these is a boot block of 1 or 2 Kbytes. The remainder of the memory is divided into blocks on binary boundaries. Each of the blocks has three code protection bits associated with them. They are:

- Code-Protect bit (CPx)
- Write-Protect bit (WRTx)
- External Block Table Read bit (EBTRx)

Figure 28-6 shows the program memory organization for 48, 64, 96 and 128 Kbyte devices and the specific code protection bit associated with each block. The actual locations of the bits are summarized in Table 28-4.

29.2.2 EXTENDED INSTRUCTION SET

ADD	FSR	Add Liter	Add Literal to FSR						
Synta	ax:	ADDFSR	ADDFSR f, k						
Oper	ands:	$0 \le k \le 63$							
		f ∈ [0, 1,	2]						
Oper	ation:	FSR(f) + I	$s \rightarrow FSR($	f)					
Statu	s Affected:	None	None						
Enco	ding:	1110	1000	ffkk	kkkk				
Desc	ription:	The 6-bit	The 6-bit literal 'k' is added to the						
		contents of	contents of the FSR specified by 'f'.						
Word	ls:	1	1						
Cycle	es:	1	1						
QC	ycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read	Proces	SS	Write to				
		literal 'k'	iteral 'k' Data FSR						

Example: ADDFSR 2, 23h

Before Instru	ction	
FSR2	=	03FFh
After Instruct	ion	
FSR2	=	0422h

ADD	ULNK	Add Liter	Add Literal to FSR2 and Return					
Synta	ax:	ADDULN	ADDULNK k					
Oper	ands:	$0 \le k \le 63$	$0 \le k \le 63$					
Oper	ation:	FSR2 + k	\rightarrow FSR2,					
		$(TOS) \rightarrow I$	PC					
Statu	s Affected:	None						
Enco	ding:	1110	1000	11kk	kkkk			
Desc	ription:	contents o	The 6-bit literal 'k' is added to the contents of FSR2. A RETURN is then executed by loading the PC with the TOS.					
		execute; a	The instruction takes two cycles to execute; a NOP is performed during the second cycle.					
		case of the where f =	This may be thought of as a special case of the ADDFSR instruction, where f = 3 (binary '11'); it operates only on FSR2.					
Word	ls:	1	1					
Cycle	es:	2						
QC	vcle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read literal 'k'	Proces Data		Write to FSR			
No		No	No		No			
	Operation	Operation	Operati	on	Operation			
<u>Exan</u>	nple:	ADDULNK 2	23h					

ample: ADDULNK			
Before Instruc	ction		
FSR2	=	03FFh	
PC	=	0100h	
After Instructi	on		
FSR2	=	0422h	
PC	=	(TOS)	

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).

31.2 DC Characteristics: Power-Down and Supply Current PIC18F66K80 Family (Industrial/Extended) (Continued)

PIC18F66K80 Family (Industrial/Extended)			$ \begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \end{array} $							
Param No.	Device	Тур	Max	Units	Conditions					
	Supply Current (IDD)	Cont. ^(2,3)	•							
	PIC18LFXXK80	520	820	μA	-40°C					
		520	820	μA	+25°C					
		520	820	μA	+60°C	$V_{DD} = 1.8V^{(4)}$ Regulator Disabled				
		530	880	μA	+85°C					
		540	1000	μA	+125°C					
	PIC18LFXXK80	941	1600	μA	-40°C					
		941	1600	μA	+25°C					
		941	1600	μA	+60°C	$V_{DD} = 3.3V^{(4)}$ Regulator Disabled				
		950	1610	μA	+85°C		Fosc = 4 MHz			
		960	1800	μA	+125°C					
	PIC18FXXK80	981	1640	μA	-40°C		(RC_RUN mode, HF-INTOSC)			
		981	1640	μA	+25°C	(F)	,			
		981	1640	μA	+60°C	$V_{DD} = 3.3 V^{(5)}$ Regulator Enabled				
		990	1650	μA	+85°C					
		1000	1900	μA	+125°C					
	PIC18FXXK80	1	2.2	mA	-40°C					
		1	2.2	mA	+25°C					
		1	2.2	mA	+60°C	$V_{DD} = 5V^{(5)}$ Regulator Enabled				
		1	2.2	mA	+85°C					
		1	2.2	mA	+125°C					

Legend: Shading of rows is to assist in readability of the table.

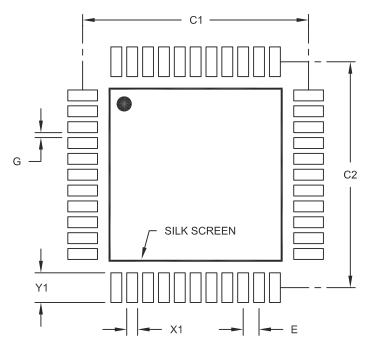
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or Vss, and all features that add delta current are disabled (such as WDT, SOSC oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;
- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- 4: For LF devices, RETEN (CONFIG1L<0>) = 1.
- 5: For F devices, SRETEN (WDTCON<4>) = 1 and \overline{RETEN} (CONFIG1L<0>) = 0.

TABLE 31-25:	A/D CONVERTER CHARACTERISTICS: PIC18F66K80 FAMILY
	(INDUSTRIAL/EXTENDED)


Param No.	Sym	Characteristic	Min	Тур	Мах	Units	Conditions
A01	NR	Resolution	—	_	12	bit	$\Delta V \text{REF} \ge 3.0 V$
A03	EIL	Integral Linearity Error	—	_	±6.0	LSB	VDD = 5.0V
A04	Edl	Differential Linearity Error	_	±1	+3.0/-1.0	LSB	VDD = 5.0V
A06	EOFF	Offset Error	—	±1	±9	LSB	VDD = 5.0V
A07	Egn	Gain Error	_	<±1	±8.00	LSB	VDD = 5.0V
A10		Monotonicity	(Guaranteed(1)	_	$VSS \le VAIN \le VREF$
A20	$\Delta VREF$	Reference Voltage Range (VREFH – VREFL)	3	_	Vdd - Vss	V	For 12-bit resolution
A21	Vrefh	Reference Voltage High	AVss + 3.0V	_	AVDD + 0.3V	V	For 12-bit resolution
A22	Vrefl	Reference Voltage Low	AVss – 0.3V	_	AVDD - 3.0V	V	For 12-bit resolution
A25	VAIN	Analog Input Voltage	VREFL	_	VREFH	V	
A28	AVdd	Analog Supply Voltage	VDD - 0.3	_	VDD + 0.3	V	
A29	AVss	Analog Supply Voltage	Vss – 0.3	_	Vss + 0.3	V	
A30	Zain	Recommended Impedance of Analog Voltage Source	_	_	2.5	kΩ	
A50	IREF	VREF Input Current ⁽²⁾	—		5 150	μΑ μΑ	During VAIN acquisition. During A/D conversion cycle.

Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

2: VREFH current is from the RA3/AN3/VREF+ pin or VDD, whichever is selected as the VREFH source. VREFL current is from the RA2/AN2/VREF-/CVREF pin or VSS, whichever is selected as the VREFL source.

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIM	MILLIMETERS				
Dimension	MIN	NOM	MAX			
Contact Pitch	itch E					
Contact Pad Spacing	C1		11.40			
Contact Pad Spacing	C2		11.40			
Contact Pad Width (X44)	X1			0.55		
Contact Pad Length (X44)	Y1			1.50		
Distance Between Pads	G	0.25				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076A