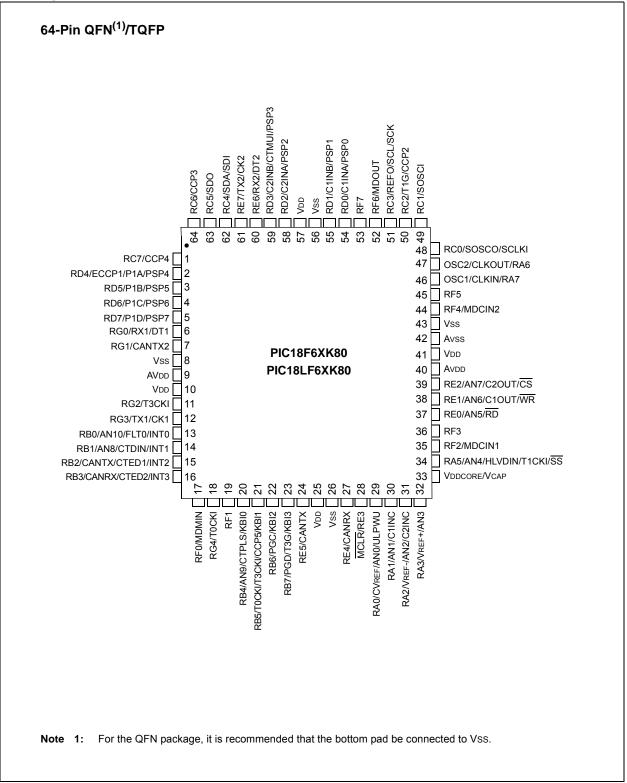


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	ECANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f26k80-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

	Pin N	umber			
Pin Name	QFN	SSOP/ SPDIP /SOIC	Pin Type	Buffer Type	Description
RC7/CANRX/RX1/DT1/ CCP4	15	18			
RC7			I/O	ST/ CMOS	Digital I/O.
CANRX			Ι	ST	CAN bus RX.
RX1			Ι	ST	EUSART asynchronous receive.
DT1			I/O	ST	EUSART synchronous data. (See related TX2/CK2.)
CCP4			I/O	ST CMOS	Capture 4 input/Compare 4 output/PWM4 output.
Vss	5	8	Р		
Vss					Ground reference for logic and I/O pins.
Vss	16	19			
Vss					Ground reference for logic and I/O pins.
Vddcore/Vcap	3	6	Р		
VDDCORE					External filter capacitor connection.
VCAP					External filter capacitor connection
Vdd	17	20	Р		
Vdd					Positive supply for logic and I/O pins.

TABLE 1-4: PIC18F2XK80 I/O DESCRIPTIONS (CONTINUED)

ST = Schmitt Trigger input with CMOS levels

Analog = Analog input

0

= Output

I = Input

P = Power

© 2010-2012 Microchip Technology Inc.

Pin Name	Pin Num	Pin Type	Buffer Type	Description			
RD6/P1C/PSP6	4						
RD6		I/O	ST/ CMOS	Digital I/O.			
P1C		0	CMOS	Enhanced PWM1 Output C.			
PSP6		I/O	ST/ CMOS	Parallel Slave Port data.			
RD7/P1D/PSP7	5						
RD7		I/O	ST/ CMOS	Digital I/O.			
P1D		0	CMOS	Enhanced PWM1 Output D.			
PSP7		I/O	ST/ CMOS	Parallel Slave Port data.			
Legend: I ² C™ = I ² C ST = Schr I = Input	nitt Trigge	-		CMOS = CMOS compatible input or output OS levels Analog = Analog input O = Output			

TABLE 1-6: PIC18F6XK80 PINOUT I/O DESCRIPTIONS (CONTINUED))
---	----

I = Input P = Power

REGISTER 10-5: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2

R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
OSCFIF	—	—	—	BCLIF	HLVDIF	TMR3IF	TMR3GIF
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	OSCFIF: Oscillator Fail Interrupt Flag bit 1 = Device oscillator failed, clock input has changed to INTOSC (bit must be cleared in software) 0 = Device clock is operating
bit 6-4	Unimplemented: Read as '0'
bit 3	BCLIF: Bus Collision Interrupt Flag bit
	 1 = A bus collision occurred (bit must be cleared in software) 0 = No bus collision occurred
bit 2	HLVDIF: High/Low-Voltage Detect Interrupt Flag bit
	 1 = A low-voltage condition occurred (bit must be cleared in software) 0 = The device voltage is above the regulator's low-voltage trip point
bit 1	TMR3IF: TMR3 Overflow Interrupt Flag bit
	 1 = TMR3 register overflowed (bit must be cleared in software) 0 = TMR3 register did not overflow
bit 0	 TMR3GIF: TMR3 Gate Interrupt Flag bit 1 = Timer gate interrupt occurred (bit must be cleared in software) 0 = No timer gate interrupt occurred

13.0 TIMER0 MODULE

The Timer0 module incorporates the following features:

- Software selectable operation as a timer or counter in both 8-bit or 16-bit modes
- · Readable and writable registers
- Dedicated 8-bit, software programmable
 prescaler
- Selectable clock source (internal or external)
- · Edge select for external clock
- Interrupt-on-overflow

The T0CON register (Register 13-1) controls all aspects of the module's operation, including the prescale selection. It is both readable and writable.

Figure 13-1 provides a simplified block diagram of the Timer0 module in 8-bit mode. Figure 13-2 provides a simplified block diagram of the Timer0 module in 16-bit mode.

REGISTER 13-1: TOCON: TIMER0 CONTROL REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
TMR00N	T08BIT	TOCS	T0SE	PSA	T0PS2	T0PS1	T0PS0
bit 7							bit 0

Legend:										
R = Reada	able bit	W = Writable bit	U = Unimplemented bit	, read as '0'						
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						
bit 7	TMR0ON	: Timer0 On/Off Control bit								
		les Timer0								
	0 = Stops	Timer0								
bit 6	T08BIT : 7	Timer0 8-Bit/16-Bit Control bit								
	1 = Timer	0 is configured as an 8-bit tin	ner/counter							
	0 = Timer	0 is configured as a 16-bit tin	ner/counter							
bit 5	TOCS: Tir	ner0 Clock Source Select bit								
	1 = Trans	itions on T0CKI pin								
	0 = Intern	al instruction cycle clock (CL	KO)							
bit 4	TOSE: Tir	ner0 Source Edge Select bit								
	1 = Increi	ments on high-to-low transitio	n on T0CKI pin							
	0 = Increi	ments on low-to-high transitic	n on T0CKI pin							
bit 3	PSA: Tim	er0 Prescaler Assignment bit	t							
	1 = Timer	1 = Timer0 prescaler is not assigned; Timer0 clock input bypasses prescaler								
	0 = Timer	0 prescaler is assigned; Time	er0 clock input comes from pr	escaler output						
bit 2-0	T0PS<2:0)>: Timer0 Prescaler Select b	pits							
	111 = 1 :2	256 Prescale value								
	110 = 1 :1	28 Prescale value								
	101 = 1 :6	4 Prescale value								
		2 Prescale value								
		6 Prescale value								
		Prescale value								
		Prescale value Prescale value								
	000 = 1:2									

14.4 Timer1 16-Bit Read/Write Mode

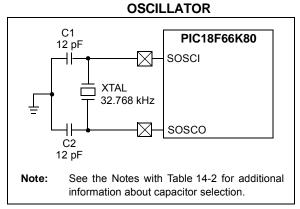
Timer1 can be configured for 16-bit reads and writes. When the RD16 control bit (T1CON<1>) is set, the address for TMR1H is mapped to a buffer register for the high byte of Timer1. A read from TMR1L loads the contents of the high byte of Timer1 into the Timer1 High Byte Buffer register. This provides the user with the ability to accurately read all 16 bits of Timer1 without having to determine whether a read of the high byte, followed by a read of the low byte, has become invalid due to a rollover between reads.

A write to the high byte of Timer1 must also take place through the TMR1H Buffer register. The Timer1 high byte is updated with the contents of TMR1H when a write occurs to TMR1L. This allows a user to write all 16 bits at once to both the high and low bytes of Timer1.

The high byte of Timer1 is not directly readable or writable in this mode. All reads and writes must take place through the Timer1 High Byte Buffer register. Writes to TMR1H do not clear the Timer1 prescaler. The prescaler is only cleared on writes to TMR1L.

14.5 SOSC Oscillator

An on-chip crystal oscillator circuit is incorporated between pins, SOSCI (input) and SOSCO (amplifier output). It can be enabled one of these ways:


- Setting the SOSCEN bit in either the T1CON or T3CON register (TxCON<3>)
- Setting the SOSCGO bit in the OSCCON2 register (OSCCON2<3>)
- Setting the SCSx bits to secondary clock source in the OSCCON register (OSCCON<1:0> = 01)

The SOSCGO bit is used to warm up the SOSC so that it is ready before any peripheral requests it.

The oscillator is a low-power circuit rated for 32 kHz crystals. It will continue to run during all powermanaged modes. The circuit for a typical low-power oscillator is depicted in Figure 14-2. Table 14-2 provides the capacitor selection for the SOSC oscillator.

The user must provide a software time delay to ensure proper start-up of the SOSC oscillator.

FIGURE 14-2: EXTERNAL COMPONENTS FOR THE SOSC

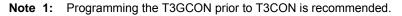
TABLE 14-2: CAPACITOR SELECTION FOR THE TIMER OSCILLATOR^(2,3,4,5)

		-	-					
Oscillator Type	Freq.	C1	C2					
LP	32 kHz	12 pF ⁽¹⁾	12 pF ⁽¹⁾					
Note 1: Microchip suggests these values as a startin point in validating the oscillator circuit.								
t	 Higher capacitance increases the stability or the oscillator, but also increases the start-up time. 							
C r	 Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components. 							
 Capacitor values are for design guidance onl Values listed would be typical of a CL = 10 p rated crystal, when SOSCSEL<1:0> = 11. 								
	ncorrect capacit juency not meet							

The SOSC crystal oscillator drive level is determined based on the SOSCSELx (CONFIG1L<4:3>) Configuration bits. The Higher Drive Level mode.

based on the SOSCSELx (CONFIG1L<4:3>) Configuration bits. The Higher Drive Level mode, SOSCSEL<1:0> = 11, is intended to drive a wide variety of 32.768 kHz crystals with a variety of Load Capacitance (CL) ratings.

The Lower Drive Level mode is highly optimized for extremely low-power consumption. It is not intended to drive all types of 32.768 kHz crystals. In the Low Drive Level mode, the crystal oscillator circuit may not work correctly if excessively large discrete capacitors are placed on the SOSCO and SOSCI pins. This mode is designed to work only with discrete capacitances of approximately 3 pF-10 pF on each pin.


Crystal manufacturers usually specify a CL (Load Capacitance) rating for their crystals. This value is related to, but not necessarily the same as, the values that should be used for C1 and C2 in Figure 14-2.

16.1 Timer3 Gate Control Register

The Timer3 Gate Control register (T3GCON), provided in Register 14-2, is used to control the Timer3 gate.

REGISTER 16-2: T3GCON: TIMER3 GATE CONTROL REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-x	R/W-0	R/W-0			
TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/T3DONE	T3GVAL	T3GSS1	T3GSS0			
bit 7				· · ·			bit 0			
Legend:	a h:t		. L.:4		l hit read as (0,				
R = Readable		W = Writable		U = Unimplemented	i bit, read as					
-n = Value at	PUK	'1' = Bit is se	el	'0' = Bit is cleared		x = Bit is unkr	IOWII			
bit 7	TMR3GE: Ti	mer3 Gate Er	nable bit							
	If TMR3ON =	<u>= 0:</u>								
	This bit is ign									
	If TMR3ON =		tralled by the	Timor? gata function						
				Timer3 gate function gate function						
bit 6	T3GPOL: Tir	-		gate failettett						
				counts when gate is h	igh)					
	0 = Timer3 g	ate is active-l	ow (Timer3 co	ounts when gate is low	w)					
bit 5	T3GTM: Timer3 Gate Toggle Mode bit									
			node is enable		· · · · · · · · · · · · · · · · · · ·					
			node is disabi es on every ris	ed and toggle flip-flop sing edge	o is cleared					
bit 4	-		ngle Pulse Mo							
			•	enabled and is contro	lling Timer3 g	ate				
	0 = Timer3 G	ate Single P	ulse mode is o	disabled						
bit 3			-	Pulse Acquisition Stat						
				quisition is ready, wa						
		•		quisition has complet 3GSPM is cleared.	ted or has not	been started				
bit 2		-	rrent State bit							
5.1.2				k gate that could be p	provided to TM	R3H:TMR3L.	Unaffected by			
	Timerx Gate			5			,			
bit 1-0	T3GSS<1:0>	: Timer3 Gat	e Source Sele	ect bits						
	11 = Compar									
	10 = Compare 10 = TMD4 t									
	01 = TMR4 t 00 = Timer3		ουιραι							
	Watchdog Ti									

REGISTER 18-2: CTMUCONL: CTMU CONTROL LOW REGISTER

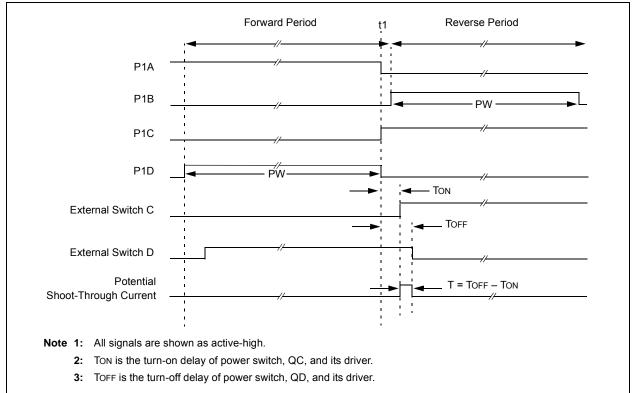

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
EDG2POL	EDG2SEL1	EDG2SEL0	EDG1POL	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT					
bit 7							bit 0					
Legend:												
R = Readabl	e bit	W = Writable b	bit	U = Unimplem	ented bit, read	1 as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown					
bit 7	EDG2POL: E	dge 2 Polarity S	Select bit									
		programmed f										
	0 = Edge 2 is	programmed for	or a negative e	edge response								
bit 6-5		:0>: Edge 2 Sou	urce Select bit	S								
	11 = CTED1 pin											
		10 = CTED2 pin 01 = ECCP1 Special Event Trigger										
		pecial Event Tri										
bit 4	EDG1POL: E	dge 1 Polarity S	Select bit									
	1 = Edge 1 is	programmed f	or a positive e	dge response								
	0 = Edge 1 is	s programmed f	or a negative e	edge response								
bit 3-2	EDG1SEL<1:	:0>: Edge 1 Sou	urce Select bit	s								
	11 = CTED1											
	10 = CTED2											
		Special Event T pecial Event Tri	00									
bit 1		Edge 2 Status b										
		vent has occurr										
	Ų	vent has not oc										
bit 0	•	Edge 1 Status b										
		vent has occurr										
	0 = Edge 1 e											

TABLE 19-5							D 14	D '' 0
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
RCON	IPEN	SBOREN	CM	RI	TO	PD	POR	BOR
PIR3	—	—	RC2IF	TX2IF	CTMUIF	CCP2IF	CCP1IF	—
PIE3	—	—	RC2IE	TX2IE	CTMUIE	CCP2IE	CCP1IE	—
IPR3	_	_	RC2IP	TX2IP	CTMUIP	CCP2IP	CCP1IP	_
PIR4	TMR4IF	EEIF	CMP2IF	CMP1IF	—	CCP5IF	CCP4IF	CCP3IF
PIE4	TMR4IE	EEIE	CMP2IE	CMP1IE	—	CCP5IE	CCP4IE	CCP3IE
IPR4	TMR4IP	EEIP	CMP2IP	CMP1IP	—	CCP5IP	CCP4IP	CCP3IP
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0
TMR2	Timer2 Reg	ister						
TMR4	Timer4 Reg	ister						
PR2	Timer2 Peri	Timer2 Period Register						
PR4	Timer4 Peri	od Register						
T2CON	—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0
T4CON	—	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR4ON	T4CKPS1	T4CKPS0
CCPR2L	Capture/Co	mpare/PWM	Register 2 Lo	ow Byte				
CCPR2H	Capture/Co	mpare/PWM	Register 2 H	igh Byte				
CCPR3L	Capture/Co	mpare/PWM	Register 3 Lo	ow Byte				
CCPR3H	Capture/Co	mpare/PWM	Register 3 H	igh Byte				
CCPR4L	Capture/Co	mpare/PWM	Register 4 Lo	ow Byte				
CCPR4H	Capture/Co	mpare/PWM	Register 4 H	igh Byte				
CCPR5L	Capture/Co	mpare/PWM	Register 5 Lo	ow Byte				
CCPR5H	Capture/Co	mpare/PWM	Register 5 H	igh Byte				
CCP2CON	—	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0
CCP3CON	—	_	DC3B1	DC3B0	CCP3M3	CCP3M2	CCP3M1	CCP3M0
CCP4CON	—	_	DC4B1	DC4B0	CCP4M3	CCP4M2	CCP4M1	CCP4M0
CCP5CON	—	—	DC5B1	DC5B0	CCP5M3	CCP5M2	CCP5M1	CCP5M0
CCPTMRS	_	—	—	C5TSEL	C4TSEL	C3TSEL	C2TSEL	C1TSEL
PMD0	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	UART2MD	UART1MD	SSPMD
	· = unimpleme							225N

TABLE 19-5: REGISTERS ASSOCIATED WITH PWM AND TIMERS

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PWM or Timer2/4.

FIGURE 20-11: EXAMPLE OF PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE

20.4.3 START-UP CONSIDERATIONS

When any PWM mode is used, the application hardware must use the proper external pull-up and/or pull-down resistors on the PWM output pins.

Note:	When the microcontroller is released from Reset, all of the I/O pins are in the
	high-impedance state. The external
	circuits must keep the power switch
	devices in the OFF state until the micro-
	controller drives the I/O pins with the
	proper signal levels or activates the PWM
	output(s).

The CCP1M<1:0> bits of the CCP1CON register allow the user to choose whether the PWM output signals are active-high or active-low for each pair of PWM output pins (P1A/P1C and P1B/P1D). The PWM output polarities must be selected before the PWM pin output drivers are enabled. Changing the polarity configuration while the PWM pin output drivers are enabled is not recommended since it may result in damage to the application circuits.

The P1A, P1B, P1C and P1D output latches may not be in the proper states when the PWM module is initialized. Enabling the PWM pin output drivers at the same time as the Enhanced PWM modes may cause damage to the application circuit. The Enhanced PWM modes must be enabled in the proper Output mode and complete a full PWM cycle before enabling the PWM pin output drivers. The completion of a full PWM cycle is indicated by the TMR2IF or TMR4IF bit of the PIR1 or PIR4 register being set as the second PWM period begins.

20.4.4 ENHANCED PWM AUTO-SHUTDOWN MODE

The PWM mode supports an Auto-Shutdown mode that will disable the PWM outputs when an external shutdown event occurs. Auto-Shutdown mode places the PWM output pins into a predetermined state. This mode is used to help prevent the PWM from damaging the application.

The auto-shutdown sources are selected using the ECCP1AS<2:0> bits (ECCP1AS<6:4>). A shutdown event may be generated by:

- A logic '0' on the pin that is assigned the FLT0 input function
- Comparator C1
- Comparator C2
- · Setting the ECCP1ASE bit in firmware

21.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP) MODULE

21.1 Master SSP (MSSP) Module Overview

The Master Synchronous Serial Port (MSSP) module is a serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be devices such as serial EEPROMs, shift registers, display drivers and A/D Converters. The MSSP module can operate in either of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C[™])
 - Full Master mode
 - Slave mode (with general address call)

The $\mathrm{I}^2\mathrm{C}$ interface supports the following modes in hardware:

- Master mode
- · Multi-Master mode
- Slave mode with 5-bit and 7-bit address masking (with address masking for both 10-bit and 7-bit addressing)

21.2 Control Registers

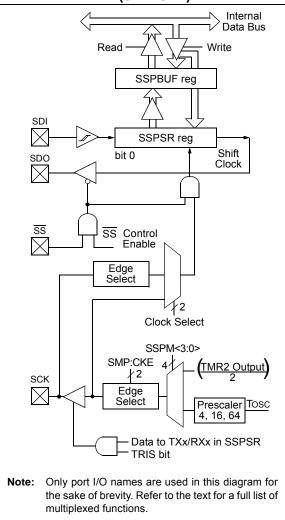
The MSSP module has three associated control registers. These include a status register (SSPSTAT) and two control registers (SSPCON1 and SSPCON2). The use of these registers and their individual configuration bits differ significantly depending on whether the MSSP module is operated in SPI or I^2C mode.

Additional details are provided under the individual sections.

21.3 SPI Mode

The SPI mode allows 8 bits of data to be synchronously transmitted and received simultaneously. All four modes of SPI are supported. To accomplish communication, typically three pins are used:

- Serial Data Out (SDO) RC5/SDO
- Serial Data In (SDI) RC4/SDA/SDI
- Serial Clock (SCK) RC3/REF0/SCL/SCK


Additionally, a fourth pin may be used when in a Slave mode of operation:

 Slave Select (SS) – RA5/AN4/C2INB/ HLVDIN/T1CKI/SS/CTMU1

Figure 21-1 shows the block diagram of the MSSP module when operating in SPI mode.

FIGURE 21-1:

MSSP BLOCK DIAGRAM (SPI MODE)

21.3.9 OPERATION IN POWER-MANAGED MODES

In SPI Master mode, module clocks may be operating at a different speed than when in full-power mode; in the case of the Sleep mode, all clocks are halted.

In Idle modes, a clock is provided to the peripherals. That clock can be from the primary clock source, the secondary clock (SOSC oscillator) or the INTOSC source. See **Section 3.3** "**Clock Sources and Oscillator Switching**" for additional information.

In most cases, the speed that the master clocks SPI data is not important; however, this should be evaluated for each system.

If MSSP interrupt is enabled, it can wake the controller from Sleep mode, or one of the Idle modes, when the master completes sending data. If an exit from Sleep or Idle mode is not desired, MSSP interrupts should be disabled.

If the Sleep mode is selected, all module clocks are halted and the transmission/reception will remain in that state until the device wakes. After the device returns to Run mode, the module will resume transmitting and receiving data.

In SPI Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in any power-managed mode and data to be shifted into the SPI Transmit/Receive Shift register. When all 8 bits have been received, the MSSP interrupt flag bit will be set, and if enabled, will wake the device.

21.3.10 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

21.3.11 BUS MODE COMPATIBILITY

Table 21-1 shows the compatibility between the standard SPI modes, and the states of the CKP and CKE control bits.

Standard SPI Mode	Control Bits State				
Terminology	СКР	CKE			
0, 0	0	1			
0, 1	0	0			
1, 0	1	1			
1, 1	1	0			

TABLE 21-1: SPI BUS MODES

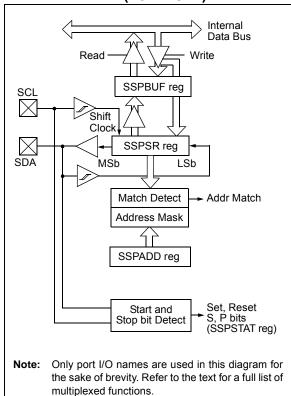
There is also an SMP bit which controls when the data is sampled.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
PIR1	PSPIF	ADIF	RC1IF	TX1IF	SSPIF	TMR1GIF	TMR2IF	TMR1IF
PIE1	PSPIE	ADIE	RC1IE	TX1IE	SSPIE	TMR1GIE	TMR2IE	TMR1IE
IPR1	PSPIP	ADIP	RC1IP	TX1IP	SSPIP	TMR1GIP	TMR2IP	TMR1IP
TRISA	TRISA7	TRISA6	TRISA5		TRISA3	TRISA2	TRISA1	TRISA0
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0
SSPBUF	MSSP Receive Buffer/Transmit Register							
SSPCON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0
SSPSTAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF
ODCON	SSPOD	CCP5OD	CCP4OD	CCP3OD	CCP2OD	CCP10D	U2OD	U10D
PMD0	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	UART2MD	UART1MD	SSPMD

TABLE 21-2: REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: Shaded cells are not used by the MSSP module in SPI mode.

21.4 I²C Mode


The MSSP module in I^2C mode fully implements all master and slave functions (including general call support), and provides interrupts on Start and Stop bits in hardware to determine a free bus (multi-master function). The MSSP module implements the standard mode specifications, as well as 7-bit and 10-bit addressing.

Two pins are used for data transfer:

- Serial Clock (SCL) RC3/REFO/SCL/SCK
- Serial Data (SDA) RC4/SDA/SDI

The user must configure these pins as inputs by setting the associated TRIS bits.

FIGURE 21-7: MSSP BLOCK DIAGRAM (I²C™ MODE)

21.4.1 REGISTERS

The MSSP module has seven registers for ${\rm I}^2{\rm C}$ operation. These are:

- MSSP Control Register 1 (SSPCON1)
- MSSP Control Register 2 (SSPCON2)
- MSSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer Register (SSPBUF)
- MSSP Shift Register (SSPSR) Not directly accessible
- MSSP Address Register (SSPADD)
- I²C Slave Address Mask Register (SSPMSK)

SSPCON1, SSPCON2 and SSPSTAT are the control and status registers in I²C mode operation. The SSPCON1 and SSPCON2 registers are readable and writable. The lower 6 bits of the SSPSTAT are read-only. The upper two bits of the SSPSTAT are read/write.

SSPSR is the shift register used for shifting data in or out. SSPBUF is the buffer register to which data bytes are written to or read from.

SSPADD contains the slave device address when the MSSP is configured in I²C Slave mode. When the MSSP is configured in Master mode, all eight bits of SSPADD act as the Baud Rate Generator reload value.

SSPMSK holds the slave address mask value when the module is configured for 7-Bit Address Masking mode. While it is a separate register, it shares the same SFR address as SSPADD; it is only accessible when the SSPM<3:0> bits are specifically set to permit access. Additional details are provided in Section 21.4.3.4 "7-Bit Address Masking Mode".

In receive operations, SSPSR and SSPBUF together, create a double-buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set.

During transmission, the SSPBUF is not double-buffered. A write to SSPBUF will write to both SSPBUF and SSPSR.

21.4.2 OPERATION

The MSSP module functions are enabled by setting the MSSP Enable bit, SSPEN (SSPCON1<5>).

The SSPCON1 register allows control of the I^2C operation. Four mode selection bits (SSPCON1<3:0>) allow one of the following I^2C modes to be selected:

- I²C Master mode, clock
- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address) with Start and Stop bit interrupts enabled
- I²C Slave mode (10-bit address) with Start and Stop bit interrupts enabled
- I²C Firmware Controlled Master mode, slave is Idle

Selection of any I²C mode with the SSPEN bit set forces the SCL and SDA pins to be open-drain, provided these pins are programmed as inputs by setting the appropriate TRISC bit. To ensure proper operation of the module, pull-up resistors must be provided externally to the SCL and SDA pins.

21.4.3 SLAVE MODE

In Slave mode, the SCL and SDA pins must be configured as inputs (TRISC<4:3> set). The MSSP module will override the input state with the output data when required (slave-transmitter).

The I^2C Slave mode hardware will always generate an interrupt on an address match. Address masking will allow the hardware to generate an interrupt for more than one address (up to 31 in 7-bit addressing and up to 63 in 10-bit addressing). Through the mode select bits, the user can also choose to interrupt on Start and Stop bits.

When an address is matched, or the data transfer after an address match is received, the hardware automatically will generate the Acknowledge (\overrightarrow{ACK}) pulse and load the SSPBUF register with the received value currently in the SSPSR register.

Any combination of the following conditions will cause the MSSP module not to give this ACK pulse:

- The Buffer Full bit, BF (SSPSTAT<0>), was set before the transfer was received.
- The overflow bit, SSPOV (SSPCON1<6>), was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF, but bit, SSPIF, is set. The BF bit is cleared by reading the SSPBUF register, while bit, SSPOV, is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification, as well as the requirement of the MSSP module, are shown in timing Parameter 100 and Parameter 101.

21.4.3.1 Addressing

Once the MSSP module has been enabled, it waits for a Start condition to occur. Following the Start condition, the 8 bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register, SSPSR<7:1>, is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match and the BF and SSPOV bits are clear, the following events occur:

- 1. The SSPSR register value is loaded into the SSPBUF register.
- 2. The Buffer Full bit, BF, is set.
- 3. An ACK pulse is generated.
- 4. The MSSP Interrupt Flag bit, SSPIF, is set (and interrupt is generated, if enabled) on the falling edge of the ninth SCL pulse.

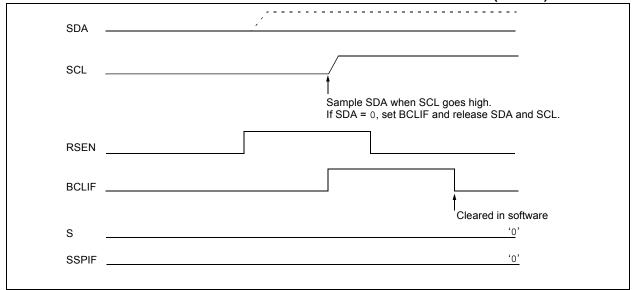
In 10-Bit Addressing mode, two address bytes need to be received by the slave. The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. The R/\overline{W} (SSPSTAT<2>) bit must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal '11110 A9 A8 0', where 'A9' and 'A8' are the two MSbs of the address. The sequence of events for 10-bit addressing is as follows, with Steps 7 through 9 for the slave-transmitter:

- 1. Receive first (high) byte of address (bits, SSPIF, BF and UA, are set on address match).
- 2. Update the SSPADD register with second (low) byte of address (clears bit, UA, and releases the SCL line).
- 3. Read the SSPBUF register (clears bit, BF) and clear flag bit, SSPIF.
- 4. Receive second (low) byte of address (bits, SSPIF, BF and UA, are set).
- 5. Update the SSPADD register with the first (high) byte of address. If match releases SCL line, this will clear bit, UA.
- 6. Read the SSPBUF register (clears bit, BF) and clear flag bit SSPIF.
- 7. Receive Repeated Start condition.
- 8. Receive first (high) byte of address (bits, SSPIF and BF, are set).
- 9. Read the SSPBUF register (clears bit, BF) and clear flag bit, SSPIF.

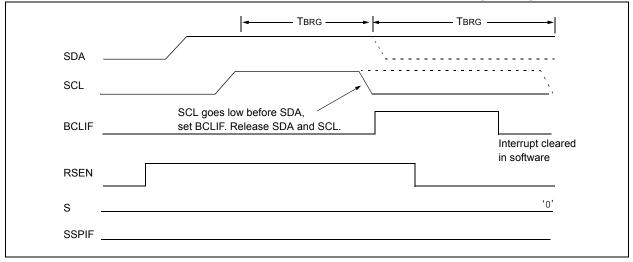
21.4.17.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from a low level to a high level.
- SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1'.


When the user deasserts SDA and the pin is allowed to float high, the BRG is loaded with SSPADD<6:0> and counts down to 0. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled.

If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 21-31). If SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.


If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition (see Figure 21-32).

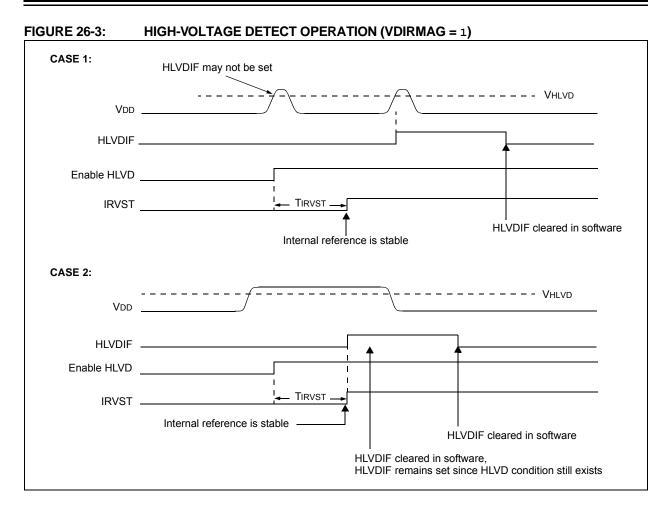
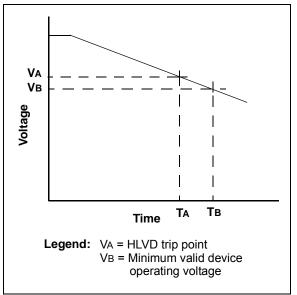

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 21-31: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)


26.5 Applications

In many applications, it is desirable to detect a drop below, or rise above, a particular voltage threshold. For example, the HLVD module could be periodically enabled to detect Universal Serial Bus (USB) attach or detach. This assumes the device is powered by a lower voltage source than the USB when detached. An attach would indicate a high-voltage detect from, for example, 3.3V to 5V (the voltage on USB) and vice versa for a detach. This feature could save a design a few extra components and an attach signal (input pin).

For general battery applications, Figure 26-4 shows a possible voltage curve. Over time, the device voltage decreases. When the device voltage reaches voltage, VA, the HLVD logic generates an interrupt at time, TA. The interrupt could cause the execution of an ISR, which would allow the application to perform "house-keeping tasks" and a controlled shutdown before the device voltage exits the valid operating range at TB. This would give the application a time window, represented by the difference between TA and TB, to safely exit.

TYPICAL LOW-VOLTAGE DETECT APPLICATION

Byte-oriented file register operations	Example Instruction
<u>15 10 9 8 7 0</u>	
OPCODE d a f (FILE #)	ADDWF MYREG, W, B
 d = 0 for result destination to be WREG register d = 1 for result destination to be file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address 	
Byte to Byte move operations (2-word)	
<u>15 12 11 0</u>	
OPCODE f (Source FILE #)	MOVFF MYREG1, MYREG2
15 12 11 0	
1111 f (Destination FILE #)	
f = 12-bit file register address	
Bit-oriented file register operations	
15 12 11 9 8 7 0	
OPCODE b (BIT #) a f (FILE #)	BSF MYREG, bit, B
 b = 3-bit position of bit in file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address 	
Literal operations	
15 8 7 0	
OPCODE k (literal)	MOVLW 7Fh
k = 8-bit immediate value	
Control operations	
CALL, GOTO and Branch operations 15 8 7 0	
OPCODE n<7:0> (literal)	GOTO Label
15 12 11 0	
1111 n<19:8> (literal)	
n = 20-bit immediate value	
15 8 7 0	
OPCODE S n<7:0> (literal)	CALL MYFUNC
15 12 11 0	
1111 n<19:8> (literal)	
S = Fast bit	
15 11 10 0	
OPCODE n<10:0> (literal)	BRA MYFUNC
15 8 7 0	
OPCODE n<7:0> (literal)	BC MYFUNC

Mnemonic,		Description	0	16-Bit Instruction Word			Status		
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
BYTE-OR	BYTE-ORIENTED OPERATIONS								
ADDWF	f, d, a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
ADDWFC	f, d, a	Add WREG and Carry bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	1, 2
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1,2
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2
CPFSEQ	f, a	Compare f with WREG, Skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4
CPFSGT	f, a	Compare f with WREG, Skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4
CPFSLT	f, a	Compare f with WREG, Skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2
DECF	f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2
INCF	f, d, a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff	None	4
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1, 2
IORWF	f, d, a	Inclusive OR WREG with f	1	0001	00da	ffff	ffff	Z, N	1, 2
MOVF	f, d, a	Move f	1	0101	00da	ffff	ffff	Z, N	1
MOVFF	f _s , f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None	
	0 u	f _d (destination) 2nd word		1111	ffff	ffff	ffff		
MOVWF	f, a	Move WREG to f	1	0110	111a	ffff	ffff	None	
MULWF	f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	1, 2
NEGF	f, a	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N	
RLCF	f, d, a	Rotate Left f through Carry	1	0011	01da	ffff	ffff	C, Z, N	1, 2
RLNCF	f, d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff	Z, N	
RRCF	f, d, a	Rotate Right f through Carry	1	0011	00da	ffff	ffff	C, Z, N	
RRNCF	f, d, a	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N	
SETF	f, a	Set f	1	0110	100a	ffff	ffff	None	1, 2
SUBFWB	f, d, a	Subtract f from WREG with Borrow	1	0101	01da	ffff	ffff	C, DC, Z, OV, N	
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	1, 2
SUBWFB		Subtract WREG from f with Borrow	1		10da	ffff	ffff	C, DC, Z, OV, N	-
SWAPF	f, d, a	Swap Nibbles in f	1	0011	10da	ffff	ffff	None	4
TSTFSZ	f. a	Test f, Skip if 0	1 (2 or 3)		011a	ffff	ffff	None	4 1, 2
XORWF	, -	Exclusive OR WREG with f	1 (2 01 3)		1011a 10da		ffff		ı, ∠
		PORT register is modified as a fu	-					(2, 1)	

TABLE 29-2: PIC18F66K80 FAMILY INSTRUCTION SET

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as an input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

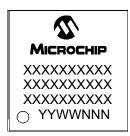
31.3	DC Characteristics:	PIC18F66K80 Famil	y (Industrial) (Continued)
------	---------------------	-------------------	----------------------------

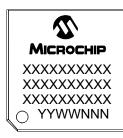
		$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$				
Param No. Symbol Characteristic		Min	Max	Units	Conditions	
	Vон	Output High Voltage ⁽¹⁾				
D090		I/O Ports:			V	
		PORTA, PORTB, PORTC	VDD - 0.7	—	V	lон = -3 mA, VDD = 5.5V, -40°С to +125°С
		PORTD, PORTE, PORTF, PORTG	VDD - 0.7	—	V	lон = -2 mA, VDD = 5.5V, -40°С to +125°С
D092		OSC2/CLKO (INTOSC, EC modes)	Vdd - 0.7	—	V	IOH = -1 mA, VDD = 5.5V, -40°С to +125°С
		Capacitive Loading Specs on Output Pins				
D100 ⁽⁴⁾	COSC2	OSC2 Pin	—	20	pF	In HS mode when external clock is used to drive OSC1
D101	Сю	All I/O Pins and OSC2	-	50	pF	To meet the AC Timing Specifications
D102	Св	SCL, SDA	—	400	pF	I ² C [™] Specification

Note 1: Negative current is defined as current sourced by the pin.

32.1 Package Marking Information (Continued)

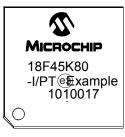
40-Lead PDIP

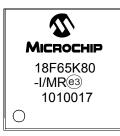

44-Lead QFN


44-Lead TQFP

64-Lead QFN

64-Lead TQFP


Example



Example

Example

Example

