

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	ECANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6К х 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f26k80t-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 **DEVICE OVERVIEW**

This document contains device-specific information for the following devices:

- PIC18F25K80 PIC18LF25K80
- PIC18F26K80
- PIC18F45K80
- PIC18LF45K80 • PIC18F46K80 PIC18LF46K80
- PIC18F65K80
- PIC18LF65K80

PIC18LF26K80

 PIC18F66K80 PIC18LF66K80

This family combines the traditional advantages of all PIC18 microcontrollers - namely, high computational performance and a rich feature set - with an extremely competitive price point. These features make the PIC18F66K80 family a logical choice for many high-performance applications where price is a primary consideration.

1.1 **Core Features**

1.1.1 nanoWatt TECHNOLOGY

All of the devices in the PIC18F66K80 family incorporate a range of features that can significantly reduce power consumption during operation. Key items include:

- · Alternate Run Modes: By clocking the controller from the Timer1 source or the Internal RC oscillator, power consumption during code execution can be reduced.
- Multiple Idle Modes: The controller can also run with its CPU core disabled but the peripherals still active. In these states, power consumption can be reduced even further.
- On-the-Fly Mode Switching: The power-managed modes are invoked by user code during operation, allowing the user to incorporate power-saving ideas into their application's software design.
- · nanoWatt XLP: An extra low-power BOR and low-power Watchdog timer

OSCILLATOR OPTIONS AND 1.1.2 FEATURES

All of the devices in the PIC18F66K80 family offer different oscillator options, allowing users a range of choices in developing application hardware. These include:

- · External Resistor/Capacitor (RC); RA6 available
- External Resistor/Capacitor with Clock Out (RCIO)
- · Three External Clock modes:
 - External Clock (EC); RA6 available
 - External Clock with Clock Out (ECIO)
 - External Crystal (XT, HS, LP)

- A Phase Lock Loop (PLL) frequency multiplier, available to the external oscillator modes which allows clock speeds of up to 64 MHz. PLL can also be used with the internal oscillator.
- An internal oscillator block that provides a 16 MHz clock (±2% accuracy) and an INTOSC source (approximately 31 kHz, stable over temperature and VDD)
 - Operates as HF-INTOSC or MF-INTOSC when block is selected for 16 MHz or 500 kHz
 - Frees the two oscillator pins for use as additional general purpose I/O

The internal oscillator block provides a stable reference source that gives the family additional features for robust operation:

- · Fail-Safe Clock Monitor: This option constantly monitors the main clock source against a reference signal provided by the internal oscillator. If a clock failure occurs, the controller is switched to the internal oscillator, allowing for continued low-speed operation or a safe application shutdown.
- Two-Speed Start-up: This option allows the internal oscillator to serve as the clock source from Power-on Reset, or wake-up from Sleep mode, until the primary clock source is available.

1.1.3 MEMORY OPTIONS

The PIC18F66K80 family provides ample room for application code, from 32 Kbytes to 64 Kbytes of code space. The Flash cells for program memory are rated to last up to 10,000 erase/write cycles. Data retention without refresh is conservatively estimated to be greater than 20 years.

The Flash program memory is readable and writable. During normal operation, the PIC18F66K80 family also provides plenty of room for dynamic application data with up to 3.6 Kbytes of data RAM.

EXTENDED INSTRUCTION SET 1.1.4

The PIC18F66K80 family implements the optional extension to the PIC18 instruction set, adding eight new instructions and an Indexed Addressing mode. Enabled as a device configuration option, the extension has been specifically designed to optimize re-entrant application code originally developed in high-level languages, such as 'C'.

FIGURE 1-2: PIC18F4XK80 (40/44-PIN) BLOCK DIAGRAM

3: RE3 is only available when the MCLRE Configuration bit is cleared (MCLRE = 0).

	Pin N	umber	D:	Duffer			
Pin Name	PDIP	QFN/ TQFP	туре	Туре	Description		
RD6/TX2/CK2/P1C/PSP6	29	4					
RD6			I/O	ST/ CMOS	Digital I/O.		
TX2			Ι	ST	EUSART asynchronous transmit.		
CK2			I/O	ST	EUSART synchronous clock. (See related RX2/DT2.)		
P1C			0	CMOS	Enhanced PWM1 Output C.		
PSP6			I/O	ST/ CMOS	Parallel Slave Port data.		
RD7/RX2/DT2/P1D/PSP7	30	5					
RD7			I/O	ST/ CMOS	Digital I/O.		
RX2			I	ST	EUSART asynchronous receive.		
DT2			I/O	ST	EUSART synchronous data. (See related TX2/CK2.)		
P1D			0	CMOS	Enhanced PWM1 Output D.		
PSP7			I/O	ST/ CMOS	Parallel Slave Port data.		
RE0/AN5/RD	8	25					
RE0			I/O	ST/ CMOS	Digital I/O.		
AN5			I	Analog	Analog Input 5.		
RD			I	ST	Parallel Slave Port read strobe.		
RE1/AN6/C1OUT/WR	9	26					
RE1			I/O	ST/ CMOS	Digital I/O.		
AN6			I	Analog	Analog Input 6.		
C1OUT			0	CMOS	Comparator 1 output.		
WR			I	ST	Parallel Slave Port write strobe.		
RE2/AN7/C2OUT/CS	10	27					
RE2			I/O	ST/ CMOS	Digital I/O.		
AN7			Ι	Analog	Analog Input 7.		
C2OUT			0	CMOS	Comparator 2 output.		
CS			I	ST	Parallel Slave Port chip select.		
RE3					See the MCLR/RE3 pin.		
Legend: $l^2 C^{TM} = l^2 C/SMBus$ input bufferCMOS= CMOS compatible input or outputST= Schmitt Trigger input with CMOS levelsAnalog= Analog inputI= InputO= OutputP= PowerO= Output							

TABLE 1-5:	PIC18F4XK80 PINOUT I/O DESCRIPTIONS (CONTINUED)	,

NOTES:

6.2 PIC18 Instruction Cycle

6.2.1 CLOCKING SCHEME

The microcontroller clock input, whether from an internal or external source, is internally divided by four to generate four non-overlapping quadrature clocks (Q1, Q2, Q3 and Q4). Internally, the Program Counter is incremented on every Q1, with the instruction fetched from the program memory and latched into the Instruction Register (IR) during Q4.

The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 6-4.

6.2.2 INSTRUCTION FLOW/PIPELINING

An "Instruction Cycle" consists of four Q cycles, Q1 through Q4. The instruction fetch and execute are pipelined in such a manner that a fetch takes one instruction cycle, while the decode and execute take another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction (such as GOTO) causes the Program Counter to change, two cycles are required to complete the instruction. (See Example 6-3.)

A fetch cycle begins with the Program Counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the Instruction Register (IR) in cycle, Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 6-4: CLOCK/INSTRUCTION CYCLE

EXAMPLE 6-3: INSTRUCTION PIPELINE FLOW

	TCY0	TCY1	TCY2	Tcy3	TCY4	TCY5
1. MOVLW 55h	Fetch 1	Execute 1		_		
2. MOVWF PORTB		Fetch 2	Execute 2		_	
3. BRA SUB_1			Fetch 3	Execute 3		
4. BSF PORTA, BIT3 (1	Forced NOP)			Fetch 4	Flush (NOP)	
5. Instruction @ addres	ss SUB_1				Fetch SUB_1	Execute SUB_1

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

FIGURE 10-1: PIC18F66K80 FAMILY INTERRUPT LOGIC

10.1 INTCON Registers

The INTCON registers are readable and writable registers that contain various enable, priority and flag bits.

Note: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

REGISTER 10-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE ⁽²⁾	TMR0IF	INT0IF	RBIF ⁽¹⁾
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GIE/GIEH: Global Interrupt Enable bit
	When IPEN = <u>0</u> :
	1 = Enables all unmasked interrupts
	0 = Disables all interrupts
	When IPEN = 1:
	1 = Enables all high-priority interrupts
bit 6	PEIE/GIEL: Peripheral Interrupt Enable bit
	<u>When IPEN = 0:</u>
	\perp = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts
	When $IPEN = 1$:
	1 = Enables all low-priority peripheral interrupts
	0 = Disables all low-priority peripheral interrupts
bit 5	TMR0IE: TMR0 Overflow Interrupt Enable bit
	1 = Enables the TMR0 overflow interrupt
	0 = Disables the TMR0 overflow interrupt
bit 4	INTOIE: INTO External Interrupt Enable bit
	1 = Enables the INTO external interrupt
	0 = Disables the INT0 external interrupt
bit 3	RBIE: RB Port Change Interrupt Enable bit ⁽²⁾
	1 = Enables the RB port change interrupt
	0 = Disables the RB port change interrupt
bit 2	TMR0IF: TMR0 Overflow Interrupt Flag bit
	1 = I MR0 register has overflowed (must be cleared in software)
L 11 A	
DIT 1	IN I UIF: IN I U External Interrupt Flag bit
	1 = The INTO external interrupt did not occur 0 = The INTO external interrupt did not occur
hit 0	BBIE : BB Port Change Interrunt Elag hit(1)
	1 = At least one of the RB<7.4> pins changed state (must be cleared in software)
	0 = None of the RB<7:4> pins have changed state
Note 1:	A mismatch condition will continue to set this bit. To end the mismatch condition and allow the bit to be
•	cleared, read PORIB and wait one additional instruction cycle.

2: Each pin on PORTB for interrupt-on-change is individually enabled and disabled in the IOCB register. By default, all pins are disabled.

TABLE 11-5:	PORTC FUNCTIONS	(CONTINUED)
-		/

Pin Name	Function	TRIS Setting	I/O	l/O Type	Description		
RC7/CANRX/	RC7	0	0	DIG	LATC<7> data output.		
RX1/DT1/		1	Ι	ST	PORTC<7> data input.		
CCP4	CANRX ⁽²⁾	1	Ι	ST	CAN bus RX.		
	RX1 ⁽¹⁾	1	Ι	ST	Asynchronous serial receive data input (EUSARTx module).		
	DT1 ⁽¹⁾	1	0	DIG	Synchronous serial data output (EUSARTx module); takes priority over port data		
		1	I	ST	Synchronous serial data input (EUSARTx module); user must configure as an input.		
	CCP4	0	0	DIG	CCP4 compare/PWM output; takes priority over port data.		
		1	Ι	ST	CCP4 capture input.		

Legend: O = Output; I = Input; $I^2C = I^2C/SMBus$; ANA = Analog Signal; DIG = CMOS Output; ST = Schmitt Trigger Buffer Input; x = Don't care (TRIS bit does not affect port direction or is overridden for this option)

Note 1: The pin assignment for 28, 40 and 44-pin devices (PIC18F2XK80 and PIC18F4XK80).

2: The alternate pin assignment for CANRX and CANTX on 28, 40 and 44-pin devices (PIC18F4XK80) when the CANMX Configuration bit is set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0
LATC	LATC7	LATBC6	LATC5	LATCB4	LATC3	LATC2	LATC1	LATC0
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0
ODCON	SSPOD	CCP50D	CCP4OD	CCP3OD	CCP2OD	CCP10D	U2OD	U10D

Legend: Shaded cells are not used by PORTC.

FIGURE 12-1: SIMPLIFIED BLOCK DIAGRAM OF THE DATA SIGNAL MODULATOR

FIGURE 19-2: COMPARE MODE OPERATION BLOCK DIAGRAM

FIGURE 20-11: EXAMPLE OF PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE

20.4.3 START-UP CONSIDERATIONS

When any PWM mode is used, the application hardware must use the proper external pull-up and/or pull-down resistors on the PWM output pins.

Note:	When the microcontroller is released from
	Reset, all of the I/O pins are in the
	high-impedance state. The external
	circuits must keep the power switch
	devices in the OFF state until the micro-
	controller drives the I/O pins with the
	proper signal levels or activates the PWM
	output(s).

The CCP1M<1:0> bits of the CCP1CON register allow the user to choose whether the PWM output signals are active-high or active-low for each pair of PWM output pins (P1A/P1C and P1B/P1D). The PWM output polarities must be selected before the PWM pin output drivers are enabled. Changing the polarity configuration while the PWM pin output drivers are enabled is not recommended since it may result in damage to the application circuits.

The P1A, P1B, P1C and P1D output latches may not be in the proper states when the PWM module is initialized. Enabling the PWM pin output drivers at the same time as the Enhanced PWM modes may cause damage to the application circuit. The Enhanced PWM modes must be enabled in the proper Output mode and complete a full PWM cycle before enabling the PWM pin output drivers. The completion of a full PWM cycle is indicated by the TMR2IF or TMR4IF bit of the PIR1 or PIR4 register being set as the second PWM period begins.

20.4.4 ENHANCED PWM AUTO-SHUTDOWN MODE

The PWM mode supports an Auto-Shutdown mode that will disable the PWM outputs when an external shutdown event occurs. Auto-Shutdown mode places the PWM output pins into a predetermined state. This mode is used to help prevent the PWM from damaging the application.

The auto-shutdown sources are selected using the ECCP1AS<2:0> bits (ECCP1AS<6:4>). A shutdown event may be generated by:

- A logic '0' on the pin that is assigned the FLT0 input function
- Comparator C1
- Comparator C2
- Setting the ECCP1ASE bit in firmware

FIGURE 22-7: ASYNCHRONOUS RECEPTION

TABLE 22-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
PIR1	PSPIF	ADIF	RC1IF	TX1IF	SSPIF	TMR1GIF	TMR2IF	TMR1IF
PIE1	PSPIE	ADIE	RC1IE	TX1IE	SSPIE	TMR1GIE	TMR2IE	TMR1IE
IPR1	PSPIP	ADIP	RC1IP	TX1IP	SSPIP	TMR1GIP	TMR2IP	TMR1IP
PIR3	_	—	RC2IF	TX2IF	CTMUIF	CCP2IF	CCP1IF	_
PIE3	—	_	RC2IE	TX2IE	CTMUIE	CCP2IE	CCP1IE	—
IPR3	_	—	RC2IP	TX2IP	CTMUIP	CCP2IP	CCP1IP	_
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
RCREG1	EUSART1 F	Receive Regist	ter					
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D
BAUDCON1	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN
SPBRGH1	EUSART1 E	Baud Rate Ger	nerator Regis	ster High Byte	9			
SPBRG1	EUSART1 E	Baud Rate Ger	nerator Regis	ster				
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
RCREG2	EUSART2 F	Receive Regist	ter					
TXSTA2	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D
BAUDCON2	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN
SPBRGH2	EUSART2 Baud Rate Generator Register High Byte							
SPBRG2	EUSART2 Baud Rate Generator Register Low Byte							
PMD0	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	UART2MD	UART1MD	SSPMD
ODCON	SSPOD	CCP5OD	CCP4OD	CCP3OD	CCP2OD	CCP10D	U2OD	U10D

Legend: — = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
PIR1	PSPIF	ADIF	RC1IF	TX1IF	SSPIF	TMR1GIF	TMR2IF	TMR1IF
PIE1	PSPIE	ADIE	RC1IE	TX1IE	SSPIE	TMR1GIE	TMR2IE	TMR1IE
IPR1	PSPIP	ADIP	RC1IP	TX1IP	SSPIP	TMR1GIP	TMR2IP	TMR1IP
ADRESH	A/D Result	Register High	n Byte					
ADRESL	A/D Result	Register Low	/ Byte					
ADCON0	_	CHS4	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON
ADCON1	TRIGSEL1	TRIGSEL0	VCFG1	VCFG0	VNCFG	CHSN2	CHSN1	CHSN0
ADCON2	ADFM	—	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0
ANCON0	ANSEL7	ANSEL6	ANSEL5	ANSEL4	ANSEL3	ANSEL2	ANSEL1	ANSEL0
ANCON1	—	ANSEL14	ANSEL13	ANSEL12	ANSEL11	ANSEL10	ANSEL9	ANSEL8
PORTA	RA7 ⁽¹⁾	RA6 ⁽¹⁾	RA5	—	RA3	RA2	RA1	RA0
TRISA	TRISA7 ⁽¹⁾	TRISA6 ⁽¹⁾	TRISA5	—	TRISA3	TRISA2	TRISA1	TRISA0
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0
PORTE	RE7	RE6	RE5	RE4	RE3	—	RE1	RE0
TRISE	TRISE7	TRISE6	TRISE5	TRISE4	_	TRISE2	TRISE1	TRISE0
PMD1	PSPMD	CTMUMD	ADCMD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	TMR0MD

TABLE 23-2:	REGISTERS ASSOCIATED WITH THE A/D MODULE
-------------	---

Legend: — = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: These bits are available only in certain oscillator modes when the FOSC2 Configuration bit = 0. If that Configuration bit is cleared, this signal is not implemented.

	R-1 R-0	R-0	R-0	R-0	R-0	R-0	U-O
Mode 0			(1)	ICODE2	ICODF1		_
				ICODEE	ICODET	ICODEO	
Mode 1 2	R-1 R-0	R-0	R-0	R-0	R-0	R-0	R-0
Wode 1,2	OPMODE2 ⁽¹⁾ OPMOE	E1 ⁽¹⁾ OPMODE0	⁽¹⁾ EICODE4	EICODE3	EICODE2	EICODE1	EICODE0
	bit 7						bit 0
Legend:							
R = Readabl	e bit	W = Writab	le bit	U = Unimp	lemented bi	t, read as '0'	
-n = Value at	POR	'1' = Bit is s	et	'0' = Bit is o	cleared	x = Bit is u	nknown
bit 7-5		ation Mode Status	hits(1)				
bit / b	111 = Reserved		010				
	110 = Reserved						
	101 = Reserved						
	100 = Configuration m	ode					
	011 = Listen Only mod	e					
	010 = Loopback mode						
	001 = Disable/Sleep m	ode					
	000 = Normal mode						
bit 4	Mode 0: Unimplemented: Read	1 as '0'					
bit 3-1 4-0	Mode 0 [.]						
511 0 1,4 0	ICODE<2:0>: Interrupt	Code bits					
	When an interrupt occ	urs, a prioritized	coded interru	pt value will	be present	in these bit	s. This code
	indicates the source of	the interrupt. By	copying ICOE	DE<3:1> to W	/IN<3:0> (M	ode 0) or El	CODE<4:0>
	to EWIN<4:0> (Mode 1	and 2), it is possib	le to select th	e correct buff	er to map in	to the Acces	s Bank area.
	See Example 27-2 for	a code example. T	o simplify the	description,	the following	g table lists a	all five bits.
		Mode 0		Mode 1		Mode 2	
	No interrupt	00000		00000		00000	
	CAN bus error interrup	t 00010		00010		00010	
	TXB2 interrupt	00100		00100		00100	
	TXB1 interrupt	00110		00110		00110	
	TXB0 interrupt	01000		01000		01000	
	RXB1 interrupt	01010		10001			
	RXB0 interrupt	01100		10000		10000	
	Wake-up Interrupt	00010		01110		01110	
	RXBU Interrupt			10000		10000	
	RABT Interrupt			10001		10000 10010 (2)	
	RA/TA DU IIIterrupt			10010		10010() 10011 (2)	
	RX/TX B1 Interrupt			10100		10100 (2)	
	RX/TX B2 interrupt			10100		10100() 10101 (2)	
	RX/TX B4 interrupt			10101		10101 10110 (2)	
	RX/TX B5 interrupt			10110		10110 10111 (2)	
		_		TOTT		- V	
bit 0	Mode 0: Unimplemented: Read	1 as '0'					
hit 4-0	Mode 1 2						
	FICODE<4.05. Interrue	nt Code hits					
	See ICODE<3.1> abov	e					
		-					
Note 1. To	achieve maximum now	or caving and/or a	hla ta waka u	in on CAN bu	ie activity ev	witch the CA	N modulo in

REGISTER 27-2: CANSTAT: CAN STATUS REGISTER

Note 1: To achieve maximum power saving and/or able to wake-up on CAN bus activity, switch the CAN module in Disable/Sleep mode before putting the device to Sleep.

2: If the buffer is configured as a receiver, the EICODE bits will contain '10000' upon interrupt.

REGISTER 27-23: BnCON: TX/RX BUFFER 'n' CONTROL REGISTERS IN TRANSMIT MODE $[0 \le n \le 5, TXnEN (BSEL0<n>) = 1]^{(1)}$

R/W-0) R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TXBIF(3) TXABT(3)	TXI ARB ⁽³⁾	TXFRR ⁽³⁾	TXRFQ ^(2,4)	RTREN	TXPRI1 ⁽⁵⁾	TXPRI0 ⁽⁵⁾
bit 7			.,				bit 0
							2.00
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	TXBIF: Trans	smit Buffer Inter	rupt Flag bit ⁽³	3)			
	1 = A messa	ge was success	fully transmit	ted			
	0 = No mess	age was transm	nitted				
bit 6	TXABT: Trar	smission Abort	ed Status bit ^{(s}	5)			
	1 = Message	e was aborted	d				
bit 5			u t Arbitration S	tatus hit(3)			
DIU		lost arbitration	while being s	ont			
	0 = Message	did not lose arl	bitration while	being sent			
bit 4	TXERR: Tra	nsmission Error	Detected Sta	tus bit ⁽³⁾			
	1 = A bus eri	ror occurred wh	ile the messa	ge was being s	ent		
	0 = A bus eri	or did not occu	while the me	essage was bei	ng sent		
bit 3	TXREQ: Trai	nsmit Request S	Status bit ^(2,4)				
	1 = Requests	s sending a mes	sage; clears	the TXABT, TX	LARB and TXE	ERR bits	
hit 2	0 - Automati	cally cleared wi	Transmission		ully serit		
	1 = When au	emote transmis	sion request	is received TX	REO will be au	itomatically set	
	0 = When a i	remote transmis	sion request	is received, TX	REQ will be un	affected	
bit 1-0	TXPRI<1:0>	: Transmit Prior	ity bits ⁽⁵⁾				
	11 = Priority	11 = Priority Level 3 (highest priority)					
	10 = Priority	10 = Priority Level 2					
	01 = Priority	Level 1 Level 0 (lowest	priority)				
	00 – i nonty		priority)				
Note 1:	These registers a	re available in M	lode 1 and 2	only.			
2:	Clearing this bit in	software while	the bit is set	will request a m	essage abort.		
3:	This bit is automa	tically cleared w	hen IXREQ	is set.			

4: While TXREQ is set or a transmission is in progress, Transmit Buffer registers remain read-only.

5: These bits set the order in which the Transmit Buffer register will be transferred. They do not alter the CAN message identifier.

REGISTER 28-11: CONFIG7L: CONFIGURATION REGISTER 7 LOW (BYTE ADDRESS 30000Ch)

U-0	U-0	U-0	U-0	R/C-1	R/C-1	R/C-1	R/C-1
—	—	—	—	EBTR3	EBTR2	EBTR1	EBTR0
bit 7							bit 0

Legend:	C = Clearable bit			
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-4	Unimplemented: Read as '0'
bit 3	EBTR3: Table Read Protection bit
	 1 = Block 3 is not protected from table reads executed in other blocks⁽¹⁾ 0 = Block 3 is protected from table reads executed in other blocks⁽¹⁾
bit 2	EBTR2: Table Read Protection bit
	 1 = Block 2 is not protected from table reads executed in other blocks⁽¹⁾ 0 = Block 2 is protected from table reads executed in other blocks⁽¹⁾
bit 1	EBTR1: Table Read Protection bit
	 1 = Block 1 is not protected from table reads executed in other blocks⁽¹⁾ 0 = Block 1 is protected from table reads executed in other blocks⁽¹⁾
bit 0	EBTR0: Table Read Protection bit
	 1 = Block 0 is not protected from table reads executed in other blocks⁽¹⁾ 0 = Block 0 is protected from table reads executed in other blocks⁽¹⁾

Note 1: For the memory size of the blocks, see Figure 28-6.

BRA		Unconditio	onal Branch						
Synta	ax:	BRA n	BRA n						
Oper	ands:	-1024 ≤ n ≤	1023						
Oper	ation:	(PC) + 2 + 2	$2n \rightarrow PC$						
Statu	s Affected:	None							
Enco	ding:	1101	0nnn nnr	in nnnn					
Desc	ription:	Add the 2's to the PC. S incremente instruction, PC + 2 + 2 two-cycle ir	Add the 2's complement number, '2n', to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is a two-cycle instruction.						
Word	ls:	1	1						
Cycle	es:	2	2						
QC	ycle Activity:								
	Q1	Q2	Q3	Q4					
	Decode	Read literal 'n'	Process Data	Write to PC					
	No operation	No operation	No operation	No operation					
<u>Exan</u>	n <u>ple:</u> Before Instruc PC	HERE tion = ad	BRA Jump dress (HERE)	1					
	After Instruction PC	on = ad	dress (Jump))					

BSF	Bit Set f					
Syntax:	BSF f, b {	,a}				
Operands:	$0 \le f \le 255$ $0 \le b \le 7$ $a \in [0,1]$	$0 \le f \le 255$ $0 \le b \le 7$ $a \in [0,1]$				
Operation:	$1 \rightarrow \text{f}$					
Status Affected:	None					
Encoding:	1000	bbba ff	ff ffff			
Description:	Bit 'b' in reg	ister 'f' is set.				
If 'a' is '0', the Access Bank is sele If 'a' is '1', the BSR is used to sele GPR bank.						
	in a is of and the extended instruction operate in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 29.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexe					
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3	Q4			
Decode	Read register 'f'	Process Data	Write register 'f'			
Example:BSFFLAG_REG, 7, 1Before InstructionFLAG_REG = 0AhAfter InstructionFLAG_REG = 8Ah						

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW

BOTTOM VIEW

	Units		MILLIMETERS		
Dimensio	n Limits	MIN	NOM	MAX	
Number of Pins	Ν		44		
Pitch	е		0.65 BSC		
Overall Height	А	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3		0.20 REF		
Overall Width	E		8.00 BSC		
Exposed Pad Width	E2	6.30	6.45	6.80	
Overall Length	D		8.00 BSC		
Exposed Pad Length	D2	6.30	6.45	6.80	
Contact Width	b	0.25	0.30	0.38	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	К	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103B

TABLE B-2: NOTABLE DIFFERENCES BETWEEN 64-PIN DEVICES – PIC18F66K80 AND PIC18F8680 FAMILIES

Characteristic	PIC18F66K80 Family	PIC18F8680 Family
Max Operating Frequency	64 MHz	40 MHz
Max Program Memory	64K	64K
Data Memory (bytes)	3,648	3,328
СТМИ	Yes	No
SOSC Oscillator Options	Low-power oscillator option for SOSC	No options
T1CKI Clock	T1CKI can be used as a clock without enabling the SOSC oscillator	No
INTOSC	Up to 16 MHz	No Internal Oscillator
SPI/I ² C™	1 Module	1 Module
Timers	Two 8-bit, Three 16-bit	Two 8-bit, Three 16-bit
ECCP	1	1
ССР	4	1
Data EEPROM (bytes)	1,024	1,024
WDT Prescale Options	22	16
5V Operation	18FXXK80 parts – 5V operation 18LFXXK80 parts – 3.3V operation	Yes
nanoWatt XLP	Yes	No
On-Chip 3.3V Regulator	18FXXK80 parts – Yes 18LFXXK80 parts – No	No
Low-Power BOR	Yes	No
A/D Converter	12-bit signed differential	10-bit
A/D Channels	15 Channels	12 Channels
Internal Temp Sensor	Yes	No
EUSART	Тwo	One
Comparators	Тwo	Тwo
Oscillator Options	14	Seven
Ultra Low-Power Wake-up (ULPW)	Yes	No
Adjustable Slew Rate for I/O	Yes	No
PLL	Available for all oscillator options	Available for only high-speed crystal and external oscillator
Data Signal Modulator	Yes	No

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support