

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	ECANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f26k80t-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-4: PIC18F2XK80 I/O DESCRIPTIONS (CONTINUED)

Pin Number		umber				
Pin Name	QFN	SSOP/ SPDIP /SOIC	Pin Type	Buffer Type	Description	
					PORTB is a bidirectional I/O port.	
RB0/AN10/C1INA/FLT0/ INT0	18	21				
RB0			I/O	ST/ CMOS	Digital I/O.	
AN10			I	Analog	Analog Input 10.	
C1INA			I	Analog	Comparator 1 Input A.	
FLT0			Ι	ST	Enhanced PWM Fault input for ECCP1.	
INT0			Ι	ST	External Interrupt 0.	
RB1/AN8/C1INB/P1B/ CTDIN/INT1	19	22				
RB1			I/O	ST/ CMOS	Digital I/O.	
AN8			I	Analog	Analog Input 8.	
C1INB			I	Analog	Comparator 1 Input B.	
P1B			0	CMOS	Enhanced PWM1 Output B.	
CTDIN			I	ST	CTMU pulse delay input.	
INT1			I	ST	External Interrupt 1.	
RB2/CANTX/C1OUT/ P1C/CTED1/INT2	20	23				
RB2			I/O	ST/ CMOS	Digital I/O.	
CANTX			0	CMOS	CAN bus TX.	
C1OUT			0	CMOS	Comparator 1 output.	
P1C			0	CMOS	Enhanced PWM1 Output C.	
CTED1			Ι	ST	CTMU Edge 1 input.	
INT2			I	ST	External Interrupt 2.	
RB3/CANRX/C2OUT/ P1D/CTED2/INT3	21	24				
RB3			I/O	ST/ CMOS	Digital I/O.	
CANRX			Ι	ST	CAN bus RX.	
C2OUT			0	CMOS	Comparator 2 output.	
P1D			0	CMOS	Enhanced PWM1 Output D.	
CTED2			I	ST	CTMU Edge 2 input.	
INT3			I	ST	External Interrupt 3.	
Legend: CMOS = CMOS	S comp	atible inp	but or	output	$I^2C^{TM} = I^2C/SMBus$ input buffer	
ST = Schmitt Trigger input with CMOS levels Analog = Analog input I = Input O = Output						

P = Power

Pin NameQFN/ TOFPQFN/ TOFPPin TypeBurler TypeDescriptionRA0/CVREF/AN0/ULPWU RA0219//OST/ CMOSGeneral purpose I/O pin.CVREF AN0 ULPWU RA11AnalogComparator reference voltage output.AN0 ULPWU RA1320IAnalogRA11AnalogUltra Low-Power Wake-up input.RA11AnalogDigital I/O.RA2/VREF-/AN2/C2INC421IRA21AnalogAnalog Input 1.C1INC RA2421IRA21AnalogComparator 1 Input C.VREF- AN2 C2INC421IRA3522IAnalog Input 2.RA3522IAnalog Input 2.RA3724IAnalog Analog Input 3.RA51AnalogAnalog Input 3.RA51Analog Analog Input 4.RA51Analog Analog Input 4.		Pin N	umber	Dia Duff	Duffer	
RA0/CVREF/AN0/ULPWU 2 19 I/O ST/ CMOS General purpose I/O pin. RA0 0 Analog Comparator reference voltage output. AN0 1 Analog Comparator reference voltage output. AN0 1 Analog Malog Input 0. ULPWU 3 20 Ultra Low-Power Wake-up input. RA1/AN1/C1INC 3 20 I/O RA1 1 I/O ST/ CMOS Digital I/O. AN1 1 Analog Analog Input 1. C1INC 1 Analog Comparator 1 Input C. RA2/VREF-/AN2/C2INC 4 21 I/O RA3 1 I Analog C2INC 1 Analog Analog Input 2. RA3/VREF+/AN3 5 22 I/O RA3/VREF+/AN3 5 22 I/O RA3 1 Analog Analog Comparator 2 Input C. RA3/VREF+/AN3 5 22 I/O RA3 1 Analog Analog VREF+ 1 Analog Analog Input 2. RA3 2 I/O ST/ CMOS RA5 I Analog Analog Input 3. RA5	Pin Name	PDIP	QFN/ TQFP	туре	Туре	Description
RA0/CVREF/AN0/ULPWU219I/OST/ CMOSGeneral purpose I/O pin.RA0IIAnalogComparator reference voltage output.AN0IAnalogAnalog Input 0.ULPWUIAnalogUltra Low-Power Wake-up input.RA1/AN1/C1INC320IRA1IAnalogInalogAN1IAnalogComparator 1 Input C.C1INCIAnalogComparator 1 Input C.RA2/VREF-/AN2/C2INC421IRA2IIAnalogVREF-IAnalogAN2IIAN3522IRA3IAnalogVREF+IAnalogAN3F24RA3IIAN3IIRA5IIAN4IIAN4IAnalogAN4IAnalogAN4IIAnalogAN4IIAnalogIAnalogIAnalogIAnalogIAnalogIAnalogIAnalogIAnalogIAnalogIAnalogIAnalogIAnalogIAnalogIAnalogIAnalogIAnalogIAnalogIAnalogI						PORTA is a bidirectional I/O port.
RA0I/OST/ CMOSGeneral purpose I/O pin.CVREFIAnalogComparator reference voltage output.AN0IAnalogInalogIura Low-Power Wake-up input.ULPWUIAnalogUltra Low-Power Wake-up input.RA1/AN1/C1INC320IRA1IAnalogIura Low-Power Wake-up input.RA1IAnalogAnalog Input 1.C1INCIAnalogAnalog Input 1.RA2/VREF-/AN2/C2INC421IRA2IIAnalogVREF-IAnalogAnalog Input 2.C2INCIAnalogAnalog Input 2.RA3IIAnalogVREF+IAnalogAN3IIAnalogRA5/AN4/HLVDIN/T1CKI/724RA5IAnalogAN4IAnalogAN4IAnalogAN4IAnalogAN4IAnalogAN4IAN4IIAnalogAN4IIAnalogAN4IIAnalogIAnalog Input 4.II/IOST/II/IOST/II/IOST/II/IOST/II/IOST/II/IOST/II/IOST/II/IOII	RA0/CVREF/AN0/ULPWU	2	19			
CVREFIIAnalogComparator reference voltage output.AN0IAnalogAnalogInput 0.ULPWUIAnalogUltra Low-Power Wake-up input.RA1/AN1/C1INC320IAnalogRA1IAnalogUltra Low-Power Wake-up input.RA1IAnalogDigital I/O.AN1IAnalogAnalog Comparator 1 Input C.C1INCIAnalogComparator 1 Input C.RA2/VREF-/AN2/C2INC421IRA2IIAnalogVREF-IAnalogAnalog Input 2.C2INCIAnalogComparator 2 Input C.RA3/VREF+/AN3522IRA3IIAnalogVREF+IAnalogAN3IIRA5/AN4/HLVDIN/T1CKI/724IIAnalogAN4IIAN4IAnalogAN4IAnalogAN4IAnalogAN4IAnalogAN4IAnalogAN4IAnalogAN4IAnalogAN4IAnalogAN4IAnalogAN4IAnalogAN4IAnalogAN4IAnalogAN4IAnalogIAnalogAN4IAnalogIAnalogIAnalog	RA0			I/O	ST/ CMOS	General purpose I/O pin.
ANO ULPWUIAnalogAnalog Input 0.RA1/AN1/C1INC320IAnalog Ultra Low-Power Wake-up input.RA1320IJune Power Wake-up input.RA11AnalogST/ CMOSDigital I/O.AN11AnalogAnalog Input 1.C1INC1AnalogComparator 1 Input C.RA2/VREF-/AN2/C2INC421IRA21AnalogAnalog Input 2.C2INC1AnalogAnalog Input 2.C2INC1AnalogComparator 2 Input C.RA3522Iune Power Value	CVREF			0	Analog	Comparator reference voltage output.
ULPWU RA1/AN1/C1INC320IAnalogUltra Low-Power Wake-up input.RA1320I/OST/ CMOSDigital I/O.AN1IAnalogAnalogInput 1.C1INCIAnalogComparator 1 Input C.RA2/VREF-/AN2/C2INC421IRA2IIAnalogVREF-IAnalogA/D reference voltage (low) input.AN2IAnalogComparator 2 Input C.C2INCIAnalogComparator 2 Input C.RA3522IVREF+IAnalogAN3522IRA5IAnalogRA5IIAN4IIAN4IIAN4IIAN4IAnalogINDIIAnalogINDAnalogINDIIINDIIINDIIINDIIINDIIINDIIINDIIINDIIINDIIINDIIINDIIINDIIINDIIINDIIINDIIINDIIINDIIINDIIINDIIIINDIIIINDIIIINDIIIINDIIIINDIIIINDIIII </td <td>AN0</td> <td></td> <td></td> <td>I</td> <td>Analog</td> <td>Analog Input 0.</td>	AN0			I	Analog	Analog Input 0.
RA1/AN1/C1INC320IVST/ CMOSDigital I/O.RA1IIAnalogAnalog Input 1.C1INCIAnalogComparator 1 Input C.RA2/VREF-/AN2/C2INC421IRA2IVOST/ CMOSDigital I/O.VREF-IAnalogAnalog Input 1.AN2IIAnalogC2INCIAnalogAnalog Input 2.RA3/VREF+/AN3522IRA3IIAnalogVREF+IAnalogAN3IIRA5/AN4/HLVDIN/T1CKI/724RA5IIVOST/ SNI/OAN4IAnalogAN4IAnalogAN4IAnalogAN4IAnalogAN4IAnalogAN4IAN4IAN4IAN4IAN4IAN4IAN4IAN4IAN4IIND </td <td>ULPWU</td> <td></td> <td></td> <td>I</td> <td>Analog</td> <td>Ultra Low-Power Wake-up input.</td>	ULPWU			I	Analog	Ultra Low-Power Wake-up input.
RA1I/OST/ CMOSDigital I/O.AN1 C1INCIAnalogAnalog Input 1.C1INCIAnalogComparator 1 Input C.RA2/VREF-/AN2/C2INC421IRA2II/OST/ CMOSDigital I/O.VREF-IAnalogA/D reference voltage (low) input.AN2IAnalogAnalog Input 2.C2INCIAnalogComparator 2 Input C.RA3/VREF+/AN3522IRA3IIAnalogVREF+IAnalogAN3IIRA5/AN4/HLVDIN/T1CKI/ SS724RA5IAnalogAN4IAnalogIIIAnalogAN4IAnalogAN4IIIIAnalog Input 4.IIIIIIIIIIIAnalogIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	RA1/AN1/C1INC	3	20			
AN1 C1INCIAnalogAnalog Input 1.RA2/VREF-/AN2/C2INC421IAnalog Comparator 1 Input C.RA211AnalogComparator 1 Input C.RA211AnalogA/D reference voltage (low) input.AN21AnalogA/D reference voltage (low) input.AN21AnalogAnalog Input 2.C2INC1AnalogComparator 2 Input C.RA3/VREF+/AN3522IRA31AnalogA/D reference voltage (high) input.AN31AnalogA/D reference voltage (high) input.RA5/AN4/HLVDIN/T1CKI/724IRA5IAnalogST/ CMOSAN4IAnalogAnalog Input 4.III/OST/ CMOSDigital I/O.	RA1			I/O	ST/ CMOS	Digital I/O.
C1INC RA2/VREF-/AN2/C2INC421IAnalogComparator 1 Input C.RA24211/OST/ CMOSDigital I/O.VREF- AN2 	AN1			Т	Analog	Analog Input 1.
RA2/VREF-/AN2/C2INC421I/OST/ CMOSDigital I/O.RA2II/OST/ CMOSDigital I/O.VREF-IAnalogA/D reference voltage (low) input.AN2IAnalogAnalog Input 2.C2INCIAnalogComparator 2 Input C.RA3/VREF+/AN3522IRA3IIAnalogVREF+IAnalogAN3IIRA5/AN4/HLVDIN/T1CKI/724I/OST/ CMOSDigital I/O.RA5I/OST/ CMOSDigital I/O.RA5IAnalogAN4IAnalogHVDNIAnalogAN4IAnalogI/VDNIAnalogI/VDNIAnalogI/VDNIAnalogI/VDNIAnalogI/VDNIAnalogI/VDNIAnalogI/VDNIAnalogI/VDNII/VDN <td>C1INC</td> <td></td> <td></td> <td>Т</td> <td>Analog</td> <td>Comparator 1 Input C.</td>	C1INC			Т	Analog	Comparator 1 Input C.
RA2I/OST/ CMOSDigital I/O.VREF- AN2 C2INCIAnalogA/D reference voltage (low) input.AN2 C2INCIAnalogAnalog Input 2.RA3/VREF+/AN3522IAnalogRA3522IDigital I/O.VREF+ AN31AnalogA/D reference voltage (high) input.NREF+ AN31AnalogA/D reference voltage (high) input.RA5/AN4/HLVDIN/T1CKI/ SS724IAN4IAnalogAnalog Input 4.IIIAnalogAnalog Input 4.	RA2/VREF-/AN2/C2INC	4	21			
VREF- AN2 C2INCIAnalogA/D reference voltage (low) input.RA3/VREF+/AN3522IAnalogAnalog Input 2.RA3522IIAnalogComparator 2 Input C.RA3522I/OST/ CMOSDigital I/O.VREF+ AN3IAnalogA/D reference voltage (high) input.RA5/AN4/HLVDIN/T1CKI/ SS724IAnalogRA5IIAnalogAnalog Input 3.RA5IIAnalogAnalog Input 4.IIIAnalogAnalog Input 4.	RA2			I/O	ST/ CMOS	Digital I/O.
AN2 C2INCIAnalogAnalogAnalog Input 2.RA3/VREF+/AN3522IComparator 2 Input C.RA3522I/OST/ CMOSDigital I/O.VREF+ AN3IAnalogA/D reference voltage (high) input.RA5/AN4/HLVDIN/T1CKI/ 	VREF-			I	Analog	A/D reference voltage (low) input.
C2INCIAnalogComparator 2 Input C.RA3/VREF+/AN35221Digital I/O.RA31AnalogST/ CMOSDigital I/O.VREF+1AnalogA/D reference voltage (high) input.AN31AnalogAnalog Input 3.RA5/AN4/HLVDIN/T1CKI/ SS7241AN41AnalogDigital I/O.IVOST/ CMOSDigital I/O.IVOIAnalog Analog Input 4.	AN2			Т	Analog	Analog Input 2.
RA3/VREF+/AN3 5 22 I/O ST/ CMOS Digital I/O. VREF+ I Analog A/D reference voltage (high) input. AN3 I Analog Analog Input 3. RA5/AN4/HLVDIN/T1CKI/ SS 7 24 I I AN4 I Analog Analog Input 4. IVO ST/ CMOS Digital I/O.	C2INC			Т	Analog	Comparator 2 Input C.
RA3 I/O ST/ CMOS Digital I/O. VREF+ I Analog A/D reference voltage (high) input. AN3 I Analog Analog Input 3. RA5/AN4/HLVDIN/T1CKI/ SS 7 24 I Analog Input 3. RA5 I/O ST/ CMOS Digital I/O. Image: Comparison of the second seco	RA3/VREF+/AN3	5	22			
VREF+ I Analog A/D reference voltage (high) input. AN3 I Analog Analog Input 3. RA5/AN4/HLVDIN/T1CKI/ 7 24 I Image: Comparison of the second seco	RA3			I/O	ST/ CMOS	Digital I/O.
AN3 I Analog Analog Input 3. RA5/AN4/HLVDIN/T1CKI/ 7 24 I Analog Input 3. RA5 I/O ST/ CMOS Digital I/O. AN4 I Analog Analog Input 4.	VREF+			Т	Analog	A/D reference voltage (high) input.
RA5/AN4/HLVDIN/T1CKI/ 7 24 J RA5 I/O ST/ CMOS Digital I/O. AN4 I Analog Analog Input 4.	AN3			Ι	Analog	Analog Input 3.
RA5 I/O ST/ CMOS Digital I/O. AN4 I Analog Analog Input 4.	RA5/AN4/HLVDIN/T1CKI/ SS	7	24			
AN4 I Analog Analog Input 4.	RA5			I/O	ST/ CMOS	Digital I/O.
	AN4			I	Analog	Analog Input 4.
	HLVDIN			I	Analog	High/Low-Voltage Detect input.
T1CKI I ST Timer1 clock input.	T1CKI			I	ST	Timer1 clock input.
SS I ST SPI slave select input.	SS			Ι	ST	SPI slave select input.
Legend: $I^2C^{TM} = I^2C/SMBus$ input buffer CMOS = CMOS compatible input or output	Legend: $I^2C^{TM} = I^2C/SM$	Bus inp	ut buffe	r		CMOS = CMOS compatible input or output

TABLE 1-5:	PIC18F4XK80 PINOUT I/O DESCRIPTIONS (CONTINUED)
IADEE IV.		,

= Input L Ρ

= Power

= Output 0

2.4.1 CONSIDERATIONS FOR CERAMIC CAPACITORS

In recent years, large value, low-voltage, surface-mount ceramic capacitors have become very cost effective in sizes up to a few tens of microfarad. The low-ESR, small physical size and other properties make ceramic capacitors very attractive in many types of applications.

Ceramic capacitors are suitable for use with the internal voltage regulator of this microcontroller. However, some care is needed in selecting the capacitor to ensure that it maintains sufficient capacitance over the intended operating range of the application.

Typical low-cost, 10 μ F ceramic capacitors are available in X5R, X7R and Y5V dielectric ratings (other types are also available, but are less common). The initial tolerance specifications for these types of capacitors are often specified as ±10% to ±20% (X5R and X7R), or -20%/+80% (Y5V). However, the effective capacitance that these capacitors provide in an application circuit will also vary based on additional factors, such as the applied DC bias voltage and the temperature. The total in-circuit tolerance is, therefore, much wider than the initial tolerance specification.

The X5R and X7R capacitors typically exhibit satisfactory temperature stability (ex: $\pm 15\%$ over a wide temperature range, but consult the manufacturer's data sheets for exact specifications). However, Y5V capacitors typically have extreme temperature tolerance specifications of $\pm 22\%$. Due to the extreme temperature tolerance, a 10 μ F nominal rated Y5V type capacitor may not deliver enough total capacitance to meet minimum internal voltage regulator stability and transient response requirements. Therefore, Y5V capacitors are not recommended for use with the internal regulator if the application must operate over a wide temperature range.

In addition to temperature tolerance, the effective capacitance of large value ceramic capacitors can vary substantially, based on the amount of DC voltage applied to the capacitor. This effect can be very significant, but is often overlooked or is not always documented.

A typical DC bias voltage vs. capacitance graph for X7R type and Y5V type capacitors is shown in Figure 2-4.

FIGURE 2-4: DC BIAS VOLTAGE vs. CAPACITANCE CHARACTERISTICS

When selecting a ceramic capacitor to be used with the internal voltage regulator, it is suggested to select a high-voltage rating, so that the operating voltage is a small percentage of the maximum rated capacitor voltage. For example, choose a ceramic capacitor rated at 16V for the 2.5V core voltage. Suggested capacitors are shown in Table 2-1.

2.5 ICSP Pins

The PGC and PGD pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100 Ω .

Pull-up resistors, series diodes and capacitors on the PGC and PGD pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits, and pin input voltage high (VIH) and input low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., PGCx/PGDx pins), programmed into the device, matches the physical connections for the ICSP to the Microchip debugger/emulator tool.

For more information on available Microchip development tools connection requirements, refer to **Section 30.0 "Development Support"**.

REGISTER 3-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

bit 2	HFIOFS: HF-INTOSC Frequency Stable bit
	1 = HF-INTOSC oscillator frequency is stable
	0 = HF-INTOSC oscillator frequency is not stable

- bit 1-0 SCS<1:0>: System Clock Select bits⁽⁴⁾
 - 1x = Internal oscillator block (LF-INTOSC, MF-INTOSC or HF-INTOSC)
 - 01 = SOSC oscillator
 - 00 = Default primary oscillator (OSC1/OSC2 or HF-INTOSC with or without PLL; defined by the FOSC<3:0> Configuration bits, CONFIG1H<3:0>)
- Note 1: The Reset state depends on the state of the IESO Configuration bit (CONFIG1H<7>).
 - 2: Modifying these bits will cause an immediate clock frequency switch if the internal oscillator is providing the device clocks.
 - 3: The source is selected by the INTSRC bit (OSCTUNE<7>).
 - 4: Modifying these bits will cause an immediate clock source switch.
 - 5: INTSRC = OSCTUNE<7> and MFIOSEL = OSCCON2<0>.
 - 6: This is the lowest power option for an internal source.

REGISTER 3-2: OSCCON2: OSCILLATOR CONTROL REGISTER 2

U-0	R-0	U-0	R/W-1	R/W-0	U-0	R-x	R/W-0
—	SOSCRUN	_	SOSCDRV ⁽¹⁾	SOSCGO	—	MFIOFS	MFIOSEL
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6	SOSCRUN: SOSC Run Status bit
	1 = System clock comes from a secondary SOSC0 = System clock comes from an oscillator other than SOSC
bit 5	Unimplemented: Read as '0'
bit 4	SOSCDRV: Secondary Oscillator Drive Control bit ⁽¹⁾
	 1 = High-power SOSC circuit is selected 0 = Low/high-power select is done via the SOSCSEL<1:0> Configuration bits
bit 3	SOSCGO: Oscillator Start Control bit
	 1 = Oscillator is running even if no other sources are requesting it. 0 = Oscillator is shut off if no other sources are requesting it (When the SOSC is selected to run from a digital clock input, rather than an external crystal, this bit has no effect.)
bit 2	Unimplemented: Read as '0'
bit 1	MFIOFS: MF-INTOSC Frequency Stable bit
	1 = MF-INTOSC is stable 0 = MF-INTOSC is not stable
bit 0	MFIOSEL: MF-INTOSC Select bit
	 1 = MF-INTOSC is used in place of HF-INTOSC frequencies of 500 kHz, 250 kHz and 31.25 kHz 0 = MF-INTOSC is not used
Note 1:	When SOSC is selected to run from a digital clock input, rather than an external crystal, this bit has no effect.

REGISTER 7-1: EECON1: EEPROM CONTROL REGISTER 1

R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0
EEPGD	CFGS	—	FREE	WRERR ⁽¹⁾	WREN	WR	RD
bit 7							bit 0

Legend:	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	EEPGD: Flash Program or Data EEPROM Memory Select bit
	1 = Accesses Flash program memory
	0 = Accesses data EEPROM memory
bit 6	CFGS: Flash Program/Data EEPROM or Configuration Select bit
	1 = Accesses Configuration registers
	0 = Accesses Flash program or data EEPROM memory
bit 5	Unimplemented: Read as '0'
bit 4	FREE: Flash Row Erase Enable bit
	1 = Erases the program memory row addressed by TBLPTR on the next WR command
	(cleared by completion of erase operation)
1.11.0	0 = Performs write-only
bit 3	WRERR: Flash Program/Data EEPROM Error Flag bit"
	1 = A write operation is prematurely terminated (any Reset during self-timed programming in normal operation or an improper write attempt)
	0 = The write operation completed
bit 2	WREN: Flash Program/Data EEPROM Write Enable bit
	1 = Allows write cycles to Flash program/data EEPROM
	0 = Inhibits write cycles to Flash program/data EEPROM
bit 1	WR: Write Control bit
	1 = Initiates a data EEPROM erase/write cycle or, a program memory erase cycle or write cycle.
	(The operation is self-timed and the bit is cleared by hardware once the write is complete. The WR bit can only be set (not cleared) in software)
	0 = Write cvcle to the EEPROM is complete
bit 0	RD: Read Control bit
	1 = Initiates an EEPROM read (Read takes one cycle, RD is cleared in hardware. The RD bit can only
	be set (not cleared) in software. RD bit cannot be set when EEPGD = 1 or CFGS = 1.)
	0 = Does not initiate an EEPROM read

Note 1: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the error condition.

REGISTER 10-17: IPR4: PERIPHERAL INTERRUPT PRIORITY REGISTER 4

TMR4IP EEIP CMP2IP CMP1IP — CCP5IP CCP4 bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is	IP CCP3IP bit 0
bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is	bit 0
Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is	
Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is	
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is	
	unknown
bit 7 TMR4IP: TMR4 Overflow Interrupt Priority bit	
1 = High priority 0 = Low priority	
bit 6 EEIP: EE Interrupt Priority bit	
1 = High priority	
0 = Low priority	
bit 5 CMP2IP: CMP2 Interrupt Priority bit	
1 = High priority 0 = Low priority	
bit 4 CMP1IP: CMP1 Interrupt Priority bit	
1 = High priority 0 = Low priority	
bit 3 Unimplemented: Read as '0'	
bit 2 CCP5IP: CCP5 Interrupt Priority bit	
1 = High priority 0 = Low priority	
bit 1 CCP4IP: CCP4 Interrupt Priority bit	
1 = High priority 0 = Low priority	
bit CCP3IP: CCP3 Interrupt Priority bits	
1 = High priority	
0 = Low priority	

16.0 TIMER3 MODULE

The Timer3 timer/counter modules incorporate these features:

- Software selectable operation as a 16-bit timer or counter
- Readable and writable eight-bit registers (TMR3H and TMR3L)
- Selectable clock source (internal or external) with device clock or SOSC oscillator internal options
- Interrupt-on-overflow

Γ.

Module Reset on ECCP Special Event Trigger

A simplified block diagram of the Timer3 module is shown in Figure 16-1.

The Timer3 module is controlled through the T3CON register (Register 16-1). It also selects the clock source options for the ECCP modules. (For more information, see Section 20.1.1 "ECCP Module and Timer Resources".)

The Fosc clock source should not be used with the ECCP capture/compare features. If the timer will be used with the capture or compare features, always select one of the other timer clocking options.

REGISTER 16-1: T3CON: TIMER3 CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TMR3CS1	TMR3CS0	T3CKPS1	T3CKPS0	SOSCEN	T3SYNC	RD16	TMR3ON
bit 7							bit 0

Legend:				
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7-6	TMR3CS	<1:0>: Timer3 Clock Source	Select bits	
	10 = Time	er3 clock source is either fron	n pin or oscillator, depending o	n the SOSCEN bit:
	SOSCEN	= 0:		
	External c	lock is from 13CKI pin (on th	ie rising edge).	
	Dependin	<u>= 1:</u> a on the SOSCSEL v Configu	uration hit the clock source is a	either a crystal oscillator on
	SOSCI/S	OSCO or an internal digital cl	ock from the SCLKI pin.	
	01 = Time	erx clock source is system clo	ock (Fosc) ⁽¹⁾	
	00 = Time	erx clock source is instruction	clock (Fosc/4)	
bit 5-4	T3CKPS<	:1:0>: Timer3 Input Clock Pre	escale Select bits	
	11 = 1:8 F	Prescale value		
	10 = 1:4 F 01 = 1:2 F	Prescale value		
	00 = 1:1 F	Prescale value		
bit 3	SOSCEN	SOSC Oscillator Enable bit		
	1 = SOSC	is enabled and available for	Timer3	
	0 = SOSC	is disabled and available for	r Timer3	
bit 2	T3SYNC:	Timer3 External Clock Input	Synchronization Control bit	
			from Timer1/Timer3.)	
	1 = Does	<u>R3CS<1:0> = 10:</u> not synchronize external clor	rk innut	
	0 = Synch	ronizes external clock input	SK input	
	When TM	R3CS<1:0> = 0x:		
	This bit is	ignored; Timer3 uses the inter-	ernal clock.	
bit 1	RD16: 16	Bit Read/Write Mode Enable	e bit	
	1 = Enabl	es register read/write of Time	er3 in one 16-bit operation	
1.1.0	0 = Enabl	es register read/write of Time	er3 in two eight-bit operations	
bit 0	IMR3ON:	: Timer3 On bit		
	1 = Enable 0 = Stops	es limer3 Timer3		

Note 1: The Fosc clock source should not be selected if the timer will be used with the ECCP capture/compare features.

18.1 CTMU Registers

The control registers for the CTMU are:

- CTMUCONH
- CTMUCONL
- CTMUICON

The CTMUCONH and CTMUCONL registers (Register 18-1 and Register 18-2) contain control bits for configuring the CTMU module edge source selection, edge source polarity selection, edge sequencing, A/D trigger, analog circuit capacitor discharge and enables. The CTMUICON register (Register 18-3) has bits for selecting the current source range and current source trim.

REGISTER 18-1: CTMUCONH: CTMU CONTROL HIGH REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CTMUEN	—	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	CTMUEN: CTMU Enable bit
	1 = Module is enabled
	0 = Module is disabled
bit 6	Unimplemented: Read as '0'
bit 5	CTMUSIDL: Stop in Idle Mode bit
	1 = Discontinues module operation when device enters Idle mode0 = Continues module operation in Idle mode
bit 4	TGEN: Time Generation Enable bit
	1 = Enables edge delay generation
	 Disables edge delay generation
bit 3	EDGEN: Edge Enable bit
	1 = Edges are not blocked
	0 = Edges are blocked
bit 2	ESGSEQEN: Edge Sequence Enable bit
	1 = Edge 1 event must occur before Edge 2 event can occur
	0 = No edge sequence is needed
bit 1	IDISSEN: Analog Current Source Control bit
	1 = Analog current source output is grounded
	0 = Analog current source output is not grounded
bit 0	CTTRIG: CTMU Special Event Trigger bit
	1 = CIMU Special Event Trigger is enabled
	U = CTIVIO Special Event Trigger is disabled

18.4.2 CAPACITANCE CALIBRATION

There is a small amount of capacitance from the internal A/D Converter sample capacitor as well as stray capacitance from the circuit board traces and pads that affect the precision of capacitance measurements. A measurement of the stray capacitance can be taken by making sure the desired capacitance to be measured has been removed.

After removing the capacitance to be measured:

- 1. Initialize the A/D Converter and the CTMU.
- 2. Set EDG1STAT (= 1).
- 3. Wait for a fixed delay of time, t.
- 4. Clear EDG1STAT.
- 5. Perform an A/D conversion.
- 6. Calculate the stray and A/D sample capacitances:

$$COFFSET = CSTRAY + CAD = (I \cdot t)/V$$

Where:

- I is known from the current source measurement step
- · t is a fixed delay
- V is measured by performing an A/D conversion

This measured value is then stored and used for calculations of time measurement or subtracted for capacitance measurement. For calibration, it is expected that the capacitance of CSTRAY + CAD is approximately known; CAD is approximately 4 pF.

An iterative process may be required to adjust the time, t, that the circuit is charged to obtain a reasonable voltage reading from the A/D Converter. The value of t may be determined by setting COFFSET to a theoretical value and solving for t. For example, if CSTRAY is theoretically calculated to be 11 pF, and V is expected to be 70% of VDD or 2.31V, t would be:

$$(4 \text{ pF} + 11 \text{ pF}) \bullet 2.31 \text{V}/0.55 \text{ }\mu\text{A}$$

or 63 µs.

See Example 18-3 for a typical routine for CTMU capacitance calibration.

21.3.1 REGISTERS

The MSSP module has four registers for SPI mode operation. These are:

- MSSP Control Register 1 (SSPCON1)
- MSSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer Register (SSPBUF)
- MSSP Shift Register (SSPSR) Not directly accessible

SSPCON1 and SSPSTAT are the control and status registers in SPI mode operation. The SSPCON1 register is readable and writable. The lower 6 bits of the SSPSTAT are read-only. The upper two bits of the SSPSTAT are read/write.

SSPSR is the shift register used for shifting data in or out. SSPBUF is the buffer register to which data bytes are written to or read from.

In receive operations, SSPSR and SSPBUF together, create a double-buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set.

During transmission, the SSPBUF is not double-buffered. A write to SSPBUF will write to both SSPBUF and SSPSR.

REGISTER 21-1: SSPSTAT: MSSP STATUS REGISTER (SPI MODE)

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE ⁽¹⁾	D/A	Р	S	R/W	UA	BF
bit 7	·						bit 0
Legend:							
R = Readable	e bit	W = Writable	oit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	SMP: Sample	e bit					
	<u>SPI Master m</u>	ode:					
	1 = Input data	is sampled at	the end of data	a output time	2		
	SPI Slave mo	de.			<u>,</u>		
	SMP must be	cleared when	SPI is used in	Slave mode.			
bit 6	CKE: SPI Clo	ock Select bit ⁽¹⁾					
	1 = Transmit	occurs on trans	ition from activ	ve to Idle clock	state		
	0 = Transmit	occurs on trans	ition from Idle	to active clock	state		
bit 5	D/A: Data/Ad	dress bit					
	Used in I ² C™	mode only.					
bit 4	P: Stop bit						
	Used in I ² C m	node only. This	bit is cleared v	when the MSSF	P module is dis	abled; SSPEN	is cleared.
bit 3	S: Start bit						
	Used in I ² C m	node only.					
bit 2	R/W: Read/W	rite Informatior	bit				
	Used in I ² C m	node only.					
bit 1	UA: Update A	Address bit					
	Used in I ² C m	node only.					
bit 0	BF: Buffer Fu	Il Status bit (Re	ceive mode or	nly)			
	1 = Receive is	s complete, SS	PBUF is full				
	0 = Receive is	s not complete,	SSPBUF is er	npty			

Note 1: Polarity of clock state is set by the CKP bit (SSPCON1<4>).

21.4.7.1 Clock Arbitration

Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, deasserts the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the

SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 21-20).

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
PIR1	PSPIF	ADIF	RC1IF	TX1IF	SSPIF	TMR1GIF	TMR2IF	TMR1IF
PIE1	PSPIE	ADIE	RC1IE	TX1IE	SSPIE	TMR1GIE	TMR2IE	TMR1IE
IPR1	PSPIP	ADIP	RC1IP	TX1IP	SSPIP	TMR1GIP	TMR2IP	TMR1IP
PIR3	—	—	RC2IF	TX2IF	CTMUIF	CCP2IF	CCP1IF	
PIE3	—	—	RC2IE	TX2IE	CTMUIE	CCP2IE	CCP1IE	_
IPR3	—	_	RC2IP	TX2IP	CTMUIP	CCP2IP	CCP1IP	-
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
TXREG1	EUSART1 T	ransmit Regi	ster					
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D
BAUDCON1	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN
SPBRGH1	EUSART1 E	Baud Rate Ge	enerator Regi	ster High By	te			
SPBRG1	EUSART1 E	Baud Rate Ge	enerator Regi	ster Low Byt	е			
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
TXREG2	EUSART2 T	ransmit Regi	ster					
TXSTA2	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D
BAUDCON2	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN
SPBRGH2	EUSART2 E	Baud Rate Ge	enerator Regi	ster High By	te			
SPBRG2	EUSART2 E	Baud Rate Ge	enerator Regi	ster Low Byt	е			
PMD0	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	UART2MD	UART1MD	SSPMD
ODCON	SSPOD	CCP50D	CCP4OD	CCP3OD	CCP2OD	CCP10D	U2OD	U10D

TABLE 22-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Legend: — = unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission.

22.3.4 AUTO-WAKE-UP ON SYNC BREAK CHARACTER

During Sleep mode, all clocks to the EUSARTx are suspended. Because of this, the Baud Rate Generator is inactive and a proper byte reception cannot be performed. The auto-wake-up feature allows the controller to wake-up due to activity on the RXx/DTx line while the EUSARTx is operating in Asynchronous mode.

The auto-wake-up feature is enabled by setting the WUE bit (BAUDCONx<1>). Once set, the typical receive sequence on RXx/DTx is disabled and the EUSARTx remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RXx/DTx line. (This coincides with the start of a Sync Break or a Wake-up Signal character for the LIN/J2602 protocol.)

Following a wake-up event, the module generates an RCxIF interrupt. The interrupt is generated synchronously to the Q clocks in normal operating modes (Figure 22-8) and asynchronously if the device is in Sleep mode (Figure 22-9). The interrupt condition is cleared by reading the RCREGx register.

The WUE bit is automatically cleared once a low-to-high transition is observed on the RXx line following the wake-up event. At this point, the EUSARTx module is in Idle mode and returns to normal operation. This signals to the user that the Sync Break event is over.

22.3.4.1 Special Considerations Using Auto-Wake-up

Since auto-wake-up functions by sensing rising edge transitions on RXx/DTx, information with any state changes before the Stop bit may signal a false End-of-Character (EOC) and cause data or framing errors. To work properly, therefore, the initial character in the transmission must be all '0's. This can be 00h (8 bytes) for standard RS-232 devices or 000h (12 bits) for LIN/J2602 bus.

Oscillator start-up time must also be considered, especially in applications using oscillators with longer start-up intervals (i.e., HS or HSPLL mode). The Sync Break (or Wake-up Signal) character must be of sufficient length and be followed by a sufficient interval to allow enough time for the selected oscillator to start and provide proper initialization of the EUSARTx.

23.8 Use of the Special Event Triggers

A/D conversion can be started by the Special Event Trigger of any of these modules:

- CCP2 Requires CCP2M<3:0> bits (CCP2CON<3:0>) set at '1011'(†)
- ECCP1
- CTMU Requires the setting of the CTTRIG bit (CTMUCONH<0>)
- Timer1
- To start an A/D conversion:
- The A/D module must be enabled (ADON = 1)
- · The appropriate analog input channel selected
- The minimum acquisition period set one of these ways:
 - Timing provided by the user
 - Selection made of an appropriate TACQ time

With these conditions met, the trigger sets the GO/DONE bit and the A/D acquisition starts.

If the A/D module is not enabled (ADON = 0), the module ignores the Special Event Trigger.

Note: With an ECCP1 or CCP2 trigger, Timer1 or Timer3 is cleared. The timers reset to automatically repeat the A/D acquisition period with minimal software overhead (moving ADRESH:ADRESL to the desired location). If the A/D module is not enabled, the Special Event Trigger is ignored by the module, but the timer's counter resets.

23.9 Operation in Power-Managed Modes

The selection of the automatic acquisition time and A/D conversion clock is determined, in part, by the clock source and frequency while in a power-managed mode.

If the A/D is expected to operate while the device is in a power-managed mode, the ACQT<2:0> and ADCS<2:0> bits in ADCON2 should be updated in accordance with the power-managed mode clock that will be used.

After the power-managed mode is entered (either of the power-managed Run modes), an A/D acquisition or conversion may be started. Once an acquisition or conversion is started, the device should continue to be clocked by the same power-managed mode clock source until the conversion has been completed. If desired, the device may be placed into the corresponding power-managed Idle mode during the conversion.

If the power-managed mode clock frequency is less than 1 MHz, the A/D RC clock source should be selected.

Operation in Sleep mode requires that the A/D RC clock be selected. If bits, ACQT<2:0>, are set to '000' and a conversion is started, the conversion will be delayed one instruction cycle to allow execution of the SLEEP instruction and entry into Sleep mode. The IDLEN and SCS<1:0> bits in the OSCCON register must have already been cleared prior to starting the conversion.

EXAMPLE 27-1: CHANGING TO CONFIGURATION MODE

```
; Request Configuration mode.
                                        ; Set to Configuration Mode.
   MOVLW B'1000000'
   MOVWF CANCON
   ; A request to switch to Configuration mode may not be immediately honored.
   ; Module will wait for CAN bus to be idle before switching to Configuration Mode.
   ; Request for other modes such as Loopback, Disable etc. may be honored immediately.
   ; It is always good practice to wait and verify before continuing.
ConfigWait:
   MOVF CANSTAT, W
                                       ; Read current mode state.
   ANDLW B'1000000'
                                        ; Interested in OPMODE bits only.
   TSTFSZ WREG
                                        ; Is it Configuration mode yet?
   BRA ConfigWait
                                        ; No. Continue to wait...
   ; Module is in Configuration mode now.
   ; Modify configuration registers as required.
    ; Switch back to Normal mode to be able to communicate.
```

EXAMPLE 27-2: WIN AND ICODE BITS USAGE IN INTERRUPT SERVICE ROUTINE TO ACCESS TX/RX BUFFERS

	; Save	application required context.		
	; Poll	interrupt flags and determine :	so	urce of interrupt
	; This	was found to be CAN interrupt		
	; TempC	ANCON and TempCANSTAT are varia	ab	les defined in Access Bank low
	MOVFF	CANCON, TempCANCON	;	Save CANCON.WIN bits
			;	This is required to prevent CANCON
			;	from corrupting CAN buffer access
			;	in-progress while this interrupt
			;	occurred
	MOVFF	CANSTAT, TempCANSTAT	;	Save CANSTAT register
		· -	;	This is required to make sure that
			;	we use same CANSTAT value rather
			;	than one changed by another CAN
			;	interrupt.
	MOVF	TempCANSTAT, W	;	Retrieve ICODE bits
	ANDLW	B'00001110'		
	ADDWF	PCL, F	;	Perform computed GOTO
			;	to corresponding interrupt cause
	BRA	NoInterrupt	;	000 = No interrupt
	BRA	ErrorInterrupt	;	001 = Error interrupt
	BRA	TXB2Interrupt	;	010 = TXB2 interrupt
	BRA	TXBlInterrupt	;	011 = TXB1 interrupt
	BRA	TXB0Interrupt	;	100 = TXB0 interrupt
	BRA	RXB1Interrupt	;	101 = RXB1 interrupt
	BRA	RXB0Interrupt	;	110 = RXB0 interrupt
			;	111 = Wake-up on interrupt
Wake	upInter	rupt		
	BCF	PIR3, WAKIF	;	Clear the interrupt flag
	;			
	; User	code to handle wake-up procedu:	re	
	;			
	;			
	; Conti	nue checking for other interru	pt	source or return from here
NoIr	nterrupt			
			;	PC should never vector here. User may
			;	place a trap such as infinite loop or pin/port
			;	indication to catch this error.

R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
MDSEL1 ⁽¹⁾	MDSEL0 ⁽¹⁾	FIFOWM ⁽²⁾	EWIN4	EWIN3	EWIN2	EWIN1	EWIN0
bit 7	•	•		•	•	•	bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimplei	mented bit, reac	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown
bit 7-6	MDSEL<1:0>	: Mode Select	bits ⁽¹⁾				
	00 = Legacy I	mode (Mode 0,	default)				
	10 = Enhance	ed EIEO mode (Mode 2)				
	11 = Reserve	d	(11000 2)				
bit 5	FIFOWM: FIF	O High Water I	Mark bit ⁽²⁾				
	1 = Will cause	e FIFO interrupt	t when one re	eceive buffer re	emains		
	0 = Will cause	e FIFO interrup	t when four re	eceive buffers i	remain ⁽³⁾		
bit 4-0	EWIN<4:0>:	Enhanced Wind	low Address	bits			
	These bits ma	ap the group of	16 banked (CAN SFRs into	Access Bank a	addresses, 0F6	0-0F6Dh. The
	Mode 0:	i registers to m	ap is determ	ined by the bin	ary value of the	se bits.	
	Unimplemen	ted: Read as '()'				
	<u>Mode 1, 2:</u>						
	00000 = Acce	eptance Filters	0, 1, 2 and B	RGCON2, 3			
	00001 = Acce	eptance Filters	3, 4, 5 and B	RGCON1, CIC			
	00010 = Acce	eptance Filter N	lasks, Error a	and interrupt C	ontrol		
	00100 = Trar	smit Buffer 1					
	00101 = Tran	smit Buffer 2					
	00110 = Acce	eptance Filters	6, 7, 8				
	00111 = Acce	eptance Filters	9, 10, 11				
	01000 = Acce	eptance Filters	12, 13, 14				
	01001 = Acce	= Reserved	C				
	01111 = RXII	NT0. RXINT1					
	10000 = Rec	eive Buffer 0					
	10001 = Rec	eive Buffer 1					
	10010 = TX/F	RX Buffer 0					
	10011 = TX/F	RX Buffer 1					
	10100 = TX/F	X Buffer 2					
	10101 = IX/I						
	10111 = TX/F	RX Builer 5					
	11000-11111	1 = Reserved					

REGISTER 27-3: ECANCON: ENHANCED CAN CONTROL REGISTER

- **Note 1:** These bits can only be changed in Configuration mode. See Register 27-1 to change to Configuration mode.
 - **2:** This bit is used in Mode 2 only.
 - 3: If FIFO is configured to contain four or less buffers, then the FIFO interrupt will trigger.

Table 27-2 shows the relation between the clock generated by the PLL and the frequency error from jitter (measured jitter-induced error of 2%, Gaussian distribution, within 3 standard deviations), as a percentage of the nominal clock frequency.

This is clearly smaller than the expected drift of a crystal oscillator, typically specified at 100 ppm or 0.01%. If we add jitter to oscillator drift, we have a total frequency drift of 0.0132%. The total oscillator frequency errors for common clock frequencies and bit rates, including both drift and jitter, are shown in Table 27-3.

TARI E 27-2.	FREQUENCY FROM FROM JITTER AT VARIOUS PLL GENERATED CLOCK SPEEDS
TADLL ZI-Z.	TREQUENCI ERROR I ROW JITTER AT VARIOUS FEE GENERATED GEOCR SFEEDS

DLI		T _{jitter}	Frequency Error at Various Nominal Bit Times (Bit Rates)					
Output	P _{jitter}		8 μs (125 Kb/s)	4 μs (250 Kb/s)	2 μs (500 Kb/s)	1 μs (1 Mb/s)		
40 MHz	0.5 ns	1 ns	0.00125%	0.00250%	0.005%	0.01%		
24 MHz	0.83 ns	1.67 ns	0.00209%	0.00418%	0.008%	0.017%		
16 MHz	1.25 ns	2.5 ns	0.00313%	0.00625%	0.013%	0.025%		

TABLE 27-3:TOTAL FREQUENCY ERROR AT VARIOUS PLL GENERATED CLOCK SPEEDS
(100 PPM OSCILLATOR DRIFT, INCLUDING ERROR FROM JITTER)

	Frequency Error at Various Nominal Bit Times (Bit Rates)								
Nominal PLL Output	8 μs (125 Kb/s)	4 μs (250 Kb/s)	2 μs (500 Kb/s)	1 μs (1 Mb/s)					
40 MHz	0.01125%	0.01250%	0.015%	0.02%					
24 MHz	0.01209%	0.01418%	0.018%	0.027%					
16 MHz	0.01313%	0.01625%	0.023%	0.035%					

Negate f			
NEGF f	{,a}		
$0 \le f \le 255$ $a \in [0,1]$	5		
$(\overline{f}) + 1 \rightarrow f$			
N, OV, C,	DC, Z		
0110	110a	ffff	ffff
Location 'f compleme data meme	' is negate nt. The re ory locatio	ed using tw sult is plac on 'f'.	vo's ced in the
lf 'a' is '0', lf 'a' is '1', GPR bank	the Acces the BSR i	ss Bank is s used to s	selected. select the
If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 29.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.			
1			
1			
	Negate f NEGF f $0 \le f \le 255$ $a \in [0,1]$ $(\overline{f}) + 1 \rightarrow f$ N, OV, C, I Location 'f compleme data memu If 'a' is '0', If 'a' is '0', GPR bank If 'a' is '0' a set is enak in Indexed mode whe Section 2: Bit-Orient Literal Off 1 1	Negate f NEGF $f \{.a\}$ $0 \le f \le 255$ $a \in [0,1]$ $(\overline{f}) + 1 \rightarrow f$ N, OV, C, DC, Z 110 110a Location 'f' is negate complement. The re data memory location If 'a' is '0', the Access If 'a' is '0', the Access If 'a' is '0', the BSR is GPR bank. If 'a' is '0' and the ex- set is enabled, this is in Indexed Literal O mode whenever $f \le$ Section 29.2.3 "By Bit-Oriented Instru- Literal Offset Mode 1	Negate f NEGF $f \{,a\}$ $0 \le f \le 255$ $a \in [0,1]$ $(\overline{f}) + 1 \rightarrow f$ N, OV, C, DC, Z 110 110a ffff Location 'f' is negated using the complement. The result is placed data memory location 'f'. If 'a' is '0', the Access Bank is If 'a' is '0' and the extended in set is enabled, this instruction in Indexed Literal Offset Addre mode whenever $f \le 95$ (5Fh). Section 29.2.3 "Byte-Oriented Bit-Oriented Instructions in Literal Offset Mode" for deta 1

Q1	Q2	Q3	Q4
Decode	Read	Process	Write
	register 'f'	Data	register 'f'

Example:	NEGF	REG,	1
----------	------	------	---

Before Instruct	tion			
REG	=	0011	1010	[3Ah]
After Instructio	n			
REG	=	1100	0110	[C6h]

NOP		No Operation				
Synta	ax:	NOP				
Oper	ands:	None				
Oper	ation:	No operati	No operation			
Statu	s Affected:	None				
Enco	ding:	0000 0000 0000 00				0000
		1111 xxxx xxxx xxxx				
Desc	ription:	No operation.				
Word	ls:	1				
Cycle	es:	1				
QC	ycle Activity:					
	Q1	Q2	Q	3		Q4
	Decode	No	No			No
		operation	operat	tion	op	peration

Example:

None.

SUBV	VFB	Subtract W from f with Borrow			
Synta	x:	SL	JBWFB	f {,d {,a}}	
Opera	inds:	0 ≤	≤ f ≤ 255		
		do	∈ [0,1] = [0,1]		
Onera	ition [.]	(f)	_ (W) _	$(\overline{C}) \rightarrow dest$	
Status	Affected [.]	N		$(0) \rightarrow 0031$	
Encor	lina [.]		0101	10da ff	ff ffff
Descr	intion:		btract W	and the Carn	v flag (borrow)
Desci		fro	m regist	er 'f' (2's comp	plement
		me	ethod). If	'd' is '0', the r	esult is stored
		in in	W. If 'd' i register '	s '1', the result 'f' (default).	is stored back
		lf '	a' is '0', f	the Access Ba	ink is selected.
		lf ' Gf	a' is '1', f PR bank.	the BSR is use	ed to select the
		lf ' se	a' is '0' a t is enab	and the extend led, this instru	led instruction ction operates
		in	Indexed	Literal Offset	Addressing
		mo	ode whe	never f ≤ 95 (5	Fh). See
		Bi	t-Oriente	ed Instruction	in Indexed
		Lit	eral Off	set Mode" for	details.
Words	3:	1			
Cycle	S:	1			
Q Cy	cle Activity:				
г	Q1		Q2	Q3	Q4
	Decode	rec	≺ead pister 'f'	Process Data	vvrite to destination
L Fxam	ple 1 [.]		SUBWFB	REG. 1. 0	0001.001.001
E	Before Instruc	tion	JOD MID	100, 1, 0	
	REG	=	19h	(0001 10	001)
	W C	=	UDn 1	(0000 11	.01)
A	After Instruction	n			
	REG	=	0Ch 0Dh	(0000 10)11)
	ç	=	1	(0000 11	,
	Z N	=	0	; result is p	oositive
Exam	ple 2:	S	SUBWFB	REG, 0, 0	
E	Before Instruc	tion			
	REG	=	1Bh 1Ah	(0001 10)11))10)
	Ċ	=	0	(0001 10	, 20)
A	After Instructio	n _	1Ph	(0001 10	111
	W	=	00h	(0001 10))
	C Z	=	1 1	· result is z	rero
	Ň	=	0	,	
Exam	<u>ple 3:</u>	S	SUBWFB	REG, 1, 0	
E	Before Instruc	tion			
	REG W	=	03h 0Eh	(0000 00))11) .01)
	С	=	1		- /
A	REG	n =	F5h	(1111 01	00)
				; [2's comp	[]
	w С	=	UEh 0	(0000 11	.01)
	Z	=	0	· result is r	pegative
			-	, 100011101	-oguiro

SWAPF f	{,d {,a}}		
$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$			
(f<3:0>) → (f<7:4>) →	dest<7:4 dest<3:0	.>, >	
None			
0011	10da	ffff	ffff
The upper a 'f' are excha is placed in placed in re	and lowe anged. If W. If 'd' egister 'f'	r nibbles o 'd' is '0', t is '1', the (default).	of register the result result is
If 'a' is '0', t If 'a' is '1', t GPR bank.	he Acces he BSR i	ss Bank is s used to	selected. select the
If 'a' is '0' a set is enabl in Indexed mode when Section 29 Bit-Oriente Literal Offs	nd the ex ed, this i Literal O never f ≤ .2.3 "By ed Instru set Mode	ktended in nstruction ffset Addro 95 (5Fh). te-Oriento ctions in e ² for deta	estruction operates essing See ed and Indexed ails.
1			
1			
Q2	Q3	1	Q4
Read register 'f'	Proce Data	ss V a de	Vrite to stination
SWAPF F ction = 53h on - 25b	REG, 1,	0	
	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$ $(f<3:0>) \rightarrow (f<7:4>) \rightarrow$ None 0011 The upper a 'f' are excha- is placed in re- If 'a' is '0', t If 'a' is '0', t If 'a' is '0' a set is enabl in Indexed If 'a' is '0' a set is enabl in Indexed Mode wher Section 29 Bit-Oriente Literal Offs 1 1 Q2 Read register 'f' SWAPF F ction = 53h	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$ $(f<3:0>) \rightarrow dest<7:4$ $(f<7:4>) \rightarrow dest<3:0$ None $0011 10da$ The upper and lowe 'f' are exchanged. If is placed in W. If 'd' placed in register 'f' If 'a' is '0', the Accest If 'a' is '0', the BSR if GPR bank. If 'a' is '0' and the exist is enabled, this i in Indexed Literal Of mode whenever f ≤ Section 29.2.3 "Byy Bit-Oriented Instru Literal Offset Mode 1 1 2 2 2 3 Read Proce register 'f' Data SWAPF REG, 1, ction = 53h	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$ $(f<3:0>) \rightarrow dest<7:4>,$ $(f<7:4>) \rightarrow dest<3:0>$ None $\boxed{0011 10da ffff}$ The upper and lower nibbles of f are exchanged. If 'd' is '0', 1 is placed in W. If 'd' is '1', the placed in register 'f' (default). If 'a' is '0', the Access Bank is If 'a' is '1', the BSR is used to GPR bank. If 'a' is '0' and the extended ir set is enabled, this instruction in Indexed Literal Offset Addr mode whenever f ≤ 95 (5Fh). Section 29.2.3 "Byte-Oriente Bit-Oriented Instructions in Literal Offset Mode" for deta 1 1 $\boxed{Q2 \qquad Q3}$ $\boxed{Read \qquad Process \qquad V}$ $\boxed{SWAPF \qquad REG, 1, 0}$ Ction $= 53h$

31.6 AC (Timing) Characteristics

31.6.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS		3. TCC:ST	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowercase le	tters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKO	rd	RD
cs	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	tO	ТОСКІ
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Uppercase le	tters and their meanings:		
S			
F	Fall	Р	Period
н	High	R	Rise
1	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
TCC:ST (I ² C s	pecifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	Stop condition
STA	Start condition		