

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	ECANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6К х 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f26k80t-i-ss

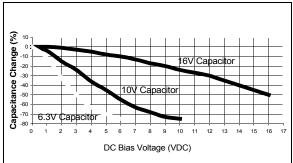
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.4.1 CONSIDERATIONS FOR CERAMIC CAPACITORS

In recent years, large value, low-voltage, surface-mount ceramic capacitors have become very cost effective in sizes up to a few tens of microfarad. The low-ESR, small physical size and other properties make ceramic capacitors very attractive in many types of applications.

Ceramic capacitors are suitable for use with the internal voltage regulator of this microcontroller. However, some care is needed in selecting the capacitor to ensure that it maintains sufficient capacitance over the intended operating range of the application.


Typical low-cost, 10 μ F ceramic capacitors are available in X5R, X7R and Y5V dielectric ratings (other types are also available, but are less common). The initial tolerance specifications for these types of capacitors are often specified as ±10% to ±20% (X5R and X7R), or -20%/+80% (Y5V). However, the effective capacitance that these capacitors provide in an application circuit will also vary based on additional factors, such as the applied DC bias voltage and the temperature. The total in-circuit tolerance is, therefore, much wider than the initial tolerance specification.

The X5R and X7R capacitors typically exhibit satisfactory temperature stability (ex: $\pm 15\%$ over a wide temperature range, but consult the manufacturer's data sheets for exact specifications). However, Y5V capacitors typically have extreme temperature tolerance specifications of $\pm 22\%$. Due to the extreme temperature tolerance, a 10 μ F nominal rated Y5V type capacitor may not deliver enough total capacitance to meet minimum internal voltage regulator stability and transient response requirements. Therefore, Y5V capacitors are not recommended for use with the internal regulator if the application must operate over a wide temperature range.

In addition to temperature tolerance, the effective capacitance of large value ceramic capacitors can vary substantially, based on the amount of DC voltage applied to the capacitor. This effect can be very significant, but is often overlooked or is not always documented.

A typical DC bias voltage vs. capacitance graph for X7R type and Y5V type capacitors is shown in Figure 2-4.

FIGURE 2-4: DC BIAS VOLTAGE vs. CAPACITANCE CHARACTERISTICS

When selecting a ceramic capacitor to be used with the internal voltage regulator, it is suggested to select a high-voltage rating, so that the operating voltage is a small percentage of the maximum rated capacitor voltage. For example, choose a ceramic capacitor rated at 16V for the 2.5V core voltage. Suggested capacitors are shown in Table 2-1.

2.5 ICSP Pins

The PGC and PGD pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100 Ω .

Pull-up resistors, series diodes and capacitors on the PGC and PGD pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits, and pin input voltage high (VIH) and input low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., PGCx/PGDx pins), programmed into the device, matches the physical connections for the ICSP to the Microchip debugger/emulator tool.

For more information on available Microchip development tools connection requirements, refer to **Section 30.0 "Development Support"**.

If the IRCFx bits and the INTSRC bit are all clear, the INTOSC output (HF-INTOSC/MF-INTOSC) is not enabled and the HFIOFS and MFIOFS bits will remain clear. There will be no indication of the current clock source. The LF-INTOSC source is providing the device clocks.

If the IRCFx bits are changed from all clear (thus, enabling the INTOSC output) or if INTSRC or MFIOSEL is set, the HFIOFS or MFIOFS bit is set after the INTOSC output becomes stable. For details, see Table 4-3.

IRCF<2:0>	INTSRC	MFIOSEL	Status of MFIOFS or HFIOFS when INTOSC is Stable
000	0	х	MFIOFS = 0, HFIOFS = 0 and clock source is LF-INTOSC
000	1	0	MFIOFS = 0, HFIOFS = 1 and clock source is HF-INTOSC
000	1	1	MFIOFS = 1, HFIOFS = 0 and clock source is MF-INTOSC
Non-Zero	x	0	MFIOFS = 0, HFIOFS = 1 and clock source is HF-INTOSC
Non-Zero	x	1	MFIOFS = 1, HFIOFS = 0 and clock source is MF-INTOSC

TABLE 4-3: INTERNAL OSCILLATOR FREQUENCY STABILITY BITS

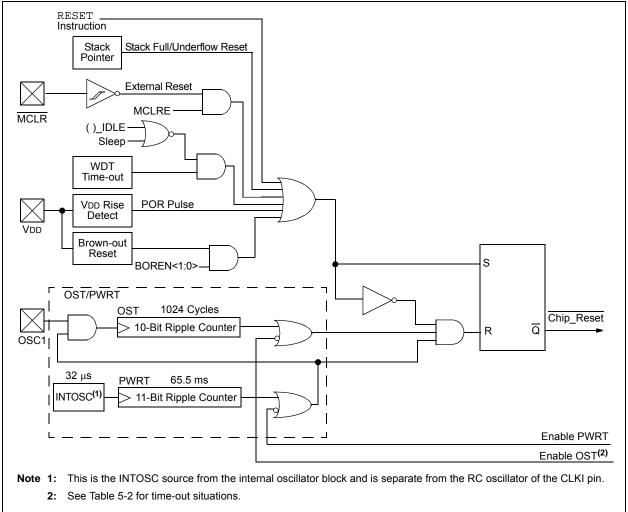
Clocks to the device continue while the INTOSC source stabilizes after an interval of TIOBST (Parameter 39, Table 31-11).

If the IRCFx bits were previously at a non-zero value, or if INTSRC was set before setting SCS1 and the INTOSC source was already stable, the HFIOFS or MFIOFS bit will remain set. On transitions from RC_RUN mode to PRI_RUN mode, the device continues to be clocked from the INTOSC multiplexer while the primary clock is started. When the primary clock becomes ready, a clock switch to the primary clock occurs (see Figure 4-4). When the clock switch is complete, the HFIOFS or MFIOFS bit is cleared, the OSTS bit is set and the primary clock is providing the device clock. The IDLEN and SCSx bits are not affected by the switch. The LF-INTOSC source will continue to run if either the WDT or the Fail-Safe Clock Monitor (FSCM) is enabled.

5.0 RESET

The PIC18F66K80 family devices differentiate between various kinds of Reset:

- a) Power-on Reset (POR)
- b) MCLR Reset during Normal Operation
- c) MCLR Reset during Power-Managed modes
- d) Watchdog Timer (WDT) Reset (during execution)
- e) Configuration Mismatch (CM) Reset
- f) Programmable Brown-out Reset (BOR)
- g) RESET Instruction
- h) Stack Full Reset
- i) Stack Underflow Reset


This section discusses Resets generated by MCLR, POR and BOR, and covers the operation of the various start-up timers. Stack Reset events are covered in Section 6.1.3.4 "Stack Full and Underflow Resets". WDT Resets are covered in Section 28.2 "Watchdog Timer (WDT)". A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 5-1.

5.1 RCON Register

Device Reset events are tracked through the RCON register (Register 5-1). The lower five bits of the register indicate that a specific Reset event has occurred. In most cases, these bits can only be cleared by the event and must be set by the application after the event. The state of these flag bits, taken together, can be read to indicate the type of Reset that just occurred. This is described in more detail in **Section 5.7** "**Reset State of Registers**".

The RCON register also has control bits for setting interrupt priority (IPEN) and software control of the BOR (SBOREN). Interrupt priority is discussed in **Section 10.0 "Interrupts"**. BOR is covered in **Section 5.4 "Brown-out Reset (BOR)"**.

FIGURE 5-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

TABLE 5-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)									
Register	Applicable Devices		Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt				
CCPTMRS	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0 0000	x xxxx	u uuuu			
TRISG	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	1 1111	1 1111	u uuuu			
TRISF	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	1111 1111	1111 1111	uuuu uuuu			
TRISE	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	1111 -111	1111 -111	uuuu -uuu			
TRISD	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	1111 1111	1111 1111	uuuu uuuu			
TRISC	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	1111 1111	1111 1111	uuuu uuuu			
TRISB	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	1111 1111	1111 1111	uuuu uuuu			
TRISA ⁽⁵⁾	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	111- 1111 (5)	111- 1111 (5)	uuu- uuuu (5)			
ODCON	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 0000	0000 0000	uuuu uuuu			
SLRCON	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	-000 0000	-111 1111	-111 1111			
LATG	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	x xxxx	x xxxx	u uuuu			
LATF	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	xxxx -xxx	uuuu -uuu			
LATE	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx -xxx	xxxx xxxx	uuuu uuuu			
LATD	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	xxxx xxxx	uuuu uuuu			
LATC	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	xxxx xxxx	uuuu uuuu			
LATB	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	xxxx xxxx	uuuu uuuu			
LATA ⁽⁵⁾	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxx- xxxx ⁽⁵⁾	xxx- xxxx(5)	uuu- uuuu (5)			
T4CON	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	-000 0000	-000 0000	-uuu uuuu			
TMR4	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 0000	0000 0000	uuuu uuuu			
PORTG	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	x xxxx	x xxxx	u uuuu			
PORTF	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	xxxx xxxx	uuuu uuuu			
PORTE	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	XXXX XXXX	uuuu uuuu			
PORTD	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	XXXX XXXX	uuuu uuuu			
PORTC	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	xxxx xxxx	uuuu uuuu			
PORTB	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	xxxx xxxx	uuuu uuuu			
PORTA ⁽⁵⁾	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxx- xxxx ⁽⁵⁾	xxx- xxxx ⁽⁵⁾	uuu- uuuu (5)			
EECON1	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xx-0 x000	uu-0 u000	uu-u uuuu			
EECON2	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 0000	0000 0000	uuuu uuuu			
SPBRGH1	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 0000	0000 0000	uuuu uuuu			
SPBRGH2	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 0000	0000 0000	uuuu uuuu			
SPBRG2	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 0000	0000 0000	uuuu uuuu			
RCREG2	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 0000	0000 0000	uuuu uuuu			
TXREG2	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 0000	0000 0000	uuuu uuuu			
IPR5	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	1111 1111	1111 1111	uuuu uuuu			
PIR5	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 0000	0000 0000	uuuu uuuu			

TABLE 5-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged; x = unknown; - = unimplemented bit, read as '0'; q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 5-3 for Reset value for specific conditions.

5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read as '0'.

Addr.	File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR on page
FFFh	TOSU	—	—	—	Top-of-Stack	Upper Byte (T	OS<20:16>)			88
FFEh	TOSH	Top-of-Stack	High Byte (TC	S<15:8>)	•					88
FFDh	TOSL	Top-of-Stack	Low Byte (TO	S<7:0>)						88
FFCh	STKPTR	STKFUL	STKUNF	—	SP4	SP3	SP2	SP1	SP0	88
FFBh	PCLATU	_	_	Bit 21	Holding Regi	ster for PC<20):16>			88
FFAh	PCLATH	Holding Regi	ster for PC<15	5:8>						88
FF9h	PCL	PC Low Byte	(PC<7:0>)							88
FF8h	TBLPTRU	—	_	Bit 21	Program Mer	mory Table Po	inter Upper By	/te (TBLPTR<	20:16>)	88
FF7h	TBLPTRH	Program Mer	nory Table Po	inter High Byte	(TBLPTR<15	:8>)				88
FF6h	TBLPTRL	Program Mer	nory Table Po	inter Low Byte	(TBLPTR<7:0	>)				88
FF5h	TABLAT	Program Mer	nory Table Lat	ch						88
FF4h	PRODH	Product Regi	ster High Byte							88
FF3h	PRODL	Product Regi	ster Low Byte							88
FF2h	INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	88
FF1h	INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP	88
FF0h	INTCON3	INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF	88
FEFh	INDF0	Uses content	s of FSR0 to a	address data m	emory – value	e of FSR0 not	changed (not	a physical regi	ister)	88
FEEh	POSTINC0	Uses content	s of FSR0 to a	address data m	emory – value	e of FSR0 post	t-incremented	(not a physica	l register)	88
FEDh	POSTDEC0	Uses content	s of FSR0 to a	address data m	emory – value	e of FSR0 post	t-decremented	I (not a physic	al register)	88
FECh	PREINC0	Uses content	s of FSR0 to a	address data m	emory – value	e of FSR0 pre-	incremented (not a physical	register)	88
FEBh	PLUSW0	Uses content value of FSR		address data m	emory – value	e of FSR0 pre-	incremented (not a physical	register) –	88
FEAh	FSR0H	_	—	—	_	Indirect Data	Memory Addr	ess Pointer 0	High Byte	88
FE9h	FSR0L	Indirect Data	Memory Addr	ess Pointer 0 L	ow Byte					88
FE8h	WREG	Working Reg	ister							88
FE7h	INDF1	Uses content	s of FSR1 to a	address data m	emory – value	of FSR1 not	changed (not	a physical reg	ister)	88
FE6h	POSTINC1	Uses content	s of FSR1 to a	address data m	emory – value	e of FSR1 post	t-incremented	(not a physica	l register)	88
FE5h	POSTDEC1	Uses content	s of FSR1 to a	address data m	emory – value	e of FSR1 post	t-decremented	l (not a physic	al register)	88
FE4h	PREINC1	Uses content	s of FSR1 to a	address data m	emory – value	of FSR1 pre-	incremented (not a physical	register)	88
FE3h	PLUSW1	Uses content value of FSR		address data m	emory – value	e of FSR1 pre-	incremented (not a physical	register) –	88
FE2h	FSR1H	_	_	_	_	Indirect Data	Memory Addr	ess Pointer 1	High Byte	88
FE1h	FSR1L	Indirect Data	Memory Addr	ess Pointer 1 L	ow Byte					88
FE0h	BSR	_	_	_	_	Bank Select	Register			88
FDFh	INDF2	Uses content	s of FSR2 to a	address data m	iemory – value	e of FSR2 not	changed (not	a physical reg	ister)	88
FDEh	POSTINC2	Uses content	s of FSR2 to a	address data m	emory – value	e of FSR2 post	t-incremented	(not a physica	l register)	89
FDDh	POSTDEC2	Uses content	s of FSR2 to a	address data m	emory – value	e of FSR2 post	t-decremented	l (not a physic	al register)	89
FDCh	PREINC2	Uses content	s of FSR2 to a	address data m	iemory – value	e of FSR2 pre-	incremented (not a physical	register)	89
FDBh	PLUSW2		s of FSR2 to a 2 offset by W	address data m	iemory – value	e of FSR2 pre-	incremented (not a physical	register) –	89
FDAh	FSR2H	_	_	_	_	Indirect Data	Memory Addr	ess Pointer 2	High Byte	89
FD9h	FSR2L	Indirect Data	Memory Addr	ess Pointer 2 L	ow Byte					89
FD8h	STATUS		—	_	Ν	OV	Z	DC	С	89
FD7h	TMR0H	Timer0 Regis	ter High Byte							89
FD6h	TMR0L	Timer0 Regis	ter Low Byte							89
FD5h	TOCON	TMR0ON	T08BIT	TOCS	TOSE	PSA	T0PS2	T0PS1	T0PS0	89
FD4h	Unimplemented									_
FD3h	OSCCON	IDLEN	IRCF2	IRCF1	IRCF0	OSTS	HFIOFS	SCS1	SCS0	89
FD2h	OSCCON2	—	SOSCRUN	—	SOSCDRV	SOSCGO	—	MFIOFS	MFIOSEL	89
FD1h	WDTCON	REGSLP	_	ULPLVL	SRETEN	—	ULPEN	ULPSINK	SWDTEN	89
		1		CM	RI	TO	PD	POR	BOR	+

TABLE 6-2:	PIC18F66K80 FAMILY REGISTER FILE SUMMARY

10.5 RCON Register

The RCON register contains bits used to determine the cause of the last Reset or wake-up from Idle or Sleep modes. RCON also contains the bit that enables interrupt priorities (IPEN).

REGISTER 10-19: RCON: RESET CONTROL REGISTER

R/W-0	R/W-1	R/W-1	R/W-1	R-1	R-1	R/W-0	R/W-0
IPEN	SBOREN	CM	RI	TO	PD	POR	BOR
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	IPEN: Interrupt Priority Enable bit
	1 = Enables priority levels on interrupts
	0 = Disables priority levels on interrupts (PIC16CXXX Compatibility mode)
bit 6	SBOREN: Software BOR Enable bit
	For details of bit operation, see Register 5-1.
bit 5	CM: Configuration Mismatch Flag bit
	1 = A Configuration Mismatch Reset has not occurred
	0 = A Configuration Mismatch Reset has occurred (must be subsequently set in software)
bit 4	RI: RESET Instruction Flag bit
	For details of bit operation, see Register 5-1.
bit 3	TO: Watchdog Timer Time-out Flag bit
	For details of bit operation, see Register 5-1.
bit 2	PD: Power-Down Detection Flag bit
	For details of bit operation, see Register 5-1.
bit 1	POR: Power-on Reset Status bit
	For details of bit operation, see Register 5-1.
bit 0	BOR: Brown-out Reset Status bit
	For details of bit operation, see Register 5-1.

19.1 CCP Module Configuration

Each Capture/Compare/PWM module is associated with a control register (generically, CCPxCON) and a data register (CCPRx). The data register, in turn, is comprised of two 8-bit registers: CCPRxL (low byte) and CCPRxH (high byte). All registers are both readable and writable.

19.1.1 CCP MODULES AND TIMER RESOURCES

The CCP modules utilize Timers, 1 through 4, varying with the selected mode. Various timers are available to the CCP modules in Capture, Compare or PWM modes, as shown in Table 19-1.

TABLE 19-1: CCP MODE – TIMER RESOURCE

CCP Mode	Timer Resource
Capture	Timer1 or Timer3
Compare	Timer of Timers
PWM	Timer2 or Timer4

The assignment of a particular timer to a module is determined by the Timer to CCP enable bits in the CCPTMRS register (see Register 19-2). All of the modules may be active at once and may share the same timer resource if they are configured to operate in the same mode (Capture/Compare or PWM) at the same time.

The CCPTMRS register selects the timers for CCP modules, 2, 3, 4 and 5. The possible configurations are shown in Table 19-2.

TABLE 19-2: TIMER ASSIGNMENTS FOR CCP MODULES 2, 3, 4 AND 5

	CCPTMRS Register													
CCP2 CCP3						CCP4				CCP5				
C2TSEL	Capture/ Compare Mode	PWM Mode	C3TSEL	Capture/ Compare Mode				PWM Mode	C5TSEL	Capture/ Compare Mode	PWM Mode			
0	TMR1	TMR2	0	TMR1	TMR2	0	TMR1	TMR2	0 0	TMR1	TMR2			
1	TMR3	TMR4	1	TMR3	TMR4	1	TMR3	TMR4	0 1	TMR3	TMR4			

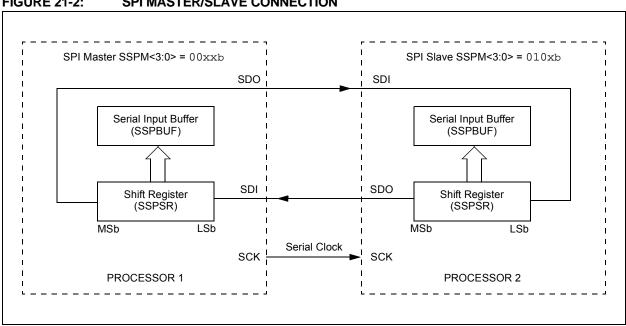
19.1.2 OPEN-DRAIN OUTPUT OPTION

When operating in Output mode (the Compare or PWM modes), the drivers for the CCPx pins can be optionally configured as open-drain outputs. This feature allows the voltage level on the pin to be pulled to a higher level through an external pull-up resistor and allows the output to communicate with external circuits without the need for additional level shifters.

The open-drain output option is controlled by the CCPxOD bits (ODCON<6:2>). Setting the appropriate bit configures the pin for the corresponding module for open-drain operation.

21.3.4 **ENABLING SPI I/O**

To enable the serial port, MSSP Enable bit, SSPEN (SSPCON1<5>), must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, reinitialize the SSPCON registers and then set the SSPEN bit. This configures the SDI, SDO, SCK and SS pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed as follows:


- · SDI is automatically controlled by the SPI module
- SDO must have the TRISC<5> bit cleared
- SCK (Master mode) must have the TRISC<3> bit cleared
- SCK (Slave mode) must have the TRISC<3> bit set
- SS must have the TRISA<5> bit set

Any serial port function that is not desired may be overridden by programming the corresponding Data Direction (TRIS) register to the opposite value.

21.3.5 TYPICAL CONNECTION

Figure 21-2 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCK signal. Data is shifted out of both shift registers on their programmed clock edge and latched on the opposite edge of the clock. Both processors should be programmed to the same Clock Polarity (CKP), then both controllers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application software. This leads to three scenarios for data transmission:

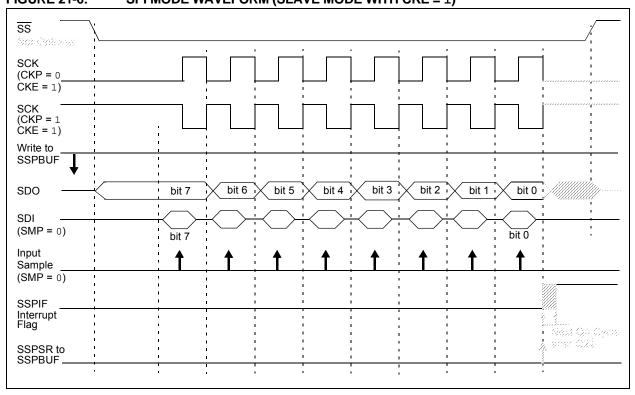

- · Master sends data Slave sends dummy data
- Master sends data Slave sends data
- · Master sends dummy data Slave sends data

FIGURE 21-2: SPI MASTER/SLAVE CONNECTION

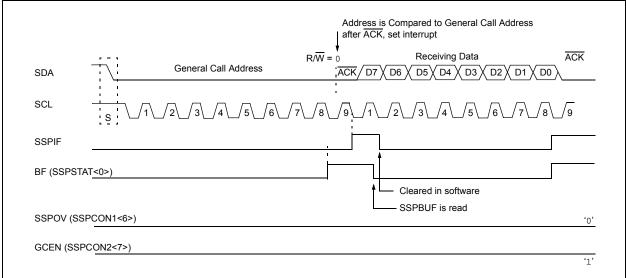
IGURE 21-5:	SPI N	IODE W	AVEFO	RM (SLA	VE MO	DE WITH	CKE =	0)			
 SS Opilonsi	(.										
80% {CKP = 0 CXE = 0}	: : : :X		, 	·	·					· ·	: : :
- VAR 20) - ROR	· ·	: : :	((() () () () () () () () () () () () () (, , , ,	; ; ; , ,		(((; ; ;	2 2 3	, , ,	
2508 (CRE = 5 (CRE = 5)	2 5 5							· · · · · · · · · · · · · · · · · · ·			
Verlie en Sisteration			5 2 7 7	: d	* \$****** \$ \$		5 2 7 7	: :: : :	* .5 1 1	: :	,
\$6 x 3		Kana ta		N 88.8		X68.3	X 88.0				
SD: (S3:82 = 33)										Mygeeneerine E C	: : :
ingasi Serrecia	· · ·			. 4.		<i></i>		: . <i>B</i> e	: : :	49.	
(3367 = 6)				* *	, , ,		5 2 5		* : * :	: : ://///////////////////////////////	
- S-SPHF Britanupî Filag	; ; ; ;		s 2 2	: : :	< ; ; ;		5 2 2 2	: : ::		ilia A Stend Col	. Produce
355 0 355 65	2 1	* :		; ,	:		i i	; ,) († Next Ox Fritter Ox	

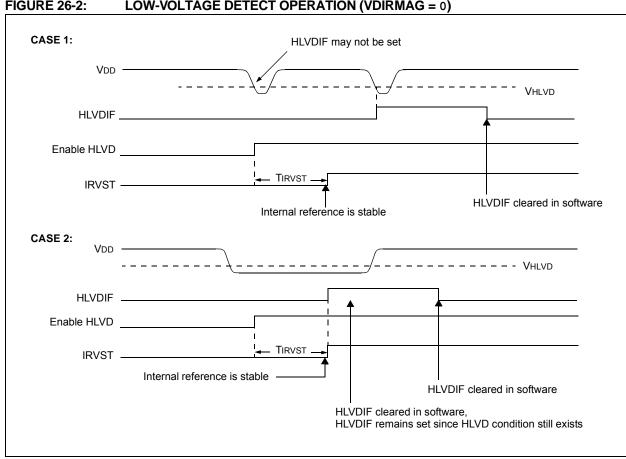
FIGURE 21-6: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

21.4.5 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I^2C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an Acknowledge.

The general call address is one of eight addresses reserved for specific purposes by the I^2C protocol. It consists of all '0's with R/W = 0.


The general call address is recognized when the General Call Enable bit, GCEN, is enabled (SSPCON2<7> set). Following a Start bit detect, eight bits are shifted into the SSPSR and the address is compared against the SSPADD. It is also compared to the general call address and fixed in hardware.


If the general call address matches, the SSPSR is transferred to the SSPBUF, the BF flag bit is set (eighth bit), and on the falling edge of the ninth bit (ACK bit), the SSPIF interrupt flag bit is set.

When the interrupt is serviced, the source for the interrupt can be checked by reading the contents of the SSPBUF. The value can be used to determine if the address was device-specific or a general call address.

In 10-Bit Addressing mode, the SSPADD is required to be updated for the second half of the address to match and the UA bit is set (SSPSTAT<1>). If the general call address is sampled when the GCEN bit is set, while the slave is configured in 10-Bit Addressing mode, then the second half of the address is not necessary, the UA bit will not be set and the slave will begin receiving data after the Acknowledge (Figure 21-17).

27.0 ECAN MODULE

PIC18F66K80 family devices contain an Enhanced Controller Area Network (ECAN) module. The ECAN module is fully backward compatible with the CAN module available in PIC18CXX8 and PIC18FXX8 devices and the ECAN module in PIC18Fxx80 devices.

The Controller Area Network (CAN) module is a serial interface which is useful for communicating with other peripherals or microcontroller devices. This interface, or protocol, was designed to allow communications within noisy environments.

The ECAN module is a communication controller, implementing the CAN 2.0A or B protocol as defined in the BOSCH specification. The module will support CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system; however, the CAN specification is not covered within this data sheet. Refer to the BOSCH CAN specification for further details.

The module features are as follows:

- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- DeviceNet[™] data bytes filter support
- · Standard and extended data frames
- 0-8 bytes data length
- Programmable bit rate up to 1 Mbit/sec
- Fully backward compatible with the PIC18XXX8 CAN module
- · Three modes of operation:
 - Mode 0 Legacy mode
 - Mode 1 Enhanced Legacy mode with DeviceNet support
 - Mode 2 FIFO mode with DeviceNet support
- Support for remote frames with automated handling
 Double-buffered receiver with two prioritized
- received message storage buffers
- Six buffers programmable as RX and TX message buffers
- 16 full (standard/extended identifier) acceptance filters that can be linked to one of four masks
- Two full acceptance filter masks that can be assigned to any filter
- One full acceptance filter that can be used as either an acceptance filter or acceptance filter mask
- Three dedicated transmit buffers with application specified prioritization and abort capability
- Programmable wake-up functionality with integrated low-pass filter
- Programmable Loopback mode supports self-test operation
- Signaling via interrupt capabilities for all CAN receiver and transmitter error states
- · Programmable clock source
- Programmable link to timer module for time-stamping and network synchronization
- Low-power Sleep mode

27.1 Module Overview

The CAN bus module consists of a protocol engine and message buffering and control. The CAN protocol engine automatically handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the two receive registers.

The CAN module supports the following frame types:

- Standard Data Frame
- Extended Data Frame
- Remote Frame
- Error Frame
- Overload Frame Reception

The CAN module uses the RB2/CANTX and RB3/ CANRX pins to interface with the CAN bus. The CANTX and CANRX pins can be placed on alternate I/O pins by setting the CANMX (CONFIG3H<0>) Configuration bit.

For the PIC18F2XK80 and PIC18F4XK80, the alternate pin locations are RC6/CANTX and RC7/CANRX. For the PIC18F6XK80, the alternate pin locations are RE4/CANRX and RE5/CANTX.

In normal mode, the CAN module automatically overrides the appropriate TRIS bit for CANTX. The user must ensure that the appropriate TRIS bit for CANRX is set.

27.1.1 MODULE FUNCTIONALITY

The CAN bus module consists of a protocol engine, message buffering and control (see Figure 27-1). The protocol engine can best be understood by defining the types of data frames to be transmitted and received by the module.

The following sequence illustrates the necessary initialization steps before the ECAN module can be used to transmit or receive a message. Steps can be added or removed depending on the requirements of the application.

- 1. Initial LAT and TRIS bits for RX and TX CAN.
- 2. Ensure that the ECAN module is in Configuration mode.
- 3. Select ECAN Operational mode.
- 4. Set up the Baud Rate registers.
- 5. Set up the Filter and Mask registers.
- 6. Set the ECAN module to normal mode or any other mode required by the application logic.

REGISTER 27-23: BnCON: TX/RX BUFFER 'n' CONTROL REGISTERS IN TRANSMIT MODE $[0 \le n \le 5, TXnEN (BSEL0<n>) = 1]^{(1)}$

R/W-0) R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TXBIF ⁽		TXLARB ⁽³⁾	TXERR ⁽³⁾	TXREQ ^(2,4)	RTREN	TXPRI1 ⁽⁵⁾	TXPRI0 ⁽⁵⁾
bit 7							bit C
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	TXBIF: Trans	mit Buffer Inter	rupt Flag bit ⁽³)			
		ge was success age was transm		ed			
bit 6	1 = Message	smission Aborto was aborted was not aborte		3)			
bit 5	1 = Message	ansmission Los lost arbitration did not lose arl	while being s	ent			
bit 4	1 = A bus err	ismission Error or occurred wh or did not occu	ile the messag	ge was being s			
bit 3	TXREQ: Trar 1 = Requests	nsmit Request S sending a mes cally cleared wh	Status bit ^(2,4) ssage; clears t	the TXABT, TX	LARB and TXE	ERR bits	
bit 2	RTREN: Auto 1 = When a r	omatic Remote	Transmission sion request i	Request Enab is received, TX	le bit REQ will be au	itomatically set	
bit 1-0	TXPRI<1:0>: 11 = Priority 10 = Priority 01 = Priority	Transmit Prior Level 3 (highes Level 2	ty bits ⁽⁵⁾ t priority)				
Note 1: 2: 3:	These registers ar Clearing this bit in This bit is automat	software while ically cleared w	the bit is set v hen TXREQ i	will request a m is set.	C C		

4: While TXREQ is set or a transmission is in progress, Transmit Buffer registers remain read-only.

5: These bits set the order in which the Transmit Buffer register will be transferred. They do not alter the CAN message identifier.

REGISTER 27-59: TXBIE: TRANSMIT BUFFERS INTERRUPT ENABLE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0
—	—		TXB2IE ⁽²⁾	TXB2IE ⁽²⁾ TXB1IE ⁽²⁾ TXB0II			—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	Unimplemented: Read as '0'
bit 4-2	TXB2IE:TXB0IE: Transmit Buffer 2-0 Interrupt Enable bits ⁽²⁾
	 1 = Transmit buffer interrupt is enabled 0 = Transmit buffer interrupt is disabled
bit 1-0	Unimplemented: Read as '0'

Note 1: This register is available in Mode 1 and 2 only.

2: TXBnIE in PIE5 register must be set to get an interrupt.

REGISTER 27-60: BIE0: BUFFER INTERRUPT ENABLE REGISTER 0⁽¹⁾

R/W-0	R/W-0						
B5IE ⁽²⁾	B4IE ⁽²⁾	B3IE ⁽²⁾	B2IE ⁽²⁾	B1IE ⁽²⁾	B0IE ⁽²⁾	RXB1IE ⁽²⁾	RXB0IE ⁽²⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-2 B<5:0>IE: Programmable Transmit/Receive Buffer 5-0 Interrupt Enable bits⁽²⁾

1 =	Interrupt is enabled	
-		

0 = Interrupt is disabled

bit 1-0 RXB<1:0>IE: Dedicated Receive Buffer 1-0 Interrupt Enable bits⁽²⁾

- 1 = Interrupt is enabled
- 0 = Interrupt is disabled

Note 1: This register is available in Mode 1 and 2 only.

2: Either TXBnIE or RXBnIE, in the PIE5 register, must be set to get an interrupt.

NOTES:

R/C-1	R/C-1	U-0	U-0	U-0	U-0	U-0	U-0	
CPD	CPB	—	_	—	—	_	—	
bit 7	L						bit 0	
Legend:		C = Clearable	bit					
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown	
bit 7	CPD: Data El	EPROM Code	Protection bit					
	1 = Data EEF	ROM is not co	de-protected					
	0 = Data EEF	PROM is code-p	protected					
bit 6 CPB: Boot Block Code Protection bit			ection bit					
		k is not code-p						
	0 = Boot bloc	k is code-prote	cted ⁽¹⁾					
bit 5-0	Unimplemen	ted: Read as '	0'					

REGISTER 28-8: CONFIG5H: CONFIGURATION REGISTER 5 HIGH (BYTE ADDRESS 300009h)

Note 1: For the memory size of the blocks, see Figure 28-6. The boot block size changes with BBSIZ0.

30.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows[®] programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

30.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

30.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

31.1 DC Characteristics: Supply Voltage PIC18F66K80 Family (Industrial/Extended)

PIC18F66K80 Family (Industrial, Extended)			$ \begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \end{array} $					
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions	
D001	Vdd	Supply Voltage	1.8 1.8		3.6 5.5	V V	For LF devices For F devices	
D001C	AVdd	Analog Supply Voltage	VDD - 0.3		VDD + 0.3	V		
D001D	AVss	Analog Ground Potential	Vss – 0.3	_	Vss + 0.3	V		
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5	_	—	V		
D003	Vpor	VDD Start Voltage to Ensure Internal Power-on Reset Signal	—	_	0.7	V	See Section 5.3 "Power-on Reset (POR)" for details	
D004	Svdd	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.05	_	_	V/ms	See Section 5.3 "Power-on Reset (POR)" for details	
D005	Bvdd	Brown-out Reset Voltage (High, Medium and Low-Power mode BORV<1:0> = 11 ⁽²⁾ BORV<1:0> = 10 BORV<1:0> = 01 BORV<1:0> = 00	1.69 1.88 2.53 2.82	1.8 2.0 2.7 3.0	1.91 2.12 2.86 3.18	V V V		

Note 1: This is the limit to which VDD can be lowered in Sleep mode, or during a device Reset, without losing RAM data.

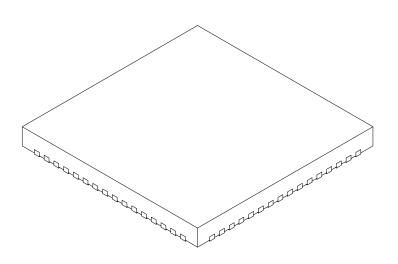
2: Device will operate normally until Brown-out Reset occurs, even though VDD may be below VDDMIN.

31.2 DC Characteristics: Power-Down and Supply Current PIC18F66K80 Family (Industrial/Extended)

PIC18F66K80 Family (Industrial/Extended)			$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$						
Param No.	Device	Тур	Max	Units	Conc	litions			
	Power-Down Current	(IPD) ⁽¹⁾							
	PIC18LFXXK80	8	400	nA	-40°C				
		13	500	nA	+25°C	VDD = 1.8V			
		35	750	nA	+60°C	(Sleep mode)			
		218	980	nA	+85°C	Regulator Disabled			
		3	6	μA	+125°C				
	PIC18LFXXK80	14	500	nA	-40°C				
		34	600	nA	+25°C	VDD = 3.3V			
		92	850	nA	+60°C	(Sleep mode)			
		312	1250	nA	+85°C	Regulator Disabled			
		4	8	μA	+125°C				
	PIC18FXXK80	200	700	nA	-40°C				
		230	800	nA	+25°C	VDD = 3.3V			
		320	1050	nA	+60°C	(Sleep mode)			
		510	1500	nA	+85°C	Regulator Enabled			
		5	9	μA	+125°C				
	PIC18FXXK80	220	1000	nA	-40°C				
		240	1000	nA	+25°C	VDD = 5V			
		340	1100	nA	+60°C	(Sleep mode)			
		540	1580	nA	+85°C	Regulator Enabled			
		5	10	μA	+125°C				

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or Vss, and all features that add delta current are disabled (such as WDT, SOSC oscillator, BOR, etc.).


2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;
- MCLR = VDD; WDT enabled/disabled as specified.
- 3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- 4: For LF devices, RETEN (CONFIG1L<0>) = 1.
- 5: For F devices, SRETEN (WDTCON<4>) = 1 and \overline{RETEN} (CONFIG1L<0>) = 0.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			S		
Dimensio	Dimension Limits			MAX		
Number of Pins	N		64			
Pitch	е		0.50 BSC			
Overall Height	A	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	A3		0.20 REF			
Overall Width	E	9.00 BSC				
Exposed Pad Width	E2	7.05	7.15	7.50		
Overall Length	D		9.00 BSC			
Exposed Pad Length	D2	7.05	7.15	7.50		
Contact Width	b	0.18	0.25	0.30		
Contact Length	L	0.30	0.40	0.50		
Contact-to-Exposed Pad	K	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-149B Sheet 2 of 2