

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	ECANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f45k80-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 3-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

bit 2	HFIOFS: HF-INTOSC Frequency Stable bit
	1 = HF-INTOSC oscillator frequency is stable
	0 = HF-INTOSC oscillator frequency is not stable

- bit 1-0 SCS<1:0>: System Clock Select bits⁽⁴⁾
 - 1x = Internal oscillator block (LF-INTOSC, MF-INTOSC or HF-INTOSC)
 - 01 = SOSC oscillator
 - 00 = Default primary oscillator (OSC1/OSC2 or HF-INTOSC with or without PLL; defined by the FOSC<3:0> Configuration bits, CONFIG1H<3:0>)
- Note 1: The Reset state depends on the state of the IESO Configuration bit (CONFIG1H<7>).
 - 2: Modifying these bits will cause an immediate clock frequency switch if the internal oscillator is providing the device clocks.
 - 3: The source is selected by the INTSRC bit (OSCTUNE<7>).
 - 4: Modifying these bits will cause an immediate clock source switch.
 - 5: INTSRC = OSCTUNE<7> and MFIOSEL = OSCCON2<0>.
 - 6: This is the lowest power option for an internal source.

REGISTER 3-2: OSCCON2: OSCILLATOR CONTROL REGISTER 2

U-0	R-0	U-0	R/W-1	R/W-0	U-0	R-x	R/W-0
—	SOSCRUN	_	SOSCDRV ⁽¹⁾	SOSCGO	—	MFIOFS	MFIOSEL
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6	SOSCRUN: SOSC Run Status bit
	1 = System clock comes from a secondary SOSC0 = System clock comes from an oscillator other than SOSC
bit 5	Unimplemented: Read as '0'
bit 4	SOSCDRV: Secondary Oscillator Drive Control bit ⁽¹⁾
	 1 = High-power SOSC circuit is selected 0 = Low/high-power select is done via the SOSCSEL<1:0> Configuration bits
bit 3	SOSCGO: Oscillator Start Control bit
	 1 = Oscillator is running even if no other sources are requesting it. 0 = Oscillator is shut off if no other sources are requesting it (When the SOSC is selected to run from a digital clock input, rather than an external crystal, this bit has no effect.)
bit 2	Unimplemented: Read as '0'
bit 1	MFIOFS: MF-INTOSC Frequency Stable bit
	1 = MF-INTOSC is stable 0 = MF-INTOSC is not stable
bit 0	MFIOSEL: MF-INTOSC Select bit
	 1 = MF-INTOSC is used in place of HF-INTOSC frequencies of 500 kHz, 250 kHz and 31.25 kHz 0 = MF-INTOSC is not used
Note 1:	When SOSC is selected to run from a digital clock input, rather than an external crystal, this bit has no effect.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INTSRC	PLLEN	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	INTSRC: Inter	rnal Oscillator I	_ow-Frequenc	y Source Selec	t bit		
	1 = 31.25 kHz	z device clock is	derived from 1	6 MHz INTOSC	source (divide	-by-512 enabled	d, HF-INTOSC)
	0 = 31 kHz de	evice clock is d	erived from IN	TOSC 31 kHz (oscillator (LF-II	NTOSC)	
bit 6	PLLEN: Frequence	uency Multiplie	r PLL Enable b	oit			
	1 = PLL is en	abled					
	0 = PLL is dis	sabled					
bit 5-0	TUN<5:0>: Fa	ast RC Oscillat	or (INTOSC) F	requency Tunir	ng bits		
	011111 = Ma	ximum frequer	ю				
	•	•					
	•	•					
	000001 = Ce	nter frequency:	fast RC oscill	ator is running :	at the calibrate	d frequency	
	111111	inter inequency,				a noquonoy	
	•	•					
	•	•					
	100000 = Mir	nimum frequen	су				

REGISTER 3-3: OSCTUNE: OSCILLATOR TUNING REGISTER

REGISTER 10-3: INTCON3: INTERRUPT CONTROL REGISTER 3

R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INT2IF	PINT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF
bit 7		·					bit 0
Legend:	· · · · · ·	147 147 14 H		· · · · · · · · · · · · · · · · · · ·	· • • • • • • • • • •		
R = Read	able bit	W = Writable	bit	U = Unimpier	mented bit, rea	d as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cie	ared	х = Bit is unкr	nown
hit 7	INT2IP INT2	Evternal Interr	nunt Priority hit				
	1 = High pric	ritv	upti nonty on				
	0 = Low prior	rity					
bit 6	INT1IP: INT1	External Interr	upt Priority bit				
	1 = High pric	ority	•				
	0 = Low prior	rity					
bit 5	INT3IE: INT3	External Interr	rupt Enable bit				
	1 = Enables	the INT3 extern	nal interrupt				
		the IN13 exter	nal interrupt				
bit 4		External Intern	upt Enable bit				
	1 = Enables ∩ = Disables	the INT2 exten	nal interrupt				
hit 3		External Interr	unt Enable bit				
Dit O	1 = Enables	the INT1 exteri	nal interrupt				
	0 = Disables	the INT1 exter	nal interrupt				
bit 2	INT3IF: INT3	External Interr	upt Flag bit				
	1 = The INT3	3 external interi	rupt occurred (must be cleare	d in software)		
	0 = The INT3	3 external interi	rupt did not oc	cur			
bit 1	INT2IF: INT2	External Interr	upt Flag bit				
	$1 = \text{The INT}_2$ $0 = \text{The INT}_2$	2 external interi 2 external interi	rupt occurred (must be cleare	d in software)		
hit ()		Evternal Interr	unt Flag hit	Cui			
DILO	1 = The INT	1 external interi	runt occurred (must be cleare	d in software)		
	0 = The INT	1 external interi	rupt did not oc	CUL	u in contra -,		
			·				
N-to.	Later the floor bits		'	10		"	
Note:	Interrupt flag bits	are set when	an interrupt co	ondition occurs	regardless of	the state of its	corresponding
	are clear prior to	enabling an int	errupt. This fe	ature allows for	software pollir	appropriate int	enuprinag site

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
IRXIF	WAKIF	ERRIF	TXB2IF	TXB1IF	TXB0IF	RXB1IF	RXB0IF/ FIFOFIF				
bit 7	·	•				•	bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 7	IRXIF: Invalid	Message Rec	eived Interrup	ot Flag bits							
	1 = An invalio	d message occ	urred on the	CAN bus							
	0 = No invalio	d message occ	urred on the (
DIT 6		Vake-up Activi		ag bit							
	1 = Activity 0 0 = No activity	the CAN bus	has occurred	1							
bit 5	ERRIF: Error	Interrupt Flag	bit (Multiple s	ources in CON	/ISTAT register)						
	1 = An error	has occurred ir	n the CAN mo	dule (multiple	sources)						
	0 = No CAN	module errors	have occurred	d							
bit 4	TXB2IF: Tran	smit Buffer 2 Ir	nterrupt Flag I	oit							
	1 = Transmit	Buffer 2 has co	ompleted tran	smission of a i	message and ma	ay be reloaded					
hit 2		Buller 2 has h	ot completed	transmission o	n a message						
DILS	IAD IIF: Italistill Buller I Interrupt Flag bit 1 = Transmit Buffer 1 has completed transmission of a message and may be reloaded										
	0 = Transmit	Buffer 1 has n	ot completed	transmission o	f a message	ay be reloaded					
bit 2	TXB0IF: Tran	TXB0IF: Transmit Buffer 0 Interrupt Flag bit									
	1 = Transmit 0 = Transmit	Buffer 0 has co Buffer 0 has n	ompleted tran	smission of a i transmission of	message and ma f a message	ay be reloaded					
bit 1	RXB1IF: Rec	eive Buffer 1 Ir	nterrupt Flag b	bit							
	Mode 0:										
	1 = CAN Receive Buffer 1 has received a new message										
	Modes 1 and	2 [.]			bage						
	1 = A CAN Receive Buffer/FIFO has received a new message										
	0 = A CAN R	eceive Buffer/F	FIFO has not	received a nev	v message						
bit 0	Bit operation i	s dependent o	n the selected	d mode:							
	Mode 0:			.,							
		eive Buffer 0 Ir	terrupt Flag b	Dit							
	1 = CAN Red0 = CAN Red	eive Buffer 0 h	as received a	ed a new message	e sage						
	<u>Mode 1:</u>										
	Unimplemen	ted: Read as '	0'								
	Mode 2: FIFOFIF: FIF	O Full Interrunt	Flag bit								
	1 = FIFO has	reached full s	tatus as defin	ed by the FIFC	D_HF bit						
	0 = FIFO has	not reached f	ull status as d	efined by the F	FIFO_HF bit						

REGISTER 10-8: PIR5: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 5

17.2 Timer4 Interrupt

The Timer4 module has an eight-bit Period register, PR4, that is both readable and writable. Timer4 increment from 00h until it matches PR4 and then resets to 00h on the next increment cycle. The PR4 register is initialized to FFh upon Reset.

17.3

Output of TMR4

as is the Timer2 output.

The outputs of TMR4 (before the postscaler) are used

only as a PWM time base for the ECCP modules. They

are not used as baud rate clocks for the MSSP module

FIGURE 17-1: TIMER4 BLOCK DIAGRAM

TABLE 17-1: REGISTERS ASSOCIATED WITH TIMER4 AS A TIMER/COUNTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF				
IPR4	TMR4IP	EEIP	CMP2IP	CMP1IP		CCP5IP	CCP4IP	CCP3IP				
PIR4	TMR4IF	EEIF	CMP2IF	CMP1IF	—	CCP5IF	CCP4IF	CCP3IF				
PIE4	TMR4IE	EEIE	CMP2IE	CMP1IE	—	CCP5IE	CCP4IE	CCP3IE				
TMR4	Timer4 Reg	Timer4 Register										
T4CON	—	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR4ON	T4CKPS1	T4CKPS0				
PR4	Timer4 Peri	Timer4 Period Register										
PMD1	PSPMD	CTMUMD	ADCMD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	TMR0MD				

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer4 module.

REGISTER 20-2: CCPTMRS: CCP TIMER SELECT REGISTER

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	—	C5TSEL	C4TSEL	C3TSEL	C2TSEL	C1TSEL
bit 7							bit 0

Legend:					
R = Readable bit W = Writable bit		U = Unimplemented bit	, read as '0'		
-n = Value	at POR	R'1' = Bit is set'0' = Bit is clearedx = Bit is unknown			
bit 7-5	Unimple	mented: Read as '0'			
bit 4	C5TSEL	: CCP5 Timer Selection bit			
	0 = CCF	P5 is based off of TMR1/TMR2			
	1 = CCF	P5 is based off of TMR3/TMR4			
bit 3	C4TSEL	: CCP4 Timer Selection bit			
	0 = CCF	P4 is based off of TMR1/TMR2			
	1 = CCF	P4 is based off of TMR3/TMR4			
bit 2	C3TSEL	: CCP3 Timer Selection bit			
	0 = CCF	P3 is based off of TMR1/TMR2			
	1 = CCF	P3 is based off of TMR3/TMR4			
bit 1	C2TSEL	: CCP2 Timer Selection bit			
	0 = CCF	P2 is based off of TMR1/TMR2			
	1 = CCF	P2 is based off of TMR3/TMR4			
bit 0	C1TSEL	: CCP1 Timer Selection bit			
	0 = ECC	CP1 is based off of TMR1/TMR	2		
	1 = ECC	CP1 is based off of TMR3/TMR	4		

ECCP1DEL: ENHANCED PWM CONTROL REGISTER REGISTER 20-4:

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
P1RSEN	P1DC6	P1DC5	P1DC4	P1DC3	P1DC2	P1DC1	P1DC0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7 P1RSEN: PWM Restart Enable bit

- 1 = Upon auto-shutdown, the ECCP1ASE bit clears automatically once the shutdown event goes away; the PWM restarts automatically
- 0 = Upon auto-shutdown, ECCP1ASE must be cleared by software to restart the PWM

bit 6-0

P1DC<6:0>: PWM Delay Count bits

P1DCn = Number of Fosc/4 (4 * Tosc) cycles between the scheduled time when a PWM signal should transition active and the actual time it does transition active.

20.4.7 PULSE STEERING MODE

In Single Output mode, pulse steering allows any of the PWM pins to be the modulated signal. Additionally, the same PWM signal can simultaneously be available on multiple pins.

Once the Single Output mode is selected (CCP1M<3:2> = 11 and P1M<1:0> = 00 of theCCP1CON register), the user firmware can bring out the same PWM signal to one, two, three or four output pins by setting the appropriate STR<D:A> bits (PSTR1CON<3:0>), as provided in Table 20-2.

Note: The associated TRIS bits must be set to output ('0') to enable the pin output driver in order to see the PWM signal on the pin.

While the PWM Steering mode is active, the CCP1M<1:0> bits (CCP1CON<1:0>) select the PWM output polarity for the P1<D:A> pins.

The PWM auto-shutdown operation also applies to the PWM Steering mode, as described in Section 20.4.4 "Enhanced PWM Auto-shutdown mode". An auto-shutdown event will only affect pins that have PWM outputs enabled.

REGISTER	22-3: BAU	DCONx: BAU	D RATE CO	NTROL REGI	STER		
R/W-0	R-1	R/W-x	R/W-0	R/W-0	U-0	R/W-0	R/W-0
ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN
bit 7							bit 0
Legend:	. 1. 11		1. 1			1	
R = Readable	e bit	W = Writable	bit		nented bit, rea	d as '0'	
-n = value at	POR	"1" = Bit is set		$0^{\circ} = Bit is clear$	ared	x = Bit is unkr	nown
bit 7	ABDOVF: Au 1 = A BRG ro	ito-Baud Acqui ollover has occ	sition Rollover urred during A	Status bit uto-Baud Rate	Detect mode		
	(must be 0 = No BRG	cleared in soft rollover has or	ware) curred				
bit 6	RCIDL: Rece 1 = Receive c 0 = Receive c	ive Operation operation is Idle operation is act	ldle Status bit e ive				
bit 5	RXDTP: Rece <u>Asynchronous</u> 1 = Receive c 0 = Receive c	eived Data Pola <u>s mode:</u> data (RXx) is in data (RXx) is no	arity Select bit verted ot inverted	(Asynchronous	mode only)		
bit 4	TXCKP: Cloc	k and Data Po	larity Select bit				
	Asynchronous 1 = Idle state 0 = Idle state	<u>s mode:</u> for transmit (T. for transmit (T.	Xx) is a low lev Xx) is a high le	vel			
	Synchronous 1 = Idle state 0 = Idle state	<u>mode:</u> for clock (CKx for clock (CKx) is a high leve) is a low level	I			
bit 3	BRG16: 16-B	it Baud Rate R	Register Enable	e bit			
	1 = 16-bit Bau 0 = 8-bit Bau	ud Rate Genera d Rate Genera	ator – SPBRG tor – SPBRGx	Hx and SPBRG only (Compatib	x le mode), SPE	RGHx value is	ignored
bit 2	Unimplemen	ted: Read as '	0'				
bit 1	WUE: Wake-u	up Enable bit					
	Asynchronous 1 = EUSART hardware 0 = RXx pin i	<u>s mode:</u> x will continue on following r is not monitore	to sample the ising edge d or rising edg	RXx pin: interr e is detected	upt generated	on falling edge	; bit cleared in
	Synchronous Unused in this	<u>mode:</u> s mode.					
bit 0	ABDEN: Auto	o-Baud Detect	Enable bit				
	Asynchronous 1 = Enables cleared in 0 = Baud rate	<u>s mode:</u> baud rate mea n hardware upo e measuremen	surement on t on completion t is disabled or	he next charact	er: requires re	ception of a Sy	nc field (55h);
	Synchronous Unused in this	<u>mode:</u> s mode.		·			

BRG Value	XXXXh	0000h		001Ch
RXx pin		Start	-Edge #1 -Edge #2 -Edge #3 -Edge #4 Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7	C Edge #5
BRG Clock	דעמענמשנמת מתחנות במשנמת במחונות ביותר	www.www		D ULLHUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU
ABDEN bit	Set by User			Auto-Cleared
RCxIF bit (Interrupt)				
Read RCREGx				
SPBRGx	i		XXXXh	X 1Ch
SPBRGHx			XXXXh	00h

FIGURE 22-2: BRG OVERFLOW SEQUENCE

22.3.2 EUSARTx ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 22-6. The data is received on the RXx pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc. This mode would typically be used in RS-232 systems.

To set up an Asynchronous Reception:

- Initialize the SPBRGHx:SPBRGx registers for 1. the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- Enable the asynchronous serial port by clearing 2 bit, SYNC, and setting bit, SPEN.
- 3. If interrupts are desired, set enable bit, RCxIE.
- 4. If 9-bit reception is desired, set bit, RX9.
- 5. Enable the reception by setting bit, CREN.
- 6. Flag bit, RCxIF, will be set when reception is complete and an interrupt will be generated if enable bit, RCxIE, was set.
- 7. Read the RCSTAx register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREGx register.
- If any error occurred, clear the error by clearing 9. enable bit, CREN.
- 10. If using interrupts, ensure that the GIE and PEIE bits (INTCON<7:6>) are set.

SETTING UP 9-BIT MODE WITH 22.3.3 ADDRESS DETECT

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- Initialize the SPBRGHx:SPBRGx registers for 1. the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- If interrupts are required, set the RCEN bit and 3. select the desired priority level with the RCxIP bit.
- 4. Set the RX9 bit to enable 9-bit reception.
- 5. Set the ADDEN bit to enable address detect.
- 6. Enable reception by setting the CREN bit.
- 7. The RCxIF bit will be set when reception is complete. The interrupt will be Acknowledged if the RCxIE and GIE bits are set.
- 8. Read the RCSTAx register to determine if any error occurred during reception, as well as read bit 9 of data (if applicable).
- 9. Read RCREGx to determine if the device is being addressed.
- 10. If any error occurred, clear the CREN bit.
- 11. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and interrupt the CPU.

FIGURE 22-6: EUSARTX RECEIVE BLOCK DIAGRAM

22.4 EUSARTx Synchronous Master Mode

The Synchronous Master mode is entered by setting the CSRC bit (TXSTAx<7>). In this mode, the data is transmitted in a half-duplex manner (i.e., transmission and reception do not occur at the same time). When transmitting data, the reception is inhibited and vice versa. Synchronous mode is entered by setting bit, SYNC (TXSTAx<4>). In addition, enable bit, SPEN (RCSTAx<7>), is set in order to configure the TXx and RXx pins to CKx (clock) and DTx (data) lines, respectively.

The Master mode indicates that the processor transmits the master clock on the CKx line. Clock polarity is selected with the TXCKP bit (BAUDCONx<4>). Setting TXCKP sets the Idle state on CKx as high, while clearing the bit sets the Idle state as low. This option is provided to support Microwire devices with this module.

22.4.1 EUSARTx SYNCHRONOUS MASTER TRANSMISSION

The EUSARTx transmitter block diagram is shown in Figure 22-3. The heart of the transmitter is the Transmit (Serial) Shift Register (TSR). The shift register obtains its data from the Read/Write Transmit Buffer register, TXREGx. The TXREGx register is loaded with data in software. The TSR register is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR is loaded with new data from the TXREGx (if available).

Once the TXREGx register transfers the data to the TSR register (occurs in one TcY), the TXREGx is empty and the TXxIF flag bit is set. The interrupt can be enabled or disabled by setting or clearing the interrupt enable bit, TXxIE. TXxIF is set regardless of the state of enable bit, TXxIE; it cannot be cleared in software. It will reset only when new data is loaded into the TXREGx register.

While flag bit, TXxIF, indicates the status of the TXREGx register, another bit, TRMT (TXSTAx<1>), shows the status of the TSR register. TRMT is a read-only bit which is set when the TSR is empty. No interrupt logic is tied to this bit, so the user must poll this bit in order to determine if the TSR register is empty. The TSR is not mapped in data memory so it is not available to the user.

To set up a Synchronous Master Transmission:

- Initialize the SPBRGHx:SPBRGx registers for the appropriate baud rate. Set or clear the BRG16 bit, as required, to achieve the desired baud rate.
- 2. Enable the synchronous master serial port by setting bits, SYNC, SPEN and CSRC.
- 3. If interrupts are desired, set enable bit, TXxIE.
- 4. If 9-bit transmission is desired, set bit, TX9.
- 5. Enable the transmission by setting bit, TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit, TX9D.
- 7. Start transmission by loading data to the TXREGx register.
- 8. If using interrupts, ensure that the GIE and PEIE bits (INTCON<7:6>) are set.

FIGURE 22-11: SYNCHRONOUS TRANSMISSION

23.2 A/D Registers

23.2.1 A/D CONTROL REGISTERS

REGISTER 23-1: ADCON0: A/D CONTROL REGISTER 0

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	CHS4	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON		
bit 7							bit 0		
Legend:									
R = Reada	able bit	W = Writable	oit	U = Unimplen	nented bit, rea	ad as '0'			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own		
bit 7	Unimplemer	nted: Read as 'o)'						
bit 6-2	CHS<4:0>: /	Analog Channel	Select bits						
	00000 = Channel 00 (AN0) $10000 = $ (Reserved) ⁽²⁾								
00001 = Channel 01 (AN1) $10001 = $ (Reserved) ⁽²⁾									
00010 = Channel 02 (AN2) $10010 = $ (Reserved) ⁽²⁾									
	00011 = Cha	annel 03 (AN3)		10011 = (R e	eserved) ⁽²⁾				
	00100 = Cha	annel 04 (AN4)	1 2)	10100 = (Re	eserved) ⁽²⁾				
	00101 = Cha		1.2)	10101 = (Re	eserved)(-)				
	00110 = Cha		1,2)	10110 - (Reserved)(2)					
	00111 - Cha	annel 07 (AN7).		10111 - (Re)	eserved)(2)				
	01000 = Cha	annel 09 (AN9)		11000 = (Re	eserved)(2)				
	01010 = Cha	annel 10 (AN10)		11010 = (Re	eserved) ⁽²⁾				
	01011 = (Re	served) ⁽²⁾	·	11011 = (Re	eserved) ⁽²⁾				
	01100 = (Re	served)(2))		11100 = (MI	ÚX disconnec	t) ⁽³⁾			
	01101 = (Re	served)(2))		11101 = Ch	annel 29 (tem	perature diode)			
	01110 = (Re	eserved) ⁽²⁾⁾		11110 = Ch	annel 30 (VDD	CORE)			
	01111 = (Re	eserved) ⁽²⁾		11111 = Ch	annel 31 (1.02	24V band gap)			
bit 1	GO/DONE: A	VD Conversion	Status bit						
	1 = A/D cyc	le is in progres	s. Setting th	is bit starts an	A/D convers	ion cycle. The l	bit is cleared		
	automat	ically by hardwa	re when the A	VD conversion i	s completed.				
	0 = A/D con	version has com	pleted or is n	ot in progress					
bit 0	ADON: A/D	On bit							
	1 = A/D Conv	verter is operatir	ng						
	0 = A/D conv	ersion module i	s shut off and	consuming no	operating curr	ent			
Note 1:	These channels	are not impleme	ented on 28-pi	n devices.					
2:	Performing a cor	version on unin	plemented cl	nannels will retu	ırn random va	lues.			
3:	Channel 28 turns	off analog MU	switches to	allow for minimu	um capacitive	loading of the A/I	D input, for		
	finer resolution CTMU time measurements.								

26.2 HLVD Setup

To set up the HLVD module:

- 1. Select the desired HLVD trip point by writing the value to the HLVDL<3:0> bits.
- 2. Set the VDIRMAG bit to detect high voltage (VDIRMAG = 1) or low voltage (VDIRMAG = 0).
- 3. Enable the HLVD module by setting the HLVDEN bit.
- 4. Clear the HLVD interrupt flag (PIR2<2>), which may have been set from a previous interrupt.
- If interrupts are desired, enable the HLVD interrupt by setting the HLVDIE and GIE bits (PIE2<2> and INTCON<7>, respectively).

An interrupt will not be generated until the IRVST bit is set.

Note: Before changing any module settings (VDIRMAG, HLVDL<3:0>), first disable the module (HLVDEN = 0), make the changes and re-enable the module. This prevents the generation of false HLVD events.

26.3 Current Consumption

When the module is enabled, the HLVD comparator and voltage divider are enabled and consume static current. The total current consumption, when enabled, is specified in electrical specification Parameter D022B (Table 31-11).

Depending on the application, the HLVD module does not need to operate constantly. To reduce current requirements, the HLVD circuitry may only need to be enabled for short periods where the voltage is checked. After such a check, the module could be disabled.

26.4 HLVD Start-up Time

The internal reference voltage of the HLVD module, specified in electrical specification Parameter 37 (Section 31.0 "Electrical Characteristics"), may be used by other internal circuitry, such as the programmable Brown-out Reset. If the HLVD or other circuits using the voltage reference are disabled to lower the device's current consumption, the reference voltage circuit will require time to become stable before a low or high-voltage condition can be reliably detected. This start-up time, TIRVST, is an interval that is independent of device clock speed. It is specified in electrical specification Parameter 37 (Table 31-11).

The HLVD interrupt flag is not enabled until TIRVST has expired and a stable reference voltage is reached. For this reason, brief excursions beyond the set point may not be detected during this interval (see Figure 26-2 or Figure 26-3).

EXAMPLE 27-2: WIN AND ICODE BITS USAGE IN INTERRUPT SERVICE ROUTINE TO ACCESS TX/RX BUFFERS (CONTINUED)

ErrorInter	rupt	
BCF	PIR3, ERRIF	; Clear the interrupt flag
		; Handle error.
RETFIE		
TXB2Interr	upt	
BCF	PIR3, TXB2IF	; Clear the interrupt flag
GOTO	AccessBuffer	
TXBlInterr	upt	
BCF	PIR3, TXB1IF	; Clear the interrupt flag
GOTO	AccessBuffer	
TXB0Interr	upt	
BCF	PIR3, TXB0IF	; Clear the interrupt flag
GOTO	AccessBuffer	
RXBlInterr	upt	
BCF	PIR3, RXB1IF	; Clear the interrupt flag
GOTO	Accessbuffer	
RXB0Interr	upt	
BCF	PIR3, RXB0IF	; Clear the interrupt flag
GOTO	AccessBuffer	
AccessBuff	er	; This is either TX or RX interrupt
; Copy	CANSTAT.ICODE bits to CANCON	I.WIN bits
MOVF	TempCANCON, W	; Clear CANCON.WIN bits before copying
		; new ones.
ANDLW	B'11110001'	; Use previously saved CANCON value to
		; make sure same value.
MOVWF	TempCANCON	; Copy masked value back to TempCANCON
MOVF	TempCANSTAT, W	; Retrieve ICODE bits
ANDLW	B'00001110'	; Use previously saved CANSTAT value
		; to make sure same value.
IORWF	TempCANCON	; Copy ICODE bits to WIN bits.
MOVFF	TempCANCON, CANCON	; Copy the result to actual CANCON
; Acces	ss current buffer…	
; User	code	
; Rest	ore CANCON.WIN bits	
MOVF	CANCON, W	; Preserve current non WIN bits
ANDLW	B'11110001'	
IORWF	TempCANCON	; Restore original WIN bits
; Do no	ot need to restore CANSTAT -	it is read-only register.
; Retu	rn from interrupt or check fo	r another module interrupt source

REGISTER 27-19: RXBnDLC: RECEIVE BUFFER 'n' DATA LENGTH CODE REGISTERS [0 \leq n \leq 1]

U-0	R-x	R-x	R-x	R-x	R-x	R-x	R-x
—	RXRTR	RB1	R0	DLC3	DLC2	DLC1	DLC0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit

bit 7	Unimplemented: Read as '0'
bit 6	RXRTR: Receiver Remote Transmission Request
	1 = Remote transfer request
	0 = No remote transfer request
bit 5	RB1: Reserved bit 1
	Reserved by CAN Spec and read as '0'.
bit 4	RB0: Reserved bit 0
	Reserved by CAN Spec and read as '0'.
bit 3-0	DLC<3:0>: Data Length Code bits
	1111 = Invalid
	1110 = Invalid
	1101 = Invalid
	1100 = Invalid
	1011 = Invalid
	1010 = Invalid
	1001 = Invalid
	1000 = Data length = 8 bytes
	0111 = Data length = 7 bytes
	0110 = Data length = 6 bytes
	0101 = Data length = 5 bytes
	0100 = Data length = 4 bytes
	0011 = Data length = 3 bytes
	0010 = Data length = 2 bytes
	0001 = Data length = 1 byte
	0000 = Data length = 0 bytes

REGISTER 27-20: RXBnDm: RECEIVE BUFFER 'n' DATA FIELD BYTE 'm' REGISTERS $[0 \le n \le 1, \, 0 \le m \le 7]$

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
RXBnDm7	RXBnDm6	RXBnDm5	RXBnDm4	RXBnDm3	RXBnDm2	RXBnDm1	RXBnDm0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 7-0 **RXBnDm<7:0>:** Receive Buffer n Data Field Byte m bits (where 0 ≤ n < 1 and 0 < m < 7) Each receive buffer has an array of registers. For example, Receive Buffer 0 has 8 registers: RXB0D0 to RXB0D7.

REGISTER 27-28: BnEIDH: TX/RX BUFFER 'n' EXTENDED IDENTIFIER REGISTERS, HIGH BYTE IN RECEIVE MODE $[0 \le n \le 5, TXnEN (BSEL0<n>) = 0]^{(1)}$

EID15 EID14 EID13 EID12	EID11	EID10	EID9	EID8
bit 7				bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-0 EID<15:8>: Extended Identifier bits

Note 1: These registers are available in Mode 1 and 2 only.

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID15 | EID14 | EID13 | EID12 | EID11 | EID10 | EID9 | EID8 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 EID<15:8>: Extended Identifier bits

Note 1: These registers are available in Mode 1 and 2 only.

$\label{eq:register27-30:BnEIDL: TX/RX BUFFER `n` EXTENDED IDENTIFIER REGISTERS, \\ LOW BYTE IN RECEIVE MODE [0 \le n \le 5, TXnEN (BSEL<n>) = 0]^{(1)}$

R-x	R-x	R-x	R-x	R-x	K R-x		R-x
EID7	EID6	EID5	EID4	EID3	EID2 EID1		EID0
bit 7 bit 0							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 EID<7:0>: Extended Identifier bits

Note 1: These registers are available in Mode 1 and 2 only.

FIGURE 29-1:	IGURE 29-1: GENERAL FORMAT FOR INSTRUCTIONS							
	Byte-oriented file register operations	Example Instruction						
	15 10 9 8 7 0 OPCODE d a f (FILE #) d = 0 for result destination to be WREG register d = 1 for result destination to be file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address	ADDWF MYREG, W, B						
	Byte to Byte move operations (2-word)							
	15 12 11 0 OPCODE f (Source FILE #) 0 15 12 11 0 1111 f (Destination FILE #) 1 f = 12-bit file register address 1	MOVFF MYREG1, MYREG2						
	Bit-oriented file register operations							
	1512 119 8 70 $OPCODE$ b (BIT #)af (FILE #)b = 3-bit position of bit in file register (f)a = 0 to force Access Banka = 1 for BSR to select bankf = 8-bit file register address	BSF MYREG, bit, B						
	Literal operations							
	15 8 7 0							
	OPCODE k (literal)	MOVLW 7Fh						
	k = 8-bit immediate value							
	Control operations							
	CALL, GOTO and Branch operations							
	15 8 7 0							
	OPCODE n<7:0> (literal) 15 12 11 0	GOTO Label						
	1111 n<19:8> (literal)							
	n = 20-bit immediate value							
	15 8 7 0 OPCODE S n<7:0> (literal) 15 12 11 0 1111 n<19:8> (literal) S = Fast bit	CALL MYFUNC						
	15 11 10 0 OPCODE n<10:0> (literal)	BRA MYFUNC						
	15 8 7 0 OPCODE n<7:0> (literal)	BC MYFUNC						

29.2.5 SPECIAL CONSIDERATIONS WITH MICROCHIP MPLAB[®] IDE TOOLS

The latest versions of Microchip's software tools have been designed to fully support the extended instruction set for the PIC18F66K80 family. This includes the MPLAB C18 C Compiler, MPASM assembly language and MPLAB Integrated Development Environment (IDE).

When selecting a target device for software development, MPLAB IDE will automatically set default Configuration bits for that device. The default setting for the XINST Configuration bit is '0', disabling the extended instruction set and Indexed Literal Offset Addressing. For proper execution of applications developed to take advantage of the extended instruction set, XINST must be set during programming.

To develop software for the extended instruction set, the user must enable support for the instructions and the Indexed Addressing mode in their language tool(s). Depending on the environment being used, this may be done in several ways:

- A menu option or dialog box within the environment that allows the user to configure the language tool and its settings for the project
- · A command line option
- · A directive in the source code

These options vary between different compilers, assemblers and development environments. Users are encouraged to review the documentation accompanying their development systems for the appropriate information.

31.2

DC Characteristics: Power-Down and Supply Current PIC18F66K80 Family (Industrial/Extended) (Continued)

PIC18F66K80 Family (Industrial/Extended)		Standard Operating	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Device	Тур	Max	Units	Conditions			
	Module Differential Currents (AlwDT, AlBOR, AlHLVD, AlADC)							
D022	Watchdog Timer							
(ΔIWDT)	PIC18LFXXK80	0.4	2	μA	-40°C to +125°C	V _{DD} = 1.8V Regulator Disabled		
	PIC18LFXXK80	0.6	3	μA	-40°C to +125°C	V _{DD} = 3.3V Regulator Disabled		
	PIC18FXXK80	0.6	3	μA	-40°C to +125°C	V _{DD} = 3.3V Regulator Enabled		
	PIC18FXXK80	0.8	4	μA	-40°C to +125°C	V _{DD} = 5.5V Regulator Enabled		
D022A	Brown-out Reset							
(ΔIBOR)	PIC18LFXXK80	4.6	20	μA	-40°C to +125°C	V _{DD} = 1.8V Regulator Disabled		
	PIC18FXXK80	4.6	20	μA	-40°C to +125°C	V _{DD} = 3.3V Regulator Enabled	High-Power BOR	
	PIC18FXXK80	4.6	20	μA	-40°C to +125°C	V _{DD} = 5.5V Regulator Enabled		
D022B	High/Low-Voltage Detect							
∆İhlvd	PIC18LFXXK80	3.8	10	μA	-40°C to +125°C	V _{DD} = 1.8V Regulator Disabled		
	PIC18LFXXK80	4.5	12	μA	-40°C to +125°C	V _{DD} = 3.3V Regulator Disabled		
	PIC18FXXK80	3.8	12	μA	-40°C to +125°C	V _{DD} = 3.3V Regulator Enabled		
	PIC18FXXK80	4.9	13	μA	-40°C to +125°C	V _{DD} = 5.5V Regulator Enabled		
D026 ∆IADC	A/D Converter							
	PIC18LFXXK80	0.4	1.5		-40°C to +125°C	V _{DD} = 1.8V Regulator Disabled		
	PIC18LFXXK80	0.5	2	μA	-40°C to +125°C	V _{DD} = 3.3V Regulator Disabled	A/D on not convorting	
	PIC18FXXK80	0.5	3	μA	-40°C to +125°C	V _{DD} = 3.3V Regulator Enabled	AD on, not converting	
	PIC18FXXK80	1	3	μA	-40°C to +125°C	V _{DD} = 5.5V Regulator Enabled		

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or VSS, and all features that add delta current are disabled (such as WDT, SOSC oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

- 3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- 4: For LF devices, RETEN (CONFIG1L<0>) = 1.

5: For F devices, SRETEN (WDTCON<4>) = 1 and RETEN (CONFIG1L<0>) = 0.