

Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	ECANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f45k80-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Num	Pin Type	Buffer Type	Description		
RD6/P1C/PSP6	4					
RD6		I/O	ST/ CMOS	Digital I/O.		
P1C		0	CMOS	Enhanced PWM1 Output C.		
PSP6		I/O	ST/ CMOS	Parallel Slave Port data.		
RD7/P1D/PSP7	5					
RD7		I/O	ST/ CMOS	Digital I/O.		
P1D		0	CMOS	Enhanced PWM1 Output D.		
PSP7		I/O	ST/ CMOS	Parallel Slave Port data.		
Legend: $I^2C^{TM} = I^2C/S$ ST = Schmit I = Input	MBus ir t Trigge	nput buff r input v	er vith CMC	CMOS = CMOS compatible input or output OS levels Analog = Analog input O = Output		

TABLE 1-6:	PIC18F6XK80 PINOUT I/O DESCRIPTIONS (CONTINUED)
------------	---

I = Input P = Power

2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS, is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1 μ F (100 nF), 10-20V capacitor is recommended. The capacitor should be a low-ESR device, with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1 μ F in parallel with 0.001 μ F).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits, including microcontrollers, to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μF to 47 μF .

2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: Device Reset, and Device Programming and Debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented, depending on the application's requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the $\overline{\text{MCLR}}$ pin should be placed within 0.25 inch (6 mm) of the pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

Overstress (EOS). Ensure that the MCLR pin

VIH and VIL specifications are met.

NOTES:

5.5 Configuration Mismatch (CM)

The Configuration Mismatch (CM) Reset is designed to detect, and attempt to recover from, random memory corrupting events. These include Electrostatic Discharge (ESD) events, which can cause widespread, single bit changes throughout the device and result in catastrophic failure.

In PIC18FXXKXX Flash devices, the device Configuration registers (located in the configuration memory space) are continuously monitored during operation by comparing their values to complimentary Shadow registers. If a mismatch is detected between the two sets of registers, a CM Reset automatically occurs. These events are captured by the CM bit (RCON<5>) being set to '0'.

This bit does not change for any other Reset event. A CM Reset behaves similarly to a Master Clear Reset, RESET instruction, WDT time-out or Stack Event Resets. As with all hard and power Reset events, the device Configuration Words are reloaded from the Flash Configuration Words in program memory as the device restarts.

5.6 Device Reset Timers

PIC18F66K80 family devices incorporate three separate on-chip timers that help regulate the Power-on Reset process. Their main function is to ensure that the device clock is stable before code is executed. These timers are:

- Power-up Timer (PWRT)
- Oscillator Start-up Timer (OST)
- PLL Lock Time-out

5.6.1 POWER-UP TIMER (PWRT)

The Power-up Timer (PWRT) of the PIC18F66K80 family devices is an 11-bit counter which uses the INTOSC source as the clock input. This yields an approximate time interval of 2048 x 32 μ s = 65.6 ms. While the PWRT is counting, the device is held in Reset.

The power-up time delay depends on the INTOSC clock and will vary from chip-to-chip due to temperature and process variation. See DC Parameter 33 for details.

The PWRT is enabled by clearing the PWRTEN Configuration bit.

— — RC2IF TX2IF CTM bit 7	UIF CCP2IF	CCP1IF	— bit 0
bit 7			hit 0
			DIL U
Legend:			
R = Readable bit W = Writable bit U = Uni	implemented bit, re	ad as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit	t is cleared	x = Bit is unkr	nown
bit 7-6 Unimplemented: Read as '0'			
bit 5 RC2IF: EUSARTx Receive Interrupt Flag bit			
 1 = The EUSARTX receive buffer, RCREG2, IS full (0 = The EUSARTX receive buffer is empty 	(cleared when RCF	REG2 is read)	
bit 4 TX2IF: FUSARTx Transmit Interrupt Flag bit			
1 = The EUSARTx transmit buffer, TXREG2, is em	pty (cleared when -	TXREG2 is writte	n)
0 = The EUSARTx transmit buffer is full			,
bit 3 CTMUIF: CTMU Interrupt Flag bit			
1 = CTMU interrupt occurred (must be cleared in so	oftware)		
0 = NO CIMU Interrupt occurred			
Canture mode:			
1 = A TMR1/TMR3 register capture occurred (must	t be cleared in softw	vare)	
0 = No TMR1/TMR3 register capture occurred			
Compare mode:	ad (must be alcored	d in coffword)	
0 = No TMR1/TMR3 register compare match occurr	red	a in soltware)	
<u>PWM mode:</u>			
Unused in this mode.			
bit 1 CCP1IF: ECCP1 Interrupt Flag bit			
<u>Capture mode:</u>	t be cleared in ceft	wara)	
0 = No TMR1/TMR3 register capture occurred		vale)	
Compare mode:			
<u>compare mode.</u>		d in coffwara)	
1 = A TMR1/TMR3 register compare match occurre	ed (must be cleared	a in Soltware)	
 1 = A TMR1/TMR3 register compare match occurre 0 = No TMR1/TMR3 register compare match occur 	ed (must be cleared red	a in soltware)	
 1 = A TMR1/TMR3 register compare match occurre 0 = No TMR1/TMR3 register compare match occur <u>PWM mode:</u> Unused in this mode. 	ed (must be cleared rred	a in soliware)	

REGISTER 10-6: PIR3: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 3

Pin Name	Function	TRIS Setting	I/O	l/O Type	Description				
RC0/SOSCO/	RC0	0	0	DIG	LATC<0> data output.				
SCLKI		1	Ι	ST	PORTC<0> data input.				
	SOSCO	1	Ι	ST	SOSC oscillator output.				
	SCLKI	1	Ι	ST	Digital clock input; enabled when SOSC oscillator is disabled.				
RC1/SOSCI	RC1	0	0	DIG	LATC<1> data output.				
		1	Ι	ST	PORTC<1> data input.				
	SOSCI	x	Ι	ANA	SOSC oscillator input.				
RC2/T1G/	RC2	0	0	DIG	LATC<2> data output.				
CCP2		1	Ι	ST	PORTC<2> data input.				
	T1G	x	Ι	ST	T Timer1 external clock gate input.				
	CCP2	0	0	DIG	CCP2 compare/PWM output; takes priority over port data.				
		1	Ι	ST	CCP2 capture input.				
RC3/REFO/	RC3	0	0	DIG	LATC<3> data output.				
SCL/SCK		1	Ι	ST	PORTC<3> data input.				
	REFO	x	0	DIG	Reference output clock.				
	SCL	0	0	DIG	I ² C [™] clock output (MSSP module); takes priority over port data.				
-		1	Ι	l ² C	I ² C clock input (MSSP module); input type depends on module setting.				
	SCK	0	0	DIG	SPI clock output (MSSP module); takes priority over port data.				
		1	Ι	ST	SPI clock input (MSSP module).				
RC4/SDA/SDI	RC4	0	0	DIG	LATC<4> data output.				
		1	Ι	ST	PORTC<4> data input.				
	SDA	1	0	DIG	I ² C data output (MSSP module); takes priority over port data.				
		1	Ι	l ² C	I ² C data input (MSSP module); input type depends on module setting.				
	SDI	1	Ι	ST	SPI data input (MSSP module).				
RC5/SDO	RC5	0	0	DIG	LATC<5> data output.				
		1	Ι	ST	PORTC<5> data input.				
	SDO	0	0	DIG	SPI data output (MSSP module).				
RC6/CANTX/	RC6	0	0	DIG	LATC<6> data output.				
TX1/CK1/		1	Ι	ST	PORTC<6> data input.				
CCP3	CANTX ⁽²⁾	0	0	DIG	CAN bus TX.				
	TX1 ⁽¹⁾	0	0	DIG	Asynchronous serial data output (EUSARTx module); takes priority over port data.				
	CK1 ⁽¹⁾	0	0	DIG	Synchronous serial clock output (EUSARTx module); user must configure as an input.				
		1	Ι	ST	Synchronous serial clock input (EUSARTx module); user must configure as an input.				
	CCP3	0	0	DIG	CCP3 compare/PWM output. Takes priority over port data.				
		1	Ι	ST	CCP3 capture input.				

TABLE 11-5:PORTC FUNCTIONS

Legend: O = Output; I = Input; $I^2C = I^2C/SMBus$; ANA = Analog Signal; DIG = CMOS Output; ST = Schmitt Trigger Buffer Input; x = Don't care (TRIS bit does not affect port direction or is overridden for this option)

Note 1: The pin assignment for 28, 40 and 44-pin devices (PIC18F2XK80 and PIC18F4XK80).

2: The alternate pin assignment for CANRX and CANTX on 28, 40 and 44-pin devices (PIC18F4XK80) when the CANMX Configuration bit is set.

11.5 PORTD, TRISD and LATD Registers

PORTD is an 8-bit wide, bidirectional port. The corresponding Data Direction and Output Latch registers are TRISD and LATD.

NOTE: PORTED IS UNAVAILABLE OF 20-pin devices	Note:	PORTD is unavailable on 28-pin devices.
--	-------	---

All pins on PORTD are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

Note: These pins are configured as digital inputs on any device Reset.

Each of the PORTD pins has a weak internal pull-up. A single control bit can turn off all the pull-ups. This is performed by setting bit, RDPU (PADCFG1<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on all device Resets.

PORTD can also be configured as an 8-bit wide microprocessor port (Parallel Slave Port) by setting control bit, PSPMODE (PSPCON<4>). In this mode, the input buffers are ST. For additional information, see **Section 11.9 "Parallel Slave Port**".

INITIAL IZING DODTO

RD3 has a CTMU functionality.

EXAIVIPL	E 11-4:	INITIALIZING PORTD
CLRF	PORTD	; Initialize PORTD by ; clearing output ; data latches
CLRF	LATD	; Alternate method ; to clear output ; data latches
MOVLW	OCFh	; Value used to ; initialize data ; direction
MOVWF	TRISD	; Set RD<3:0> as inputs ; RD<5:4> as outputs ; RD<7:6> as inputs

Pin Name	Function	TRIS Setting	I/O	I/O Type	Description
RD7/RX2/DT2/	RD7	0	0	DIG	LATD<7> data output.
P1D/PSP7		1	I	ST	PORTD<7> data input.
	RX2 ⁽¹⁾	1	Ι	ST	Asynchronous serial receive data input (EUSARTx module).
	DT2 ⁽¹⁾	1	0	DIG	Synchronous serial data output (EUSARTx module); takes priority over port data.
		1	I	ST	Synchronous serial data input (EUSARTx module); user must configure as an input.
	P1D	0	0	DIG	ECCP1 Enhanced PWM output, Channel D. May be configured for tri-state during Enhanced PWM.
	PSP7	x	I/O	ST	Parallel Slave Port data.

TABLE 11-7: PORTD FUNCTIONS (CONTINUED)

Legend: O = Output; I = Input; ANA = Analog Signal; DIG = CMOS Output; ST = Schmitt Trigger Buffer Input;

x = Don't care (TRIS bit does not affect port direction or is overridden for this option)

Note 1: This is the pin assignment for 40 and 44-pin devices (PIC18F4XK80).

TABLE 11-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0
LATD	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0
TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0
PADCFG1	RDPU ⁽¹⁾	REPU ⁽¹⁾	RFPU ⁽²⁾	RGPU ⁽²⁾	—	—	_	CTMUDS
ODCON	SSPOD	CCP5OD	CCP4OD	CCP3OD	CCP2OD	CCP10D	U2OD	U10D
ANCON1	_	ANSEL14	ANSEL13	ANSEL12	ANSEL11	ANSEL10	ANSEL9	ANSEL8

Legend: Shaded cells are not used by PORTD.

Note 1: These bits are unimplemented on 28-pin devices, read as '0'.

2: These bits are unimplemented on 28/40/44-pin devices, read as '0'.

REGISTER 12-3: MDCARH: MODULATION HIGH CARRIER CONTROL REGISTER

R/W-0	R/W-x	R/W-x	U-0	R/W-x	R/W-x	R/W-x	R/W-x
MDCHODIS	MDCHPOL	MDCHSYNC	_	MDCH3 ⁽¹⁾	MDCH2 ⁽¹⁾	MDCH1 ⁽¹⁾	MDCH0 ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	 MDCHODIS: Modulator High Carrier Output Disable bit 1 = Output signal driving the peripheral output pin (selected by MDCH<3:0>) is disabled 0 = Output signal driving the peripheral output pin (selected by MDCH<3:0>) is enabled
bit 6	 MDCHPOL: Modulator High Carrier Polarity Select bit 1 = Selected high carrier signal is inverted 0 = Selected high carrier signal is not inverted
bit 5	 MDCHSYNC: Modulator High Carrier Synchronization Enable bit 1 = Modulator waits for a falling edge on the high time carrier signal before allowing a switch to the low time carrier 0 = Modulator output is not synchronized to the high time carrier signal⁽¹⁾
bit 4	Unimplemented: Read as '0'
bit 3-0	MDCH<3:0> Modulator Data High Carrier Selection bits ⁽¹⁾ 1111-1001 = Reserved 1000 = CCP5 output (PWM Output mode only) 0111 = CCP4 output (PWM Output mode only) 0110 = CCP3 output (PWM Output mode only) 0101 = CCP2 output (PWM Output mode only) 0100 = ECCP1 output (PWM Output mode only) 0011 = Reference clock module signal 0010 = MDCIN2 port pin 0001 = MDCIN1 port pin 0000 = Vss

Note 1: Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

18.5 Measuring Capacitance with the CTMU

There are two ways to measure capacitance with the CTMU. The absolute method measures the actual capacitance value. The relative method only measures for any change in the capacitance.

18.5.1 ABSOLUTE CAPACITANCE MEASUREMENT

For absolute capacitance measurements, both the current and capacitance calibration steps found in **Section 18.4 "Calibrating the CTMU Module"** should be followed.

To perform these measurements:

- 1. Initialize the A/D Converter.
- 2. Initialize the CTMU.
- 3. Set EDG1STAT.
- 4. Wait for a fixed delay, T.
- 5. Clear EDG1STAT.
- 6. Perform an A/D conversion.
- 7. Calculate the total capacitance, CTOTAL = (I * T)/V, where:
 - I is known from the current source measurement step (Section 18.4.1 "Current Source Calibration")
 - · T is a fixed delay
 - V is measured by performing an A/D conversion
- 8. Subtract the stray and A/D capacitance (COFFSET from Section 18.4.2 "Capacitance Calibration") from CTOTAL to determine the measured capacitance.

18.5.2 CAPACITIVE TOUCH SENSE USING RELATIVE CHARGE MEASUREMENT

Not all applications require precise capacitance measurements. When detecting a valid press of a capacitance-based switch, only a relative change of capacitance needs to be detected.

In such an application, when the switch is open (or not touched), the total capacitance is the capacitance of the combination of the board traces, the A/D Converter and other elements. A larger voltage will be measured by the A/D Converter. When the switch is closed (or touched), the total capacitance is larger due to the addition of the capacitance of the human body to the above listed capacitances and a smaller voltage will be measured by the A/D Converter.

To detect capacitance changes simply:

- 1. Initialize the A/D Converter and the CTMU.
- 2. Set EDG1STAT.
- 3. Wait for a fixed delay.
- 4. Clear EDG1STAT.
- 5. Perform an A/D conversion.

The voltage measured by performing the A/D conversion is an indication of the relative capacitance. In this case, no calibration of the current source or circuit capacitance measurement is needed. (For a sample software routine for a capacitive touch switch, see Example 18-4.)

EXAMPLE 22-1: CALCULATING BAUD RATE ERROR

For a device with FOSC of 16 MHz, desired baud rate of 9600, Asynchronous mode, and 8-bit BRG:						
Desired Baud Rate	=	Fosc/(64 ([SPBRGHx:SPBRGx] + 1))				
Solving for SPBRGHx:	SPBF	RGx:				
Х	=	((FOSC/Desired Baud Rate)/64) – 1				
	=	((1600000/9600)/64) - 1				
	=	[25.042] = 25				
Calculated Baud Rate	=	1600000/(64 (25 + 1))				
	=	9615				
Error	=	(Calculated Baud Rate - Desired Baud Rate)/Desired Baud Rate				
	=	(9615 - 9600)/9600 = 0.16%				

TABLE 22-3: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
BAUDCON1	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN
SPBRGH1	EUSART1 B	aud Rate Ge	nerator Regis	ster High Byte	9			
SPBRG1	EUSART1 B	aud Rate Ge	nerator Regis	ster				
TXSTA2	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
BAUDCON2	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN
SPBRGH2	EUSART2 B	aud Rate Ge	nerator Regis	ster High Byte	;			
SPBRG2	EUSART2 B	aud Rate Ge	nerator Regis	ster Low Byte				
PMD0	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	UART2MD	UART1MD	SSPMD

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the BRG.

	R-1 R-0	R-0	R-0	R-0	R-0	R-0	U-O
Mode 0			(1)	ICODE2	ICODF1		_
				ICODEE	ICODET	ICODEO	
Mode 1 2	R-1 R-0	R-0	R-0	R-0	R-0	R-0	R-0
Wode 1,2	OPMODE2 ⁽¹⁾ OPMOE	E1 ⁽¹⁾ OPMODE0	⁽¹⁾ EICODE4	EICODE3	EICODE2	EICODE1	EICODE0
	bit 7						bit 0
Legend:							
R = Readabl	e bit	W = Writab	le bit	U = Unimp	lemented bi	t, read as '0'	
-n = Value at	POR	'1' = Bit is s	et	'0' = Bit is o	cleared	x = Bit is u	nknown
bit 7-5		ation Mode Status	hits(1)				
	111 = Reserved		010				
	110 = Reserved						
	101 = Reserved						
	100 = Configuration m	ode					
	011 = Listen Only mod	е					
	010 = Loopback mode						
	001 = Disable/Sleep m	ode					
	000 = Normal mode						
bit 4	Mode 0: Unimplemented: Read	1 as '0'					
bit 3-1 4-0	Mode 0 [.]						
511 0 1,4 0	ICODE<2:0>: Interrupt	Code bits					
	When an interrupt occ	urs, a prioritized	coded interru	pt value will	be present	in these bit	s. This code
	indicates the source of	the interrupt. By	copying ICOE	DE<3:1> to W	/IN<3:0> (M	ode 0) or El	CODE<4:0>
	to EWIN<4:0> (Mode 1	and 2), it is possib	le to select th	e correct buff	er to map in	to the Acces	s Bank area.
	See Example 27-2 for	a code example. T	o simplify the	description,	the following	g table lists a	all five bits.
		Mode 0		Mode 1		Mode 2	
	No interrupt	00000		00000		00000	
	CAN bus error interrup	t 00010		00010		00010	
	TXB2 interrupt	00100		00100		00100	
	TXB1 interrupt	00110		00110		00110	
	TXB0 interrupt	01000		01000		01000	
	RXB1 interrupt	01010		10001			
	RXB0 interrupt	01100		10000		10000	
	Wake-up Interrupt	00010		01110		01110	
	RXBU Interrupt			10000		10000	
	RABT Interrupt			10001		10000 10010 (2)	
	RA/TA DU IIIterrupt			10010		10010() 10011 (2)	
	RX/TX B1 Interrupt			10100		10100 (2)	
	RX/TX B2 interrupt			10100		10100() 10101 (2)	
	RX/TX B4 interrupt			10101		10101 10110 (2)	
	RX/TX B5 interrupt			10110		10110 10111 (2)	
		_		TOTT		- V	
bit 0	Mode 0: Unimplemented: Read	1 as '0'					
hit 4-0	Mode 1 2						
	FICODE<4.05. Interru	nt Code hits					
	See ICODE<3.1> abov	e					
		-					
Note 1. To	achieve maximum now	or coving and/or a	hla ta waka u	in on CAN bu	ie activity ev	witch the CA	N modulo in

REGISTER 27-2: CANSTAT: CAN STATUS REGISTER

Note 1: To achieve maximum power saving and/or able to wake-up on CAN bus activity, switch the CAN module in Disable/Sleep mode before putting the device to Sleep.

2: If the buffer is configured as a receiver, the EICODE bits will contain '10000' upon interrupt.

27.2.4 CAN BAUD RATE REGISTERS

This section describes the CAN Baud Rate registers.

Note:	These	registers	are	writable	in
	Configu	ration mode	only.		

REGISTER 27-52: BRGCON1: BAUD RATE CONTROL REGISTER 1

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SJW1 | SJW0 | BRP5 | BRP4 | BRP3 | BRP2 | BRP1 | BRP0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	SJW<1:0>: Synchronized Jump Width bits
	11 = Synchronization jump width time = $4 \times TQ$
	10 = Synchronization jump width time = $3 \times TQ$
	01 = Synchronization jump width time = $2 \times TQ$
	00 = Synchronization jump width time = 1 x TQ
bit 5-0	BRP<5:0>: Baud Rate Prescaler bits
	111111 = Tq = (2 x 64)/Fosc
	111110 = Tq = (2 x 63)/Fosc
	:
	:
	000001 = Tq = (2 x 2)/Fosc
	000000 = Tq = (2 x 1)/Fosc

Table Read (Continued)

TBLRD

TBLI	RD	Table Read						
Synta	ax:	TBLRD (*; *+; *-; +*)						
Oper	ands:	None						
Oper	ation:	if TBLRD *, (Prog Mem (TBLPTR)) \rightarrow TABLAT; TBLPTR – No Change if TBLRD *+, (Prog Mem (TBLPTR)) \rightarrow TABLAT; (TBLPTR) + 1 \rightarrow TBLPTR if TBLRD *-, (Prog Mem (TBLPTR)) \rightarrow TABLAT; (TBLPTR) – 1 \rightarrow TBLPTR if TBLRD +*, (TBLPTR) + 1 \rightarrow TBLPTR; (Prog Mem (TBLPTR)) \rightarrow TABLAT						
Statu	s Affected:	None						
Enco	oding:	0000 0000 0000 1 nn					10nn nn=0 =1 =2 =3	* *+ *- +*
Desc	ription:	This instruct of Program program me Pointer (TBI The TBLPT	tion i Men emor LPTI R (a	is useo nory (F y, a po R) is u 21-bit	d to rea P.M.). ⁻ pinter o sed. pointe	ad the To ad called er) po	e conter dress th d Table bints to	nts ie
		each byte in has a 2-Mby	the te a	progra ddres	am me s rang	e.	/. TBLPT	ſR
		TBLPTR<	0> =	0: Le Pro	ast Sig ogram	nifica Mem	nt Byte ory Wor	of d
		TBLPTR<	0> =	1: Mo Pro	ost Sigi ogram	nifica Mem	nt Byte o ory Wor	of d
		The TBLRD of TBLPTR	instr as fo	uction ollows	can m	nodify	the val	ue
		no chang	е					
		 post-increase 	emer	nt				
		 post-decr 	eme	ent				
		 pre-increi 	men	t				
Word	ls:	1						
Cycle	es:	2						
QC	ycle Activity				-			
	Q1	Q2		C	13		Q4	_
	Decode	N0 operation		N oper:	0 ation	on	N0 eration	

Example 1:	TBLRD	*+	;	
Before Instruct	on			
TABLAT			=	55h
	(00A356h))	=	00A356h 34h
After Instruction	(00/ 10001) 1	,		0-111
TABLAT	-		=	34h
TBLPTR			=	00A357h
Example 2:	TBLRD	+*	;	
Example 2: Before Instructi	TBLRD	+*	;	
Example 2: Before Instructi TABLAT	TBLRD	+*	; =	AAh
Example 2: Before Instructi TABLAT TBLPTR		+*	; = =	AAh 01A357h
Example 2: Before Instructi TABLAT TBLPTR MEMORY MEMORY	TBLRD on (01A357h) (01A358h)	+*)	; = = = = =	AAh 01A357h 12h 34h
Example 2: Before Instructi TABLAT TBLPTR MEMORY MEMORY After Instruction	TBLRD on (01A357h (01A358h) 1	+*))	; = = = =	AAh 01A357h 12h 34h
Example 2: Before Instructi TABLAT TBLPTR MEMORY MEMORY After Instruction TABLAT	TBLRD on (01A357h (01A358h) 1	+*))	; = = = = =	AAh 01A357h 12h 34h 34h

No operation (Read Program

Memory)

No

operation

No operation (Write TABLAT)

No

operation

29.2.5 SPECIAL CONSIDERATIONS WITH MICROCHIP MPLAB[®] IDE TOOLS

The latest versions of Microchip's software tools have been designed to fully support the extended instruction set for the PIC18F66K80 family. This includes the MPLAB C18 C Compiler, MPASM assembly language and MPLAB Integrated Development Environment (IDE).

When selecting a target device for software development, MPLAB IDE will automatically set default Configuration bits for that device. The default setting for the XINST Configuration bit is '0', disabling the extended instruction set and Indexed Literal Offset Addressing. For proper execution of applications developed to take advantage of the extended instruction set, XINST must be set during programming.

To develop software for the extended instruction set, the user must enable support for the instructions and the Indexed Addressing mode in their language tool(s). Depending on the environment being used, this may be done in several ways:

- A menu option or dialog box within the environment that allows the user to configure the language tool and its settings for the project
- · A command line option
- · A directive in the source code

These options vary between different compilers, assemblers and development environments. Users are encouraged to review the documentation accompanying their development systems for the appropriate information.

31.4 DC Characteristics: PIC18F66K80 Family (Industrial)

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: } 1.8V \ to \ 5.5V \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \ for \ Industrial \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \ for \ Extended \end{array}$					
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions	
D160a	licl	Input Low Injection Current	0	—	₋₅ (1)	mA	All pins except VDD, Vss, AVDD, AVss, MCLR, VCAP, SOSCI, SOSCO	
D160b	Іісн	Input High Injection Current	0	—	+5 ⁽¹⁾	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, SOSCI, SOSCO	
D160c	∑Ііст	Total Input Injection Current (sum of all I/O and control pins)	-20 ^(1,2)	_	+20 ^(1,2)	mA	Absolute instantaneous sum of all input injection currents from all I/O pins $(IICL + IICH) \le \Sigma IICT$	

Note 1: Injection currents > | 0 | can affect the A/D results.

2: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted.

31.5 DC Characteristics: CTMU Current Source Specifications

DC CH	ARACT	ERISTICS	$\begin{array}{ll} \mbox{Standard Operating Conditions: 1.8V to 5.5V} \\ \mbox{Operating temperature} & -40^{\circ}\mbox{C} \leq \mbox{TA} \leq +85^{\circ}\mbox{C for Industrial} \\ -40^{\circ}\mbox{C} \leq \mbox{TA} \leq +125^{\circ}\mbox{C for Extended} \end{array}$					
Param No.	Sym	Characteristic	Min Typ ⁽¹⁾ Max U			Units	Conditions	
	IOUT1	CTMU Current Source, Base Range	_	550	_	nA	CTMUICON<1:0> = 01	
	IOUT2	CTMU Current Source, 10x Range	—	5.5	_	μA	CTMUICON<1:0> = 10	
	IOUT3	CTMU Current Source, 100x Range	_	55	_	μA	CTMUICON<1:0> = 11	

Note 1: Nominal value at center point of current trim range (CTMUICON<7:2> = 000000).

31.6.3 TIMING DIAGRAMS AND SPECIFICATIONS

FIGURE 31-4: EXTERNAL CLOCK TIMING

TABLE 31-6: EXTERNAL CLOCK TIMING REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Мах	Units	Conditions
1A	Fosc	External CLKIN Frequency ⁽¹⁾	DC	64	MHz	EC, ECIO Oscillator mode
		Oscillator Frequency ⁽¹⁾	DC	4	MHz	RC Oscillator mode
			0.1	4	MHz	XT Oscillator mode
			4	16	MHz	HS Oscillator mode
			4	16	MHz	HS + PLL Oscillator mode
			5	33	kHz	LP Oscillator mode
1	Tosc	External CLKIN Period ⁽¹⁾	15.6	—	ns	EC, ECIO Oscillator mode
		Oscillator Period ⁽¹⁾	250	—	ns	RC Oscillator mode
			250	10,000	ns	XT Oscillator mode
			40 62.5	250 250	ns ns	HS Oscillator mode HS + PLL Oscillator mode
			5	200	μs	LP Oscillator mode
2	Тсү	Instruction Cycle Time ⁽¹⁾	62.5	_	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1)	30	—	ns	XT Oscillator mode
	TosH	High or Low Time	2.5	_	μs	LP Oscillator mode
			10	_	ns	HS Oscillator mode
4	TosR,	External Clock in (OSC1)	—	20	ns	XT Oscillator mode
	TosF	Rise or Fall Time	_	50	ns	LP Oscillator mode
			—	7.5	ns	HS Oscillator mode

Note 1: Instruction cycle period (Tcr) equals four times the input oscillator time base period for all configurations except PLL. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	1.27 BSC		
Contact Pad Spacing	С		9.40	
Contact Pad Width (X28)	X			0.60
Contact Pad Length (X28)	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-149B Sheet 1 of 2

NOTES: