

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	ECANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f45k80-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2: Clock transition typically occurs within 2-4 Tosc.

4.2.3 RC_RUN MODE

In RC_RUN mode, the CPU and peripherals are clocked from the internal oscillator block using the INTOSC multiplexer. In this mode, the primary clock is shut down. When using the LF-INTOSC source, this mode provides the best power conservation of all the Run modes, while still executing code. It works well for user applications which are not highly timing-sensitive or do not require high-speed clocks at all times.

If the primary clock source is the internal oscillator block – either LF-INTOSC or INTOSC (MF-INTOSC or HF-INTOSC) – there are no distinguishable differences between the PRI_RUN and RC_RUN modes during execution. Entering or exiting RC_RUN mode, however, causes a clock switch delay. Therefore, if the primary clock source is the internal oscillator block, using RC_RUN mode is not recommended. This mode is entered by setting the SCS1 bit to '1'. To maintain software compatibility with future devices, it is recommended that the SCS0 bit also be cleared, even though the bit is ignored. When the clock source is switched to the INTOSC multiplexer (see Figure 4-3), the primary oscillator is shut down and the OSTS bit is cleared. The IRCFx bits may be modified at any time to immediately change the clock speed.

Note: Caution should be used when modifying a single IRCF bit. At a lower VDD, it is possible to select a higher clock speed than is supportable by that VDD. Improper device operation may result if the VDD/ Fosc specifications are violated.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PSPMD ⁽¹⁾	CTMUMD	ADCMD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	TMR0MD
bit 7							bit 0
r							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	PSPMD: Peri	pheral Module	Disable bit ⁽¹⁾	ragistors are b	old in Posot an	d aro not writch	
	1 = The PSP 0 = The PSP	module is enal	bled	registers are m			NC
bit 6	CTMUMD: PI	MD CTMU Disa	able bit				
	1 = The CTN 0 = The CTN	1U module is d 1U module is e	isabled; all CT nabled	MU registers a	are held in Rese	et and are not w	vritable
bit 5	ADCMD: A/D	Module Disab	le bit				
	1 = The A/D 0 = The A/D	module is disa module is enal	bled; all A/D re bled	egisters are he	ld in Reset and	are not writabl	e
bit 4	TMR4MD: TN	/IR4MD Disable	e bit				
	1 = The Time 0 = The Time	er4 module is d er4 module is e	lisabled; all Tir enabled	mer4 registers	are held in Res	et and are not	writable
bit 3	TMR3MD: TN	/IR3MD Disable	e bit				
	1 = The Time 0 = The Time	er3 module is d er3 module is e	lisabled; all Tir nabled	mer3 registers	are held in Res	et and are not	writable
bit 2	TMR2MD: TN	/IR2MD Disable	e bit				
	1 = The Time 0 = The Time	er2 module is d er2 module is e	lisabled; all Tir enabled	ner2 registers	are held in Res	et and are not	writable
bit 1	TMR1MD: TN	/IR1MD Disable	e bit				
	1 = The Time 0 = The Time	er1 module is d er1 module is e	lisabled; all Tir enabled	ner1 registers	are held in Res	et and are not	writable
bit 0	TMR0MD: Tir 1 = The Time 0 = The Time	mer0 Module D r0 module is di r0 module is el	visable bit isabled; all Tin nabled	ner0 registers a	are held in Rese	et and are not v	vritable

REGISTER 4-2: PMD1: PERIPHERAL MODULE DISABLE REGISTER 1

Note 1: This bit is unimplemented on 28-pin devices (PIC18F2XK80, PIC18LF2XK80).

7.3 Reading the Flash Program Memory

The TBLRD instruction is used to retrieve data from program memory and places it into data RAM. Table reads from program memory are performed one byte at a time.

TBLPTR points to a byte address in program space. Executing TBLRD places the byte pointed to into TABLAT. In addition, TBLPTR can be modified automatically for the next table read operation.

The internal program memory is typically organized by words. The Least Significant bit of the address selects between the high and low bytes of the word. Figure 7-4 shows the interface between the internal program memory and the TABLAT.

FIGURE 7-4: READS FROM FLASH PROGRAM MEMORY

EXAMPLE 7-1: READING A FLASH PROGRAM MEMORY WORD

	MOVLW MOVWF MOVLW MOVUF MOVLW MOVWF	CODE_ADDR_UPPER TBLPTRU CODE_ADDR_HIGH TBLPTRH CODE_ADDR_LOW TBLPTRL	;;	; Load TBLPTR with the base ; address of the word	
READ_WORD					
	TBLRD*-	F	;	; read into TABLAT and increment	
	MOVF	TABLAT, W	;	; get data	
	MOVWF	WORD_EVEN			
	TBLRD*-	F	;	; read into TABLAT and increment	
	MOVF	TABLAT, W	;	; get data	
	MOVF	WORD_ODD			

NOTES:

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
TMR4IE	EEIE	CMP2IE	CMP1IE		CCP5IE	CCP4IE	CCP3IE
bit 7			•				bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 7	TMR4IE: TM	R4 Overflow In	terrupt Flag b	it			
	1 = Interrupt	is enabled					
	0 = Interrupt	is disabled					
bit 6	EEIE: Data E	EDATA/Flash \	Nrite Operatio	on Interrupt Fla	ag bit		
	1 = Interrupt	is enabled					
	0 = Interrupt	is disabled					
bit 5	CMP2IE: CM	P2 Interrupt Fla	ag bit				
	1 = Interrupt	is enabled					
h:+ 4			I- ¹ 4				
DIT 4			ag dit				
	\perp = Interrupt	is enabled					
hit 3	Unimplemen	ited: Read as '	0'				
bit 2	CCP5IE: CCI	P5 Interrunt Fla	o na hit				
Dit 2		is enabled	ig bit				
	0 = Interrupt	is disabled					
bit 1	CCP4IE: CCI	P4 Interrupt Fla	ig bit				
	1 = Interrupt	is enabled	0				
	0 = Interrupt	is disabled					
bit 0	CCP3IE: CCI	P3 Interrupt Fla	ig bits				
	1 = Interrupt	is enabled					
	0 = Interrupt	is disabled					

REGISTER 10-12: PIE4: PERIPHERAL INTERRUPT ENABLE REGISTER 4

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
IRXIP	WAKIP	ERRIP	TXB2IP	TXB1IP	TXB0IP	RXB1IP	RXB0IP/ FIFOFIE
bit 7		1					bit 0
							
Legend:							
R = Readable	bit	W = Writable	bit		mented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		$0^{\circ} = Bit is cle$	eared	x = Bit is unki	nown
bit 7	IRXIP: Invalid	Message Rec	eived Interrup	ot Priority bits			
	0 = Low prior	ity					
bit 6	WAKIP: Bus \	Wake-up Activi	ity Interrupt Pr	riority bit			
	1 = High prior 0 = Low prior	rity ity					
bit 5	ERRIP: CAN	Bus Error Inte	rrupt Priority I	oit			
	1 = High prior 0 = Low prior	rity ity					
bit 4	TXB2IP: Tran	smit Buffer 2 li	nterrupt Priori	ty bit			
	1 = High prior	rity					
hit 2	0 = Low prior	ity omit Duffor 1 li	atorrupt Driori	tv bit			
DIL 3	1 = High prior	ritv	nterrupt Friori				
	0 = Low prior	ity					
bit 2	TXB0IP: Tran	smit Buffer 0 I	nterrupt Priori	ty bit			
	1 = High prior 0 = Low prior	rity ity					
bit 1	RXB1IP: Rec	eive Buffer 1 Ir	nterrupt Priorit	y bit			
	Mode 0:	ritu far Daaiu	Duffer 1				
	1 = High phote 0 = Low prior	ity for Receive	Buffer 1				
	$\frac{\text{Modes 1 and 1}}{1 = \text{High prior}}$ $0 = \text{Low prior}$	<u>2:</u> rity for received ity for received	d messages I messages				
bit 0	RXB0IP/FIFO	FIP: Receive I	Buffer 0 Interr	upt Priority bit			
	<u>Mode 0:</u> 1 = High prior 0 = Low prior	rity for Receive	e Buffer 0 Buffer 0				
	<u>Mode 1:</u> Unimplement	ted: Read as '	0'				
	<u>Mode 2:</u> FIFOFIE: FIF(1 = High prior 0 = Low prior	O Full Interrup rity ity	t Flag bit				

REGISTER 10-18: IPR5: PERIPHERAL INTERRUPT PRIORITY REGISTER 5

11.3 PORTB, TRISB and LATB Registers

PORTB is an eight-bit wide, bidirectional port. The corresponding Data Direction and Output Latch registers are TRISB and LATB. All pins on PORTB are digital only.

PORTB	; Initialize PORTB by
	; data latches
LATB	; Alternate method
	; to clear output
	; data latches
0CFh	; Value used to
	; initialize data
	; direction
TRISB	; Set RB<3:0> as inputs
	; RB<5:4> as outputs
	; RB<7:6> as inputs
	PORTB LATB OCFh TRISB

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit, RBPU (INTCON2<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Four of the PORTB pins (RB<7:4>) have an interrupt-on-change feature. Only pins configured as inputs can cause this interrupt to occur. Any RB<7:4> pins that are configured as outputs are excluded from the interrupt-on-change comparison.

Comparisons with the input pins (of RB<7:4>) are made with the old value latched on the last read of PORTB. The "mismatch" outputs of RB<7:4> are ORed together to generate the RB Port Change Interrupt with Flag bit, RBIF (INTCON<0>).

This interrupt can wake the device from power-managed modes. To clear the interrupt in the Interrupt Service Routine:

- 1. Perform any read or write of PORTB (except with the MOVFF (ANY), PORTB instruction).
- 2. Wait one instruction cycle (such as executing a NOP instruction).

This ends the mismatch condition.

3. Clear flag bit, RBIF.

A mismatch condition will continue to set flag bit, RBIF. Reading PORTB will end the mismatch condition and allow flag bit, RBIF, to be cleared after a one TCY delay.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

The RB<3:2> pins are multiplexed as CTMU edge inputs. RB5 has an additional function for Timer3 and Timer1. It can be configured for Timer3 clock input or Timer1 external clock gate input.

18.2.5 INTERRUPTS

The CTMU sets its interrupt flag (PIR3<3>) whenever the current source is enabled, then disabled. An interrupt is generated only if the corresponding interrupt enable bit (PIE3<3>) is also set. If edge sequencing is not enabled (i.e., Edge 1 must occur before Edge 2), it is necessary to monitor the edge status bits and determine which edge occurred last and caused the interrupt.

18.3 CTMU Module Initialization

The following sequence is a general guideline used to initialize the CTMU module:

- 1. Select the current source range using the IRNGx bits (CTMUICON<1:0>).
- 2. Adjust the current source trim using the ITRIMx bits (CTMUICON<7:2>).
- Configure the edge input sources for Edge 1 and Edge 2 by setting the EDG1SEL and EDG2SEL bits (CTMUCONL<3:2> and <6:5>, respectively).
- Configure the input polarities for the edge inputs using the EDG1POL and EDG2POL bits (CTMUCONL<4,7>).

The default configuration is for negative edge polarity (high-to-low transitions).

5. Enable edge sequencing using the EDGSEQEN bit (CTMUCONH<2>).

By default, edge sequencing is disabled.

6. Select the operating mode (Measurement or Time Delay) with the TGEN bit (CTMUCONH<4>).

The default mode is Time/Capacitance Measurement.

 Configure the module to automatically trigger an A/D conversion when the second edge event has occurred using the CTTRIG bit (CTMUCONH<0>).

The conversion trigger is disabled by default.

- 8. Discharge the connected circuit by setting the IDISSEN bit (CTMUCONH<1>).
- 9. After waiting a sufficient time for the circuit to discharge, clear the IDISSEN bit.
- 10. Disable the module by clearing the CTMUEN bit (CTMUCONH<7>).
- 11. Clear the Edge Status bits, EDG2STAT and EDG1STAT (CTMUCONL<1:0>).

Both bits should be cleared simultaneously, if possible, to avoid re-enabling the CTMU current source.

- 12. Enable both edge inputs by setting the EDGEN bit (CTMUCONH<3>).
- 13. Enable the module by setting the CTMUEN bit.

Depending on the type of measurement or pulse generation being performed, one or more additional modules may also need to be initialized and configured with the CTMU module:

- Edge Source Generation: In addition to the external edge input pins, ECCP1/CCP2 Special Event Triggers can be used as edge sources for the CTMU.
- Capacitance or Time Measurement: The CTMU module uses the A/D Converter to measure the voltage across a capacitor that is connected to one of the analog input channels.
- Pulse Generation: When generating system clock independent, output pulses, the CTMU module uses Comparator 2 and the associated comparator voltage reference.

18.4 Calibrating the CTMU Module

The CTMU requires calibration for precise measurements of capacitance and time, as well as for accurate time delay. If the application only requires measurement of a relative change in capacitance or time, calibration is usually not necessary. An example of a less precise application is a capacitive touch switch, in which the touch circuit has a baseline capacitance and the added capacitance of the human body changes the overall capacitance of a circuit.

If actual capacitance or time measurement is required, two hardware calibrations must take place:

- The current source needs calibration to set it to a precise current.
- The circuit being measured needs calibration to measure or nullify any capacitance other than that to be measured.

18.4.1 CURRENT SOURCE CALIBRATION

The current source on board the CTMU module has a range of $\pm 62\%$ nominal for each of three current ranges. For precise measurements, it is possible to measure and adjust this current source by placing a high-precision resistor, RCAL, onto an unused analog channel. An example circuit is shown in Figure 18-2.

To measure the current source:

- 1. Initialize the A/D Converter.
- 2. Initialize the CTMU.
- Enable the current source by setting EDG1STAT (CTMUCONL<0>).
- 4. Issue time delay for voltage across $\rm RCAL$ to stabilize and A/D sample/hold capacitor to charge.
- 5. Perform the A/D conversion.
- 6. Calculate the current source current using $I = V/R_{CAL}$, where R_{CAL} is a high-precision resistance and V is measured by performing an A/D conversion.

20.4.8 OPERATION IN POWER-MANAGED MODES

In Sleep mode, all clock sources are disabled. Timer2/4 will not increment and the state of the module will not change. If the ECCP1 pin is driving a value, it will continue to drive that value. When the device wakes up, it will continue from this state. If Two-Speed Start-ups are enabled, the initial start-up frequency from HF-INTOSC and the postscaler may not be stable immediately.

In PRI_IDLE mode, the primary clock will continue to clock the ECCP1 module without change.

20.4.8.1 Operation with Fail-Safe Clock Monitor (FSCM)

If the Fail-Safe Clock Monitor (FSCM) is enabled, a clock failure will force the device into the power-managed RC_RUN mode and the OSCFIF bit of the PIR2 register will be set. The ECCP1 will then be clocked from the internal oscillator clock source, which may have a different clock frequency than the primary clock.

20.4.9 EFFECTS OF A RESET

Both Power-on Reset and subsequent Resets will force all ports to Input mode and the ECCP registers to their Reset states.

This forces the ECCP module to reset to a state compatible with previous, non-enhanced CCP modules used on other PIC18 and PIC16 devices.

TABLE 20-3: REGISTERS ASSOCIATED WITH ECCPT MODULE AND TIMER1/2/3/4										
File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF		
RCON	IPEN	SBOREN	CM	RI	TO	PD	POR	BOR		
PIR3	_	—	RC2IF	TX2IF	CTMUIF	CCP2IF	CCP1IF	—		
PIE3	_	—	RC2IE	TX2IE	CTMUIE	CCP2IE	CCP1IE	—		
IPR3	—	_	RC2IP	TX2IP	CTMUIP	CCP2IP	CCP1IP	_		
PIR4	TMR4IF	EEIF	CMP2IF	CMP1IF	_	CCP5IF	CCP4IF	CCP3IF		
PIE4	TMR4IE	EEIE	CMP2IE	CMP1IE	—	CCP5IE	CCP4IE	CCP3IE		
IPR4	TMR4IP	EEIP	CMP2IP	CMP1IP	—	CCP5IP	CCP4IP	CCP3IP		
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0		
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0		
TRISE ⁽¹⁾	TRISE7	TRISE6	TRISE5	TRISE4	—	TRISE2	TRISE1	TRISE0		
TMR1H	Timer1 Register	High Byte								
TMR1L	Timer1 Register	Low Byte								
TMR2	Timer2 Register	•								
TMR3H	Timer3 Register	High Byte								
TMR3L	Timer3 Register	Low Byte								
TMR4	Timer4 Register									
PR2	Timer2 Period F	Register								
PR4	Timer4 Period F	Register								
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	SOSCEN	T1SYNC	RD16	TMR10N		
T2CON	—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0		
T3CON	TMR3CS1	TMR3CS0	T3CKPS1	T3CKPS0	SOSCEN	T3SYNC	RD16	TMR3ON		
T4CON	—	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR4ON	T4CKPS1	T4CKPS0		
CCPR1H	Capture/Compa	re/PWM Regis	ster 1 High By	te						
CCPR1L	Capture/Compa	re/PWM Regis	ster 1 Low Byt	e						
CCPR2H	Capture/Compa	re/PWM Regis	ster 2 High By	te						
CCPR2L	Capture/Compa	re/PWM Regis	ster 2 Low Byt	e						
CCPR3H	Capture/Compa	re/PWM Regis	ster 3 High By	te						
CCPR3L	Capture/Compa	re/PWM Regis	ster 3 Low Byt	е						
CCP1CON	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0		
CCP2CON	—	—	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0		
CCP3CON	—	—	DC3B1	DC3B0	CCP3M3	CCP3M2	CCP3M1	CCP3M0		
CCPTMRS	—	—	—	C5TSEL	C4TSEL	C3TSEL	C2TSEL	C1TSEL		
ECCP1AS	ECCP1ASE	ECCP1AS2	ECCP1AS1	ECCP1AS0	PSS1AC1	PSS1AC0	PSS1BD1	PSS1BD0		
ECCP1DEL	P1RSEN	P1DC6	P1DC5	P1DC4	P1DC3	P1DC2	P1DC1	P1DC0		
PMD0	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	UART2MD	UART1MD	SSPMD		

Note 1: Unimplemented on devices with a program memory of 32 Kbytes (PIC18F25K80 and PIC18F46K80).

21.3.2 OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPCON1<5:0> and SSPSTAT<7:6>). These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data Input Sample Phase (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- · Slave Select mode (Slave mode only)

The MSSP module consists of a Transmit/Receive Shift register (SSPSR) and a Buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR until the received data is ready. Once the 8 bits of data have been received, that byte is moved to the SSPBUF register. Then, the Buffer Full detect bit, BF (SSPSTAT<0>), and the interrupt flag bit, SSPIF, are set. This double-buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored and the Write Collision Detect bit, WCOL (SSPCON1<7>), will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPBUF register completed successfully.

When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. The Buffer Full bit, BF (SSPSTAT<0>), indicates when SSPBUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSP interrupt is used to determine when the transmission/reception has completed. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 21-1 shows the loading of the SSPBUF (SSPSR) for data transmission.

The SSPSR is not directly readable or writable and can only be accessed by addressing the SSPBUF register. Additionally, the SSPSTAT register indicates the various status conditions.

21.3.3 OPEN-DRAIN OUTPUT OPTION

The drivers for the SDO output and SCK clock pins can be optionally configured as open-drain outputs. This feature allows the voltage level on the pin to be pulled to a higher level through an external pull-up resistor, and allows the output to communicate with external circuits without the need for additional level shifters. For more information, see **Section 11.1.3 "Open-Drain Outputs"**.

The open-drain output option is controlled by the SSPOD bit (ODCON<7>). Setting the SSPOD bit configures the SDO and SCK pins for open-drain operation.

EXAMPLE 21-1: LOADING THE SSPBUF (SSPSR) REGISTER

LOOP	BTFSS	SSPSTAT, BF	;Has data been received (transmit complete)?
	BRA	LOOP	;No
	MOVF	SSPBUF, W	;WREG reg = contents of SSPBUF
	MOVWF	RXDATA	;Save in user RAM, if data is meaningful
	MOVF	TXDATA, W	;W reg = contents of TXDATA
	MOVWF	SSPBUF	;New data to xmit

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV	SSPEN ⁽¹⁾	CKP	SSPM3 ⁽²⁾	SSPM2 ⁽²⁾	SSPM1 ⁽²⁾	SSPM0 ⁽²⁾
bit 7			-				bit 0
Legend:							
R = Reada	able bit	W = Writable b	oit	U = Unimplem	nented bit, read	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	WCOL: Write	Collision Detec	t bit				
	<u>In Master Tra</u> 1 = A write t	nsmit mode: to the SSPBUF	register was	s attempted wh	ile the I ² C co	nditions were r	not valid for a
	0 = No collisi	ion			e)		
	In Slave Tran	smit mode:					
	1 = The SSP software	PBUF register is	written while	it is still transm	itting the previ	ous word (mus	t be cleared in
	0 = No collisi	ion					
	<u>In Receive m</u> This is a "don	<u>ode (Master or S</u> o't care" bit	slave modes	<u>):</u>			
bit 6	SSPOV: Rec	eive Overflow In	dicator bit				
	In Receive m	ode:					
	1 = A byte is	received while t	he SSPBUF	register is still h	olding the prev	vious byte (mus	t be cleared in
	software)					
	In Transmit m	node:					
	This is a "don	n't care" bit in Tra	ansmit mode.				
bit 5	SSPEN: Mas	ter Synchronous	s Serial Port I	Enable bit ⁽¹⁾			
	1 = Enables t 0 = Disables	he serial port an serial port and c	nd configures configures the	the SDA and So se pins as I/O p	CL pins as the ort pins	serial port pins	
bit 4	CKP: SCK R	elease Control b	oit				
	In Slave mod	<u>e:</u>					
	1 = Releases	CIOCK	etch) used to	o ensure data se	atun time		
	In Master mo	de:					
	Unused in thi	s mode.					
bit 3-0	SSPM<3:0>:	Master Synchro	nous Serial F	Port Mode Selec	ct bits ⁽²⁾		
	$1111 = I^2 C S$	lave mode, 10-b	oit address wi	th Start and Sto	p bit interrupts	enabled	
	$1110 = I^{2}C S$ $1011 = I^{2}C F$	iave mode, 7-bit irmware Control	led Master m	ode (slave Idle)	bit interrupts e	enabled	
	1001 = Load	SSPMSK regist	er at SSPAD	D SFR address	(3,4)		
	$1000 = I^2 C N$	laster mode, clo	ck = Fosc/(4	* (SSPADD + 1))		
	0111 = 1 C S $0110 = I^2 C S$	lave mode, 70-bit	address				
Note 4	When enclose the	A SDA and SOL	ning must b	o configurad as	inputo		
NOTE 1: 2.	Rit combinations	not specifically I	_ pins must D isted here an	e coniigureu as e either recerver	inputs. 1 or implement	ed in SPI mode	only
3:	When SSPM<3:0)> = 1001, any r r	eads or write	s to the SSPAD	D SFR address	s actually acces	ss the
4:	This mode is only is '1').	, available when	7-Bit Addres	s Masking mod	e is selected (N	ASSPMSK Con	figuration bit

REGISTER 21-4: SSPCON1: MSSP CONTROL REGISTER 1 (I²C[™] MODE)

The module is enabled by setting the HLVDEN bit (HLVDCON<4>). Each time the HLVD module is enabled, the circuitry requires some time to stabilize. The IRVST bit (HLVDCON<5>) is a read-only bit used to indicate when the circuit is stable. The module can only generate an interrupt after the circuit is stable and IRVST is set.

The VDIRMAG bit (HLVDCON<7>) determines the overall operation of the module. When VDIRMAG is cleared, the module monitors for drops in VDD below a predetermined set point. When the bit is set, the module monitors for rises in VDD above the set point.

26.1 Operation

When the HLVD module is enabled, a comparator uses an internally generated reference voltage as the set point. The set point is compared with the trip point, where each node in the resistor divider represents a trip point voltage. The "trip point" voltage is the voltage level at which the device detects a high or low-voltage event, depending on the configuration of the module.

When the supply voltage is equal to the trip point, the voltage tapped off of the resistor array is equal to the internal reference voltage generated by the voltage reference module. The comparator then generates an interrupt signal by setting the HLVDIF bit.

The trip point voltage is software programmable to any one of 16 values. The trip point is selected by programming the HLVDL<3:0> bits (HLVDCON<3:0>).

The HLVD module has an additional feature that allows the user to supply the trip voltage to the module from an external source. This mode is enabled when bits, HLVDL<3:0>, are set to '1111'. In this state, the comparator input is multiplexed from the external input pin, HLVDIN. This gives users the flexibility of configuring the High/Low-Voltage Detect interrupt to occur at any voltage in the valid operating range.

R/W-0	R/W-1	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
FIL3_1	FIL3_0	FIL2_1	FIL2_0	FIL1_1	FIL1_0	FIL0_1	FIL0_0
bit 7				·		-	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-6	FIL3_<1:0>:	Filter 3 Select b	oits 1 and 0				
	11 = No mas	k					
	10 = Filter 15 01 = Accepta) Ince Mask 1					
	00 = Accepta	ince Mask 0					
bit 5-4	FIL2_<1:0>:	Filter 2 Select b	oits 1 and 0				
	11 = No mas	k					
	10 = Filter 15	; 					
	01 = Accepta	Ince Mask 1					
bit 3-2	FIL1 <1:0>:	Filter 1 Select b	oits 1 and 0				
	11 = No mas	k					
	10 = Filter 15	5					
	01 = Accepta	ince Mask 1					
hit 1 0		Ince Mask U	the d and O				
DIT 1-0	FILU_<1:0>:	Filter U Select t	Dits 1 and 0				
	11 = 10 mas 10 = Filter 15	r i					
	01 = Accepta	ince Mask 1					
	00 = Accepta	ince Mask 0					

REGISTER 27-48: MSEL0: MASK SELECT REGISTER 0⁽¹⁾

Note 1: This register is available in Mode 1 and 2 only.

Param. No.	Symbol	Characteris	tic	Min	Max	Units	Conditions
100	Тнідн	Clock High Time	100 kHz mode	4.0	—	μS	
			400 kHz mode	0.6		μS	
			MSSP module	1.5 TCY			
101	TLOW	Clock Low Time	100 kHz mode	4.7		μS	
			400 kHz mode	1.3		μS	
			MSSP module	1.5 TCY			
102	TR	SDA and SCL Rise Time	100 kHz mode	—	1000	ns	
			400 kHz mode	20 + 0.1 CB	300	ns	CB is specified to be from 10 to 400 pF
103	TF	SDA and SCL Fall Time	100 kHz mode	—	300	ns	
			400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
90	TSU:STA	Start Condition Setup Time	100 kHz mode	4.7		μS	Only relevant for Repeated
			400 kHz mode	0.6		μS	Start condition
91	THD:STA	Start Condition Hold Time	100 kHz mode	4.0	_	μS	After this period, the first clock
			400 kHz mode	0.6	_	μS	pulse is generated
106	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μS	
107	TSU:DAT	Data Input Setup Time	100 kHz mode	250	—	ns	(Note 2)
			400 kHz mode	100	—	ns	
92	Tsu:sto	Stop Condition Setup Time	100 kHz mode	4.7	—	μS	
			400 kHz mode	0.6	—	μS	
109	ΤΑΑ	Output Valid from Clock	100 kHz mode	—	3500	ns	(Note 1)
			400 kHz mode	—	—	ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7	—	μS	Time the bus must be free before
			400 kHz mode	1.3	_	μS	a new transmission can start
D102	Св	Bus Capacitive Loading		—	400	pF	

TABLE 31-20: I²C[™] BUS DATA REQUIREMENTS (SLAVE MODE)

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode I²C[™] bus device can be used in a Standard mode I²C bus system, but the requirement, TSU:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

28-Lead Plastic Small Outline (SO) – Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
Dimensio	on Limits	MIN	NOM	MAX	
Number of Pins	Ν	28			
Pitch	е	1.27 BSC			
Overall Height	А	-	-	2.65	
Molded Package Thickness	A2	2.05	-	-	
Standoff §	A1	0.10	-	0.30	
Overall Width	E	10.30 BSC			
Molded Package Width	E1	7.50 BSC			
Overall Length	D	17.90 BSC			
Chamfer (optional)	h	0.25	-	0.75	
Foot Length	L	0.40	-	1.27	
Footprint	L1	1.40 REF			
Foot Angle Top	φ	0°	-	8°	
Lead Thickness	С	0.18	-	0.33	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	_	15°	
Mold Draft Angle Bottom	β	5°	_	15°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-052B

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	1.27 BSC		
Contact Pad Spacing	С		9.40	
Contact Pad Width (X28)	X			0.60
Contact Pad Length (X28)	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

DAW	502
DCFSNZ	503
DECF	502
DECFSZ	503
Extended Instructions	525
Considerations when Enabling	530
Syntax	525
Use with MPLAB IDE Tools	532
General Format	485
GOTO	504
	504
INCFSZ	505
INFSNZ	505
IORLW	
	500
Opcode Field Descriptions	
PUSH	
RCALL	513
RESET	513
RETEIE	
RETIW	
RETURN	515
RLCF	
RLNCF	
RRCF	
RRNCF	517
SETF	
SETF (Indexed Literal Offset Mode)	531
SLEEP	518
Standard Instructions	
SUBFWB	518
SUBLW	519
SUBWF	519
SUBWFB	520
SWAPF	520
TBLRD	521
TBLWT	
TSTFSZ	523
XORLW	523
XORWF	524
INTCON Register	
RBIF Bit	177
Inter-Integrated Circuit. See I ² C.	
Internal USCIIIator BIOCK	
	b1
INTEL WOULS	00
	170
Use WILLI WDT	
Internet Address	
Interrunt Sources	017 ۵۶7
A/D Conversion Complete	366

Capture Complete (CCP)	258
Capture Complete (ECCP)	269
Compare Complete (CCP)	259
Compare Complete (ECCP)	270
ECAN Module	. 453
Interrupt-on-Change (RB7:RB4)	. 177
TMR0 Overflow	207
TMR1 Overflow	215
TMR2 to PR2 Match (PWM)	262
TMR3 Overflow	223
TMRx Overflow	. 232
Interrupts	. 147
Associated Registers	169
During, Context Saving	169
INTx Pin	. 168
PORTB, Interrupt-on-Change	. 168
TMR0	. 168
Interrupts, Flag Bits	
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)	177
	506
IORWE	506

L

LFSR	507
Listen Only Mode	438
Loopback Mode	438

Μ

Master Clear Reset (MCLR)	81
Master Synchronous Serial Port (MSSP). See MSSP.	
Memory Organization	101
Data Memory	108
Program Memory	101
Memory Programming Requirements	. 558
Microchip Internet Web Site	617
Migration to PIC18F66K80	. 602
MOVF	. 507
MOVFF	. 508
MOVLB	. 508
MOVLW	509
MOVSF	. 527
MOVSS	. 528
MOVWF	509
MPLAB ASM30 Assembler, Linker, Librarian	534
MPLAB Integrated Development Environment Software	. 533
MPLAB PM3 Device Programmer	536
MPLAB REAL ICE In-Circuit Emulator System	. 535
MPLINK Object Linker/MPLIB Object Librarian	534
MSSP	
ACK Pulse	, 304
I ² C Mode. See I ² C Mode.	
Module Overview	287
SPI Master/Slave Connection	291
MULLW	510
MULWF	510
Ν	
NEGE	511
	511
Normal Operation Mode	438
Notable Differences Between PIC18E66K80 and PIC18E	. - 50
recable billerences betweent to tor outdo and FICTOR	-000