

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	ECANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f45k80t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.7 Reset State of Registers

Most registers are unaffected by a Reset. Their status is unknown on a Power-on Reset and unchanged by all other Resets. The other registers are forced to a "Reset state" depending on the type of Reset that occurred.

Most registers are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. Status bits from the RCON register, \overline{RI} , \overline{TO} , \overline{PD} , \overline{CM} , \overline{POR} and \overline{BOR} , are set or cleared differently in different Reset situations, as indicated in Table 5-3. These bits are used in software to determine the nature of the Reset.

Table 5-4 describes the Reset states for all of the Special Function Registers. These are categorized by Power-on and Brown-out Resets, Master Clear and WDT Resets and WDT wake-ups.

TABLE 5-3:STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR
RCON REGISTER

Condition	Program		F		STKPTR Register					
Condition	Counter ⁽¹⁾	SBOREN	СМ	RI	то	PD	POR	BOR	STKFUL	STKUNF
Power-on Reset	0000h	1	1	1	1	1	0	0	0	0
RESET Instruction	0000h	u (2)	u	0	u	u	u	u	u	u
Brown-out Reset	0000h	u (2)	1	1	1	1	u	0	u	u
MCLR Reset during Power-Managed Run modes	0000h	ս (2)	u	u	1	u	u	u	u	u
MCLR Reset during Power-Managed Idle modes and Sleep mode	0000h	_ປ (2)	u	u	1	0	u	u	u	u
WDT Time-out during Full Power or Power-Managed Run modes	0000h	u (2)	u	u	0	u	u	u	u	u
MCLR Reset during Full-Power execution	0000h	u (2)	u	u	u	u	u	u	u	u
Stack Full Reset (STVREN = 1)	0000h	u (2)	u	u	u	u	u	u	1	u
Stack Underflow Reset (STVREN = 1)	0000h	u (2)	u	u	u	u	u	u	u	1
Stack Underflow Error (not an actual Reset, STVREN = 0)	0000h	u (2)	u	u	u	u	u	u	u	1
WDT Time-out during Power-Managed Idle or Sleep modes	PC + 2	u (2)	u	u	0	0	u	u	u	u
Interrupt Exit from Power-Managed modes	PC + 2	u (2)	u	u	u	0	u	u	u	u

Legend: u = unchanged

Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the interrupt vector (008h or 0018h).

2: Reset state is '1' for POR and unchanged for all other Resets when software BOR is enabled (BOREN<1:0>, Configuration bits = 01 and SBOREN = 1); otherwise, the Reset state is '0'.

8.3 Reading the Data EEPROM Memory

To read a data memory location, the user must write the address to the EEADRH:EEADR register pair, clear the EEPGD control bit (EECON1<7>) and then set control bit, RD (EECON1<0>). The data is available after one instruction cycle, in the EEDATA register. It can be read after one NOP instruction. EEDATA will hold this value until another read operation or until it is written to by the user (during a write operation).

The basic process is shown in Example 8-1.

8.4 Writing to the Data EEPROM Memory

To write an EEPROM data location, the address must first be written to the EEADRH:EEADR register pair and the data written to the EEDATA register. The sequence in Example 8-2 must be followed to initiate the write cycle.

The write will not begin if this sequence is not exactly followed (write 55h to EECON2, write 0AAh to EECON2, then set WR bit) for each byte. It is strongly recommended that interrupts be disabled during this code segment.

Additionally, the WREN bit in EECON1 must be set to enable writes. This mechanism prevents accidental writes to data EEPROM due to unexpected code execution (i.e., runaway programs). The WREN bit should be kept clear at all times, except when updating the EEPROM. The WREN bit is not cleared by hardware. After a write sequence has been initiated, EECON1, EEADRH:EEADR and EEDATA cannot be modified. The WR bit will be inhibited from being set unless the WREN bit is set. The WREN bit must be set on a previous instruction. Both WR and WREN cannot be set with the same instruction.

At the completion of the write cycle, the WR bit is cleared in hardware and the EEPROM Interrupt Flag bit (EEIF) is set. The user may either enable this interrupt or poll this bit; EEIF must be cleared by software.

8.5 Write Verify

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

Note:	Self-write e	xecution	to	Flash	and
	EEPROM me	emory can	not t	e done	while
	running in	LP Oscil	lator	(low-po	ower)
	mode. Execu	ting a sel	f-writ	e will pu	it the
	device into Hi	igh-Power	mod	e.	

TABLE 11-5:	PORTC FUNCTIONS	(CONTINUED)
-		/

Pin Name	Function	TRIS Setting	I/O	l/O Type	Description
RC7/CANRX/	RC7	0	0	DIG	LATC<7> data output.
RX1/DT1/	(1/DT1/ 1 I ST PORTC<7> data input.				PORTC<7> data input.
CCP4	CANRX ⁽²⁾	1	CAN bus RX.		
	RX1 ⁽¹⁾	1	Ι	ST	Asynchronous serial receive data input (EUSARTx module).
	DT1 ⁽¹⁾	1	0	DIG	Synchronous serial data output (EUSARTx module); takes priority over port data.
		1	I	ST	Synchronous serial data input (EUSARTx module); user must configure as an input.
	CCP4	0	0	DIG	CCP4 compare/PWM output; takes priority over port data.
		1	Ι	ST	CCP4 capture input.

Legend: O = Output; I = Input; $I^2C = I^2C/SMBus$; ANA = Analog Signal; DIG = CMOS Output; ST = Schmitt Trigger Buffer Input; x = Don't care (TRIS bit does not affect port direction or is overridden for this option)

Note 1: The pin assignment for 28, 40 and 44-pin devices (PIC18F2XK80 and PIC18F4XK80).

2: The alternate pin assignment for CANRX and CANTX on 28, 40 and 44-pin devices (PIC18F4XK80) when the CANMX Configuration bit is set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0
LATC	LATC7	LATBC6	LATC5	LATCB4	LATC3	LATC2	LATC1	LATC0
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0
ODCON	SSPOD	CCP50D	CCP4OD	CCP3OD	CCP2OD	CCP10D	U2OD	U10D

Legend: Shaded cells are not used by PORTC.

FIGURE 12-1: SIMPLIFIED BLOCK DIAGRAM OF THE DATA SIGNAL MODULATOR

For more details on selecting the optimum C1 and C2 for a given crystal, see the crystal manufacture's applications information. The optimum value depends in part on the amount of parasitic capacitance in the circuit, which is often unknown. For that reason, it is highly recommended that thorough testing and validation of the oscillator be performed after values have been selected.

14.5.1 USING SOSC AS A CLOCK SOURCE

The SOSC oscillator is also available as a clock source in power-managed modes. By setting the clock select bits, SCS<1:0> (OSCCON<1:0>), to '01', the device switches to SEC_RUN mode and both the CPU and peripherals are clocked from the SOSC oscillator. If the IDLEN bit (OSCCON<7>) is cleared and a SLEEP instruction is executed, the device enters SEC_IDLE mode. Additional details are available in **Section 4.0 "Power-Managed Modes"**.

Whenever the SOSC oscillator is providing the clock source, the SOSC System Clock Status flag, SOSCRUN (OSCCON2<6>), is set. This can be used to determine the controller's current clocking mode. It can also indicate the clock source currently being used by the Fail-Safe Clock Monitor.

If the Clock Monitor is enabled and the SOSC oscillator fails while providing the clock, polling the SOCSRUN bit will indicate whether the clock is being provided by the SOSC oscillator or another source.

14.5.2 SOSC OSCILLATOR LAYOUT CONSIDERATIONS

The SOSC oscillator circuit draws very little power during operation. Due to the low-power nature of the oscillator, it may also be sensitive to rapidly changing signals in close proximity. This is especially true when the oscillator is configured for extremely Low-Power mode, SOSCSEL<1:0> (CONFIG1L<4:3>) = 01.

The oscillator circuit, displayed in Figure 14-2, should be located as close as possible to the microcontroller. There should be no circuits passing within the oscillator circuit boundaries other than Vss or VDD.

If a high-speed circuit must be located near the oscillator, it may help to have a grounded guard ring around the oscillator circuit. The guard, as displayed in Figure 14-3, could be used on a single-sided PCB or in addition to a ground plane. (Examples of a high-speed circuit include the ECCP1 pin, in Output Compare or PWM mode, or the primary oscillator, using the OSC2 pin.)

In the Low Drive Level mode, SOSCSEL<1:0> = 01, it is critical that RC2 I/O pin signals be kept away from the oscillator circuit. Configuring RC2 as a digital output, and toggling it, can potentially disturb the oscillator circuit, even with a relatively good PCB layout. If possible, either leave RC2 unused or use it as an input pin with a slew rate limited signal source. If RC2 must be used as a digital output, it may be necessary to use the Higher Drive Level Oscillator mode (SOSCSEL<1:0> = 11) with many PCB layouts.

Even in the Higher Drive Level mode, careful layout procedures should still be followed when designing the oscillator circuit.

In addition to dV/dt induced noise considerations, it is important to ensure that the circuit board is clean. Even a very small amount of conductive, soldering flux residue can cause PCB leakage currents that can overwhelm the oscillator circuit.

14.6 Timer1 Interrupt

The TMR1 register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The Timer1 interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit, TMR1IF (PIR1<0>). This interrupt can be enabled or disabled by setting or clearing the Timer1 Interrupt Enable bit, TMR1IE (PIE1<0>).

16.1 Timer3 Gate Control Register

The Timer3 Gate Control register (T3GCON), provided in Register 14-2, is used to control the Timer3 gate.

REGISTER 16-2: T3GCON: TIMER3 GATE CONTROL REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-x	R/W-0	R/W-0
TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/T3DONE	T3GVAL	T3GSS1	T3GSS0
bit 7		•				_	bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplemented	d bit, read as '	0'	
-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is cleared		x = Bit is unkn	iown
bit 7	TMR3GE: Ti If TMR3ON = This bit is igr If TMR3ON = 1 = Timer3 c 0 = Timer3 c	mer3 Gate Er = 0: hored. = 1: ounting is cor	trolled by the	Timer3 gate function	1		
bit 6	1 = Timer3 g 0 = Timer3 g	mer3 Gate Po ate is active-h ate is active-h	larity bit ligh (Timer3 o bw (Timer3 c	counts when gate is h ounts when gate is lo	nigh) w)		
bit 5	T3GTM: Tim 1 = Timer3 (0 = Timer3 (Timer3 gate	er3 Gate Togg Gate Toggle n Gate Toggle n flip-flop toggle	gle Mode bit node is enabl node is disabl es on every ri	ed. led and toggle flip-floj sing edge.	p is cleared		
bit 4	T3GSPM: Ti	merx Gate Sir	ngle Pulse Mo	ode bit			
	1 = Timer3 0 0 = Timer3 0	Gate Single Pเ Gate Single Pเ	Ilse mode is o Ilse mode is o	enabled and is contro disabled	olling Timer3 g	ate	
bit 3	T3GGO/T3D	ONE: Timer3	Gate Single	Pulse Acquisition Sta	tus bit		
	1 = Timer3 (0 = Timer3 (This bit is au	Gate Single P Gate Single P tomatically cle	ulse mode ac ulse mode ac ared when T	equisition is ready, wa equisition has comple 3GSPM is cleared.	iting for an ed ted or has not	ge been started	
bit 2	T3GVAL: Tir	ner3 Gate Cu	rrent State bi	t			
	Indicates the Timerx Gate	current state Enable (TMR	of the Timer 3GE) bit.	x gate that could be p	provided to TN	/R3H:TMR3L. (Unaffected by
bit 1-0	T3GSS<1:0>	-: Timer3 Gat	e Source Sel	ect bits			
	11 = Compa 10 = Compa 01 = TMR4 t 00 = Timer3 Watchdog Ti	rator 2 output rator 1 output o match PR4 gate pin mer oscillator	output is turned on	if TMR3GE = 1, rega	rdless of the s	tate of TMR3O	N.

16.2 Timer3 Operation

Timer3 can operate in these modes:

- Timer
- Synchronous Counter
- · Asynchronous Counter
- · Timer with Gated Control

FIGURE 16-1: TIMER3 BLOCK DIAGRAM

Note 1: ST Buffer is high-speed type when using T3CKI.

- 2: Timer3 registers increment on rising edge.
- 3: Synchronization does not operate while in Sleep.
- 4: The output of SOSC is determined by the SOSCSEL<1:0> Configuration bits.

The operating mode is determined by the clock select bits, TMR3CSx (T3CON<7:6>). When the TMR3CSx bits are cleared (= 00), Timer3 increments on every internal instruction cycle (Fosc/4). When TMR3CSx = 01, the Timer3 clock source is the system clock (Fosc), and when it is '10', Timer3 works as a counter from the external clock from the T3CKI pin (on the rising edge after the first falling edge) or the SOSC oscillator.

16.5 Timer3 Gates

Timer3 can be configured to count freely or the count can be enabled and disabled using the Timer3 gate circuitry. This is also referred to as the Timer3 gate count enable.

The Timer3 gate can also be driven by multiple selectable sources.

16.5.1 TIMER3 GATE COUNT ENABLE

The Timer3 Gate Enable mode is enabled by setting the TMR3GE bit (TxGCON<7>). The polarity of the Timer3 Gate Enable mode is configured using the T3GPOL bit (T3GCON<6>).

When Timer3 Gate Enable mode is enabled, Timer3 will increment on the rising edge of the Timer3 clock source. When Timer3 Gate Enable mode is disabled, no incrementing will occur and Timer3 will hold the current count. See Figure 16-2 for timing details.

TABLE 16-1: TIMER3 GATE ENABLE SELECTIONS

T3CLK ^(†)	T3GPOL (T3GCON<6>)	T3G Pin	Timer3 Operation
\uparrow	0	0	Counts
\uparrow	0	1	Holds Count
\uparrow	1	0	Holds Count
\uparrow	1	1	Counts

† The clock on which TMR3 is running. For more information, see T3CLK in Figure 16-1.

FIGURE 16-2: TIMER3 GATE COUNT ENABLE MODE

16.5.4 TIMER3 GATE SINGLE PULSE MODE

When Timer3 Gate Single Pulse mode is enabled, it is possible to capture a single pulse gate event. Timer3 Gate Single Pulse mode is first enabled by setting the T3GSPM bit (T3GCON<4>). Next, the T3GGO/T3DONE bit (T3GCON<3>) must be set.

The Timer3 will be fully enabled on the next incrementing edge. On the next trailing edge of the pulse, the T3GGO/T3DONE bit will automatically be cleared. No other gate events <u>will be allowed to increment Timer3</u> until the T3GGO/T3DONE bit is once again set in software.

Clearing the T3GSPM bit will also clear the T3GGO/ T3DONE bit. (For timing details, see Figure 16-4.)

Simultaneously enabling the Toggle mode and the Single Pulse mode will permit both sections to work together. This allows the cycle times on the Timer3 gate source to be measured. (For timing details, see Figure 16-5.)

FIGURE 16-4: TIMER3 GATE SINGLE PULSE MODE

The CTMU current source may be trimmed with the trim bits in CTMUICON, using an iterative process to get the exact current desired. Alternatively, the nominal value without adjustment may be used. That value may be stored by software, for use in all subsequent capacitive or time measurements.

To calculate the optimal value for RCAL, the nominal current must be chosen.

For example, if the A/D Converter reference voltage is 3.3V, use 70% of full scale (or 2.31V) as the desired approximate voltage to be read by the A/D Converter. If the range of the CTMU current source is selected to be 0.55 μ A, the resistor value needed is calculated as RCAL = 2.31V/0.55 μ A, for a value of 4.2 MΩ. Similarly, if the current source is chosen to be 5.5 μ A, RCAL would be 420,000Ω, and 42,000Ω if the current source is set to 55 μ A.

FIGURE 18-2: CTMU CURRENT SOURCE CALIBRATION CIRCUIT

A value of 70% of full-scale voltage is chosen to make sure that the A/D Converter is in a range that is well above the noise floor. If an exact current is chosen to incorporate the trimming bits from CTMUICON, the resistor value of RCAL may need to be adjusted accordingly. RCAL also may be adjusted to allow for available resistor values. RCAL should be of the highest precision available, in light of the precision needed for the circuit that the CTMU will be measuring. A recommended minimum would be 0.1% tolerance.

The following examples show a typical method for performing a CTMU current calibration.

• Example 18-1 demonstrates how to initialize the A/D Converter and the CTMU.

This routine is typical for applications using both modules.

• Example 18-2 demonstrates one method for the actual calibration routine.

This method manually triggers the A/D Converter to demonstrate the entire step-wise process. It is also possible to automatically trigger the conversion by setting the CTMU's CTTRIG bit (CTMUCONH<0>).

19.2 Capture Mode

In Capture mode, the CCPRxH:CCPRxL register pair captures the 16-bit value of the Timer register selected in the CCPTMRS when an event occurs on the CCPx pin. An event is defined as one of the following:

- Every falling edge
- Every rising edge
- Every 4th rising edge
- · Every 16th rising edge
- **Note:** For CCP2 only, the Capture mode can use the CCP2 input pin as the capture trigger for CCP2 or the input can function as a time-stamp through the CAN module. The CAN module provides the necessary control and trigger signals.

The event is selected by the mode select bits, CCPxM<3:0> (CCPxCON<3:0>). When a capture is made, the interrupt request flag bit, CCPxIF (PIR4<x>), is set; it must be cleared in software. If another capture occurs before the value in CCPRx is read, the old captured value is overwritten by the new captured value.

Figure 19-1 shows the Capture mode block diagram.

In Capture mode, the appropriate CCPx pin should be configured as an input by setting the corresponding TRIS direction bit.

19.2.2 TIMER1/3 MODE SELECTION

For the available timers (1/3) to be used for the capture feature, the used timers must be running in Timer mode or Synchronized Counter mode. In Asynchronous Counter mode, the capture operation may not work.

The timer to be used with each CCP module is selected in the CCPTMRS register. (See **Section 19.1.1 "CCP Modules and Timer Resources"**.)

Details of the timer assignments for the CCP modules are given in Table 19-2.

FIGURE 19-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0				
bit 7	1			1		1	bit 0				
L											
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 7-6	P1M<1:0>: E	nhanced PWM	l Output Confi	guration bits							
	If CCP1M<3:2	<u>2> = 00, 01, 1</u>	<u>):</u>								
	xx = P1A as	signed as capt	ure/compare	input/output; P	1B, P1C and P1	D assigned as	port pins				
	<u>If CCP1M<3:2</u>	<u>2> = 11:</u>									
	00 = Single	output: P1A, P	1B, P1C and	P1D are control	olled by steering	g (see Section	20.4.7 "Pulse				
	01 = Full-brid	i g wode) dae output forv	vard [.] P1D is n	nodulated: P1A	is active: P1R	P1C is inactive	2				
	10 = Half-bri	idge output: F	P1A, P1B are	e modulated w	vith dead-band	control; P1C	, and P1D are				
	assigne	ed as port pins	i								
	11 = Full-brid	dge output rev	erse: P1B is n	nodulated; P1C	is active; P1A	and P1D are in	active				
bit 5-4	DC1B<1:0>:	PWM Duty Cy	cle bit 1 and b	it O							
	Capture mode	<u>e:</u>									
	Unused.										
	Compare mod	de:	<u>e:</u>								
	Unused.										
	<u>PVVIVI mode:</u> These bits are	a tha two I She	of the 10-bit E	N/M duty cycle	The eight MSt	os of the duty o	vele are found				
	in CCPR1L.			wivi duty cycle							
bit 3-0	CCP1M<3:0>	ECCP1 Mod	e Select bits								
	0000 = Capt	ture/Compare/	PWM off (rese	ets FCCP1 mod	dule)						
	0001 = Rese	erved									
	0010 = Com	pare mode: To	ggle output o	n match							
	0011 = Capt	ture mode	.								
	0100 = Capt	ture mode: Eve	ery falling edge	e							
	0101 = Capt	ture mode: Eve	ery rising eage	a odao							
	0110 = Capt	ture mode: Eve	erv 16 th rising	edae							
	1000 = Com	pare mode: In	itialize ECCP	l pin low, set ou	utput on compar	e match (set C	CP1IF)				
	1001 = Com	ipare mode: In	itialize ECCP	l pin high, clea	r output on com	pare match (se	t CCP1IF)				
	1010 = Com	pare mode: G	enerate softwa	are interrupt on	lly, ECCP1 pin r	everts to I/O sta	ate				
	1011 = Com	pare mode: Tr	igger special e	event (ECCP1 r	resets TMR1 or	TMR3, starts A	/D conversion,				
		UCPTIF DIt)	and P1C are a	ctive_bigh: D1E	and P1D are a	ctive-biab					
	1100 = PWN	/ mode: P1A a	and P1C are a	ctive-high: P1E	and P1D are a	ctive-low					
	1110 = PWN	/I mode: P1A a	ind P1C are a	ctive-low: P1B	and P1D are ac	tive-high					
	1111 = PWN	/ mode: P1A a	ind P1C are a	ctive-low; P1B	and P1D are ac	tive-low					

REGISTER 20-1: CCP1CON: ENHANCED CAPTURE/COMPARE/PWM1 CONTROL

21.4.6 MASTER MODE

Master mode is enabled by setting and clearing the appropriate SSPMx bits in SSPCON1 and by setting the SSPEN bit. In Master mode, the SCL and SDA lines are manipulated by the MSSP hardware if the TRIS bits are set.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is Idle, with both the S and P bits clear.

In Firmware Controlled Master mode, user code conducts all I^2C bus operations based on Start and Stop bit conditions.

Once Master mode is enabled, the user has six options.

- 1. Assert a Start condition on SDA and SCL.
- 2. Assert a Repeated Start condition on SDA and SCL.
- 3. Write to the SSPBUF register initiating transmission of data/address.
- 4. Configure the I^2C port to receive data.

FIGURE 21-18:

- 5. Generate an Acknowledge condition at the end of a received byte of data.
- 6. Generate a Stop condition on SDA and SCL.

Note: The MSSP module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPBUF register to initiate transmission before the Start condition is complete. In this case, the SSPBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur.

The following events will cause the MSSP Interrupt Flag bit, SSPIF, to be set (and MSSP interrupt, if enabled):

- · Start condition
- Stop condition
- Data transfer byte transmitted/received
- Acknowledge transmitted
- Repeated Start

MSSP BLOCK DIAGRAM (I²C[™] MASTER MODE)

21.4.17.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from a low level to a high level.
- SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1'.

When the user deasserts SDA and the pin is allowed to float high, the BRG is loaded with SSPADD<6:0> and counts down to 0. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled.

If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 21-31). If SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.

If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition (see Figure 21-32).

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 21-31: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
PIR1	PSPIF	ADIF	RC1IF	TX1IF	SSPIF	TMR1GIF	TMR2IF	TMR1IF
PIE1	PSPIE	ADIE	RC1IE	TX1IE	SSPIE	TMR1GIE	TMR2IE	TMR1IE
IPR1	PSPIP	ADIP	RC1IP	TX1IP	SSPIP	TMR1GIP	TMR2IP	TMR1IP
PIR3	—	—	RC2IF	TX2IF	CTMUIF	CCP2IF	CCP1IF	
PIE3	—	—	RC2IE	TX2IE	CTMUIE	CCP2IE	CCP1IE	_
IPR3	—	_	RC2IP	TX2IP	CTMUIP	CCP2IP	CCP1IP	-
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
TXREG1	EUSART1 T	ransmit Regi	ster					
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D
BAUDCON1	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN
SPBRGH1	EUSART1 E	Baud Rate Ge	enerator Regi	ster High By	te			
SPBRG1	EUSART1 E	Baud Rate Ge	enerator Regi	ster Low Byt	е			
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
TXREG2	EUSART2 T	ransmit Regi	ster					
TXSTA2	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D
BAUDCON2	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN
SPBRGH2	EUSART2 E	Baud Rate Ge	enerator Regi	ster High By	te			
SPBRG2	EUSART2 E	Baud Rate Ge	enerator Regi	ster Low Byt	е			
PMD0	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	UART2MD	UART1MD	SSPMD
ODCON	SSPOD	CCP5OD	CCP4OD	CCP3OD	CCP2OD	CCP10D	U2OD	U10D

TABLE 22-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Legend: — = unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
FIL11_1	FIL11_0	FIL10_1	FIL10_0	FIL9_1	FIL9_0	FIL8_1	FIL8_0		
bit 7							bit 0		
Legend:									
R = Readable	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown		
bit 7-6	FIL11_<1:0>:	Filter 11 Selec	t bits 1 and 0						
	11 = No mask	K							
	10 = Filter 15	nco Mask 1							
	00 = Accepta	nce Mask 0							
bit 5-4	FIL10_<1:0>:	Filter 10 Sele	ct bits 1 and 0						
	11 = No masł	<							
	10 = Filter 15								
	01 = Accepta	nce Mask 1							
h # 0.0			te 1 and 0						
DIL 3-2	FIL9_<1:0>:1	Filler 9 Select i	ons i and u						
	11 = NO mass 10 = Filter 15	< Comparison of the second sec							
	01 = Accepta	nce Mask 1							
	00 = Accepta	nce Mask 0							
bit 1-0	FIL8_<1:0>:	Filter 8 Select I	oits 1 and 0						
	11 = No mask	κ							
	10 = Filter 15								
	$0 \perp = Accepta$	nce Mask 1							

REGISTER 27-50: MSEL2: MASK SELECT REGISTER 2⁽¹⁾

Note 1: This register is available in Mode 1 and 2 only.

31.2 DC Characteristics: Power-Down and Supply Current PIC18F66K80 Family (Industrial/Extended) (Continued)

PIC18F66K80 Family (Industrial/Extended)		Standard (Operating	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$							
Param No.	Device	Тур	Max	Units		Conditions				
	Supply Current (IDD) Co	ont. ^(2,3)	nt. ^(2,3)							
	PIC18LFXXK80	75	160	μA	-40°C		Fosc = 4 MHz (PRI_IDLE mode, EC oscillator)			
		75	160	μA	+25°C					
		75	160	μA	+60°C	VDD = 1.8V ⁽⁴⁾ Regulator Disabled				
		76	170	μA	+85°C					
		82	180	μA	+125°C					
	PIC18LFXXK80	148	300	μA	-40°C					
		148	300	μA	+25°C					
		148	300	μA	+60°C	VDD = 3.3V(+) Regulator Disabled				
		150	400	μA	+85°C					
		157	460	μA	+125°C					
	PIC18FXXK80	187	320	μA	-40°C					
		204	320	μA	+25°C) (
		212	320	μA	+60°C	VDD = 3.3V ⁽³⁾ Regulator Enabled				
		218	420	μA	+85°C					
		230	480	μA	+125°C					
	PIC18FXXK80	230	500	μA	-40°C					
		230	500	μA	+25°C					
		230	500	μA	+60°C	$VDD = 5V^{(3)}$ Regulator Enabled				
		240	600	μA	+85°C					
		250	700	μA	+125°C					

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or Vss, and all features that add delta current are disabled (such as WDT, SOSC oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;
- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- 4: For LF devices, RETEN (CONFIG1L<0>) = 1.
- 5: For F devices, SRETEN (WDTCON<4>) = 1 and \overline{RETEN} (CONFIG1L<0>) = 0.

TABLE 31-12: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS

Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended								
Param No.	Sym	Charact	eristic	Min	Тур	Max	Units	Conditions
D420		HLVD Voltage on VDD Transition High-to-Low	HLVDL<3:0> = 0000	1.80	1.85	1.90	V	
			HLVDL<3:0> = 0001	2.03	2.08	2.13	V	
			HLVDL<3:0> = 0010	2.24	2.29	2.35	V	
			HLVDL<3:0> = 0011	2.40	2.46	2.53	V	
			HLVDL<3:0> = 0100	2.50	2.56	2.62	V	
			HLVDL<3:0> = 0101	2.70	2.77	2.84	V	
			HLVDL<3:0> = 0110	2.82	2.89	2.97	V	
			HLVDL<3:0> = 0111	2.95	3.02	3.10	V	
			HLVDL<3:0> = 1000	3.24	3.32	3.41	V	
			HLVDL<3:0> = 1001	3.42	3.50	3.59	V	
			HLVDL<3:0> = 1010	3.61	3.70	3.79	V	
			HLVDL<3:0> = 1011	3.82	3.91	4.10	V	
			HLVDL<3:0> = 1100	4.06	4.16	4.26	V	
			HLVDL<3:0> = 1101	4.33	4.44	4.55	V	
			HLVDL<3:0> = 1110	4.64	4.75	4.87	V	

TABLE 31-21:	MSSP I ² C [™] E	BUS START/STOP	BITS REQUIREMENTS
--------------	--------------------------------------	-----------------------	--------------------------

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
90 Tsu:sta		Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	Only relevant for
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_	-	Repeated Start condition
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		
91	Thd:sta	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	After this period, the first clock pulse is generated
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		
93	THD:STO	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		

Note 1: Maximum pin capacitance = 10 pF for all I^2C^{TM} pins.

