

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                     |
|----------------------------|----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                        |
| Core Size                  | 8-Bit                                                                      |
| Speed                      | 64MHz                                                                      |
| Connectivity               | ECANbus, I <sup>2</sup> C, LINbus, SPI, UART/USART                         |
| Peripherals                | Brown-out Detect/Reset, LVD, POR, PWM, WDT                                 |
| Number of I/O              | 35                                                                         |
| Program Memory Size        | 64KB (32K x 16)                                                            |
| Program Memory Type        | FLASH                                                                      |
| EEPROM Size                | 1K x 8                                                                     |
| RAM Size                   | 3.6K x 8                                                                   |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 5.5V                                                                |
| Data Converters            | A/D 11x12b                                                                 |
| Oscillator Type            | Internal                                                                   |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                         |
| Mounting Type              | Surface Mount                                                              |
| Package / Case             | 44-VQFN Exposed Pad                                                        |
| Supplier Device Package    | 44-QFN (8x8)                                                               |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic18f46k80-e-ml |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

### 3.8 Effects of Power-Managed Modes on the Various Clock Sources

When PRI\_IDLE mode is selected, the designated primary oscillator continues to run without interruption. For all other power-managed modes, the oscillator using the OSC1 pin is disabled. The OSC1 pin (and OSC2 pin if used by the oscillator) will stop oscillating.

In secondary clock modes (SEC\_RUN and SEC\_IDLE), the SOSC oscillator is operating and providing the device clock. The SOSC oscillator may also run in all power-managed modes if required to clock SOSC.

In RC\_RUN and RC\_IDLE modes, the internal oscillator provides the device clock source. The 31 kHz LF-INTOSC output can be used directly to provide the clock and may be enabled to support various special features, regardless of the power-managed mode (see Section 28.2 "Watchdog Timer (WDT)" through Section 28.5 "Fail-Safe Clock Monitor" for more information on WDT, Fail-Safe Clock Monitor and Two-Speed Start-up).

If the Sleep mode is selected, all clock sources are stopped. Since all the transistor switching currents have been stopped, Sleep mode achieves the lowest current consumption of the device (only leakage currents).

Enabling any on-chip feature that will operate during Sleep will increase the current consumed during Sleep. The INTOSC is required to support WDT operation. The SOSC oscillator may be operating to support Timer1 or 3. Other features may be operating that do not require a device clock source (i.e., MSSP slave, INTx pins and others). Peripherals that may add significant current consumption are listed in Section 31.2 "DC Characteristics: Power-Down and Supply Current PIC18F66K80 Family (Industrial/Extended)".

### 3.9 Power-up Delays

Power-up delays are controlled by two timers, so that no external Reset circuitry is required for most applications. The delays ensure that the device is kept in Reset until the device power supply is stable under normal circumstances and the primary clock is operating and stable. For additional information on power-up delays, see **Section 5.6.1 "Power-up Timer (PWRT)**".

The first timer is the Power-up Timer (PWRT), which provides a fixed delay on power-up time of about 64 ms (Parameter 33, Table 31-11); it is always enabled.

The second timer is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable (HS, XT or LP modes). The OST does this by counting 1,024 oscillator cycles before allowing the oscillator to clock the device.

There is a delay of interval, TCSD (Parameter 38, Table 31-11), following POR, while the controller becomes ready to execute instructions.

| Oscillator Mode   | OSC1 Pin                                                 | OSC2 Pin                                              |
|-------------------|----------------------------------------------------------|-------------------------------------------------------|
| EC, ECPLL         | Floating, pulled by external clock                       | At logic low (clock/4 output)                         |
| HS, HSPLL         | Feedback inverter disabled at quiescent<br>voltage level | Feedback inverter disabled at quiescent voltage level |
| INTOSC, INTPLL1/2 | I/O pin, RA6, direction controlled by<br>TRISA<6>        | I/O pin, RA6, direction controlled by TRISA<7>        |

Note: See Section 5.0 "Reset" for time-outs due to Sleep and MCLR Reset.

### 5.4 Brown-out Reset (BOR)

The PIC18F66K80 family has four BOR Power modes:

- High-Power BOR
- Medium Power BOR
- Low-Power BOR
- Zero-Power BOR

Each power mode is selected by the BORPWR<1:0> setting (CONFIG2L<6:5>). For low, medium and high-power BOR, the module monitors the VDD depending on the BORV<1:0> setting (CONFIG1L<3:2>). The typical current draw ( $\Delta$ IBOR) for zero, low and medium power BOR is 200 nA, 750 nA and 3 µA, respectively. A BOR event re-arms the Power-on Reset. It also causes a Reset, depending on which of the trip levels has been set: 1.8V, 2V, 2.7V or 3V.

BOR is enabled by BOREN<1:0> (CONFIG2L<2:1>) and the SBOREN bit (RCON<6>). The four BOR configurations are summarized in Table 5-1.

In Zero-Power BOR (ZPBORMV), the module monitors the VDD voltage and re-arms the POR at about 2V. ZPBORMV does not cause a Reset, but re-arms the POR.

The BOR accuracy varies with its power level. The lower the power setting, the less accurate the BOR trip levels are. Therefore, the high-power BOR has the highest accuracy and the low-power BOR has the lowest accuracy. The trip levels (BVDD, Parameter D005), current consumption (Section 31.2 "DC Characteristics: Power-Down and Supply Current PIC18F66K80 Family (Industrial/Extended)") and time required below BVDD (TBOR, Parameter 35) can all be found in Section 31.0 "Electrical Characteristics".

### 5.4.1 SOFTWARE ENABLED BOR

When BOREN<1:0> = 01, the BOR can be enabled or disabled by the user in software. This is done with the control bit, SBOREN (RCON<6>). Setting SBOREN enables the BOR to function as previously described. Clearing SBOREN disables the BOR entirely. The SBOREN bit operates only in this mode; otherwise it is read as '0'. Placing the BOR under software control gives the user the additional flexibility of tailoring the application to its environment without having to reprogram the device to change BOR configuration. It also allows the user to tailor device power consumption in software by eliminating the incremental current that the BOR consumes. While the BOR current is typically very small, it may have some impact in low-power applications.

| Note: | Even when BOR is under software con-       |
|-------|--------------------------------------------|
|       | trol, the Brown-out Reset voltage level is |
|       | still set by the BORV<1:0> Configuration   |
|       | bits; it cannot be changed in software.    |

### 5.4.2 DETECTING BOR

When Brown-out Reset is enabled, the BOR bit always resets to '0' on any Brown-out Reset or Power-on Reset event. This makes it difficult to determine if a Brown-out Reset event has occurred just by reading the state of BOR alone. A more reliable method is to simultaneously check the state of both POR and BOR. This assumes that the POR bit is reset to '1' in software immediately after any Power-on Reset event. IF BOR is '0' while POR is '1', it can be reliably assumed that a Brown-out Reset event has occurred.

### 5.4.3 DISABLING BOR IN SLEEP MODE

When BOREN<1:0> = 10, the BOR remains under hardware control and operates as previously described. Whenever the device enters Sleep mode, however, the BOR is automatically disabled. When the device returns to any other operating mode, BOR is automatically re-enabled.

This mode allows for applications to recover from brown-out situations, while actively executing code, when the device requires BOR protection the most. At the same time, it saves additional power in Sleep mode by eliminating the small incremental BOR current.

| BOR Configuration |        | Status of           |                                                                                       |  |
|-------------------|--------|---------------------|---------------------------------------------------------------------------------------|--|
| BOREN1            | BOREN0 | SBOREN<br>(RCON<6>) | BOR Operation                                                                         |  |
| 0                 | 0      | Unavailable         | BOR is disabled; must be enabled by reprogramming the Configuration bits.             |  |
| 0                 | 1      | Available           | BOR is enabled in software; operation is controlled by SBOREN.                        |  |
| 1                 | 0      | Unavailable         | BOR is enabled in hardware, in Run and Idle modes; disabled during Sleep mode.        |  |
| 1                 | 1      | Unavailable         | BOR is enabled in hardware; must be disabled by reprogramming the Configuration bits. |  |

TABLE 5-1:BOR CONFIGURATIONS

### 6.1.3.4 Stack Full and Underflow Resets

Device Resets on stack overflow and stack underflow conditions are enabled by setting the STVREN bit (CONFIG4L<0>). When STVREN is set, a full or underflow condition will set the appropriate STKFUL or STKUNF bit and then cause a device Reset. When STVREN is cleared, a full or underflow condition will set the appropriate STKFUL or STKUNF bit, but not cause a device Reset. The STKFUL or STKUNF bits are cleared by the user software or a Power-on Reset.

### 6.1.4 FAST REGISTER STACK

A Fast Register Stack is provided for the STATUS, WREG and BSR registers to provide a "fast return" option for interrupts. This stack is only one level deep and is neither readable nor writable. It is loaded with the current value of the corresponding register when the processor vectors for an interrupt. All interrupt sources will push values into the Stack registers. The values in the registers are then loaded back into the working registers if the RETFIE, FAST instruction is used to return from the interrupt.

If both low and high-priority interrupts are enabled, the Stack registers cannot be used reliably to return from low-priority interrupts. If a high-priority interrupt occurs while servicing a low-priority interrupt, the Stack register values stored by the low-priority interrupt will be overwritten. In these cases, users must save the key registers in software during a low-priority interrupt.

If interrupt priority is not used, all interrupts may use the Fast Register Stack for returns from interrupt. If no interrupts are used, the Fast Register Stack can be used to restore the STATUS, WREG and BSR registers at the end of a subroutine call. To use the Fast Register Stack for a subroutine call, a CALL label, FAST instruction must be executed to save the STATUS, WREG and BSR registers to the Fast Register Stack. A RETURN, FAST instruction is then executed to restore these registers from the Fast Register Stack.

Example 6-1 shows a source code example that uses the Fast Register Stack during a subroutine call and return.

### EXAMPLE 6-1: FAST REGISTER STACK CODE EXAMPLE

| CALL SUB1, FAST<br>•<br>• | ;STATUS, WREG, BSR<br>;SAVED IN FAST REGISTER<br>;STACK |
|---------------------------|---------------------------------------------------------|
| SUB1 •                    |                                                         |
| RETURN FAST               | ;RESTORE VALUES SAVED<br>;IN FAST REGISTER STACK        |

### 6.1.5 LOOK-UP TABLES IN PROGRAM MEMORY

There may be programming situations that require the creation of data structures, or look-up tables, in program memory. For PIC18 devices, look-up tables can be implemented in two ways:

- Computed GOTO
- Table Reads

### 6.1.5.1 Computed GOTO

A computed GOTO is accomplished by adding an offset to the Program Counter. An example is shown in Example 6-2.

A look-up table can be formed with an ADDWF PCL instruction and a group of RETLW nn instructions. The W register is loaded with an offset into the table before executing a call to that table. The first instruction of the called routine is the ADDWF PCL instruction. The next instruction executed will be one of the RETLW nn instructions that returns the value, 'nn', to the calling function.

The offset value (in WREG) specifies the number of bytes that the Program Counter should advance and should be multiples of two (LSb = 0).

In this method, only one data byte may be stored in each instruction location and room on the return address stack is required.

#### EXAMPLE 6-2: COMPUTED GOTO USING AN OFFSET VALUE

|       | MOVF  | OFFSET, | W |
|-------|-------|---------|---|
|       | CALL  | TABLE   |   |
| ORG   | nn00h |         |   |
| TABLE | ADDWF | PCL     |   |
|       | RETLW | nnh     |   |
|       | RETLW | nnh     |   |
|       | RETLW | nnh     |   |
|       | •     |         |   |
|       |       |         |   |
|       |       |         |   |
|       |       |         |   |

### 6.1.5.2 Table Reads

A better method of storing data in program memory allows two bytes of data to be stored in each instruction location.

Look-up table data may be stored two bytes per program word while programming. The Table Pointer (TBLPTR) specifies the byte address and the Table Latch (TABLAT) contains the data that is read from the program memory. Data is transferred from program memory one byte at a time.

The table read operation is discussed further in **Section 7.1 "Table Reads and Table Writes**".

NOTES:

### REGISTER 10-3: INTCON3: INTERRUPT CONTROL REGISTER 3

| R/W-1      | R/W-1                                            | R/W-0                                  | R/W-0             | R/W-0                                 | R/W-0                 | R/W-0            | R/W-0          |
|------------|--------------------------------------------------|----------------------------------------|-------------------|---------------------------------------|-----------------------|------------------|----------------|
| INT2IF     | PINT1IP                                          | INT3IE                                 | INT2IE            | INT1IE                                | INT3IF                | INT2IF           | INT1IF         |
| bit 7      |                                                  | ·                                      |                   |                                       |                       |                  | bit 0          |
|            |                                                  |                                        |                   |                                       |                       |                  |                |
| Legend:    | · · · · · ·                                      | 147 147 14 H                           |                   | · · · · · · · · · · · · · · · · · · · | · • • • • • • • • • • |                  |                |
| R = Read   | able bit                                         | W = Writable                           | bit               | U = Unimpier                          | mented bit, rea       | d as '0'         |                |
| -n = Value | e at POR                                         | '1' = Bit is set                       |                   | '0' = Bit is cie                      | ared                  | х = Bit is unкr  | nown           |
| hit 7      | INT2IP INT2                                      | Evternal Interr                        | nunt Priority hit |                                       |                       |                  |                |
|            | 1 = High pric                                    | ritv                                   | upti nonty on     |                                       |                       |                  |                |
|            | 0 = Low prior                                    | rity                                   |                   |                                       |                       |                  |                |
| bit 6      | INT1IP: INT1                                     | External Interr                        | upt Priority bit  |                                       |                       |                  |                |
|            | 1 = High pric                                    | ority                                  | •                 |                                       |                       |                  |                |
|            | 0 = Low prior                                    | rity                                   |                   |                                       |                       |                  |                |
| bit 5      | INT3IE: INT3                                     | External Interr                        | rupt Enable bit   |                                       |                       |                  |                |
|            | 1 = Enables                                      | the INT3 extern                        | nal interrupt     |                                       |                       |                  |                |
|            |                                                  | the IN13 exter                         | nal interrupt     |                                       |                       |                  |                |
| bit 4      |                                                  | External Intern                        | upt Enable bit    |                                       |                       |                  |                |
|            | 1 = Enables<br>∩ = Disables                      | the INT2 exten                         | nal interrupt     |                                       |                       |                  |                |
| hit 3      |                                                  | External Interr                        | unt Enable bit    |                                       |                       |                  |                |
| Dit O      | 1 = Enables                                      | the INT1 exteri                        | nal interrupt     |                                       |                       |                  |                |
|            | 0 = Disables                                     | the INT1 exter                         | nal interrupt     |                                       |                       |                  |                |
| bit 2      | INT3IF: INT3                                     | External Interr                        | upt Flag bit      |                                       |                       |                  |                |
|            | 1 = The INT3                                     | 3 external interi                      | rupt occurred (   | must be cleare                        | d in software)        |                  |                |
|            | 0 = The INT3                                     | 3 external interi                      | rupt did not oc   | cur                                   |                       |                  |                |
| bit 1      | INT2IF: INT2                                     | External Interr                        | upt Flag bit      |                                       |                       |                  |                |
|            | $1 = \text{The INT}_2$<br>$0 = \text{The INT}_2$ | 2 external interi<br>2 external interi | rupt occurred (   | must be cleare                        | d in software)        |                  |                |
| hit ()     |                                                  | Evternal Interr                        | unt Flag hit      | Cui                                   |                       |                  |                |
| DILO       | 1 = The INT                                      | 1 external interi                      | runt occurred (   | must be cleare                        | d in software)        |                  |                |
|            | 0 = The INT                                      | 1 external interi                      | rupt did not oc   | CUL                                   | u in contra -,        |                  |                |
|            |                                                  |                                        | ·                 |                                       |                       |                  |                |
| N-to.      | Later and floor bits                             |                                        | '                 | 10                                    |                       | "                |                |
| Note:      | Interrupt flag bits                              | are set when                           | an interrupt co   | ondition occurs                       | regardless of         | the state of its | corresponding  |
|            | are clear prior to                               | enabling an int                        | errupt. This fe   | ature allows for                      | software pollir       | appropriate int  | enuprinag site |

| Pin Name        | Function             | TRIS<br>Setting | I/O     | I/O<br>Type | Description                                                                              |
|-----------------|----------------------|-----------------|---------|-------------|------------------------------------------------------------------------------------------|
| RA0/CVREF/AN0/  | RA0                  | 0               | 0       | DIG         | LATA<0> data output; not affected by analog input.                                       |
| ULPWU           |                      | 1               | I       | ST          | PORTA<0> data input; disabled when analog input is enabled.                              |
|                 | CVREF                | x               | 0       | ANA         | Comparator voltage reference output. Enabling this feature disables digital I/O.         |
|                 | AN0                  | 1               | I       | ANA         | A/D Input Channel 0. Default input configuration on POR; does not affect                 |
|                 |                      |                 |         |             | digital output.                                                                          |
|                 | ULPWU                | 1               | 0       | DIG         | Ultra Low-Power Wake-up input.                                                           |
| RA1/AN1/C1INC   | RA1                  | 0               | 0       | DIG         | LATA<1> data output; not affected by analog input.                                       |
|                 |                      | 1               | Ι       | ST          | PORTA<1> data input; disabled when analog input is enabled.                              |
|                 | AN1                  | 1               | Ι       | ANA         | A/D Input Channel 1. Default input configuration on POR; does not affect digital output. |
|                 | C1INC <sup>(1)</sup> | x               | Ι       | ANA         | Comparator 1 Input C.                                                                    |
| RA2/VREF-/AN2/  | RA2                  | 0               | 0       | DIG         | LATA<2> data output; not affected by analog input.                                       |
| C2INC           |                      | 1               | I       | ST          | PORTA<2> data input; disabled when analog functions are enabled.                         |
|                 | VREF-                | 1               | I       | ANA         | A/D and comparator low reference voltage input.                                          |
|                 | AN2                  | 1               | I       | ANA         | A/D Input Channel 2. Default input configuration on POR.                                 |
|                 | C2INC <sup>(1)</sup> | x               | I       | ANA         | Comparator 2 Input C.                                                                    |
| RA3/VREF+/AN3   | RA3 0                |                 | 0       | DIG         | LATA<3> data output; not affected by analog input.                                       |
|                 |                      | 1               | Ι       | ST          | PORTA<3> data input; disabled when analog input is enabled.                              |
|                 | VREF+                | 1               | Ι       | ANA         | A/D Input Channel 3. Default input configuration on POR.                                 |
|                 | AN3                  | 1               | Ι       | ANA         | A/D and comparator high reference voltage input.                                         |
| RA5/AN4/C2INB/  | RA5                  | 0               | 0       | DIG         | LATA<5> data output; not affected by analog input.                                       |
| HLVDIN/T1CKI/   |                      | 1               | Ι       | ST          | PORTA<5> data input; disabled when analog input is enabled.                              |
| SS/CTMUI        | AN4                  | 1               | I       | ANA         | A/D Input Channel 4. Default configuration on POR.                                       |
|                 | C2INB <sup>(2)</sup> | 1               | I       | ANA         | Comparator 2 Input B.                                                                    |
|                 | HLVDIN               | 1               | I       | ANA         | High/Low-Voltage Detect external trip point input.                                       |
|                 | T1CKI                | x               | I       | ST          | Timer1 clock input.                                                                      |
|                 | SS                   | 1               | Ι       | ST          | Slave select input for MSSP module.                                                      |
|                 | CTMUI <sup>(2)</sup> | x               | 0       | —           | CTMU pulse generator charger for the C2INB comparator input.                             |
| RA6/OSC2/       | RA6                  | 0               | 0       | DIG         | LATA<6> data output; disabled when FOSC2 Configuration bit is set.                       |
| CLKOUT          |                      | 1               | I       | ST          | PORTA<6> data input; disabled when FOSC2 Configuration bit is set.                       |
|                 | OSC2                 | x               | 0       | ANA         | Main oscillator feedback output connection (HS, XT and LP modes).                        |
|                 | CLKOUT               | x               | 0       | DIG         | System cycle clock output (Fosc/4) (EC and INTOSC modes).                                |
| RA7/OSC1/CLKIN  | RA7                  | 0               | 0       | DIG         | LATA<7> data output; disabled when FOSC2 Configuration bit is set.                       |
|                 |                      | 1               | I       | ST          | PORTA<7> data input; disabled when FOSC2 Configuration bit is set.                       |
|                 | OSC1                 | х               | I       | ANA         | Main oscillator input connection (HS, XT, and LP modes).                                 |
|                 | CLKIN                | х               | I       | ANA         | Main external clock source input (EC modes).                                             |
| Legend: $0 = 0$ | utput: I – In        | DUIT ANA -      | - Analo | a Siana     | I: DIC - CMOS Output: ST - Schmitt Trigger Buffer Input:                                 |

#### **TABLE 11-1: PORTA FUNCTIONS**

Output; I = Input; ANA = Analog Signal; DIG = CMOS Output; ST = Schmitt Trigger Buffer Input; Legend:  ${\rm x}$  = Don't care (TRIS bit does not affect port direction or is overridden for this option)

Note 1: This pin assignment is unavailable for 28-pin devices (PIC18F2XK80).

2: This pin assignment is only available for 28-pin devices (PIC18F2XK80).

#### **TABLE 11-2:** SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

| Name   | Bit 7                 | Bit 6                 | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  |
|--------|-----------------------|-----------------------|--------|--------|--------|--------|--------|--------|
| PORTA  | RA7 <sup>(1)</sup>    | RA6 <sup>(1)</sup>    | RA5    | —      | RA3    | RA2    | RA1    | RA0    |
| LATA   | LATA7 <sup>(1)</sup>  | LATA6 <sup>(1)</sup>  | LATA5  | —      | LATA3  | LATA2  | LATA1  | LATA0  |
| TRISA  | TRISA7 <sup>(1)</sup> | TRISA6 <sup>(1)</sup> | TRISA5 | —      | TRISA3 | TRISA2 | TRISA1 | TRISA0 |
| ANCON0 | ANSEL7                | ANSEL6                | ANSEL5 | ANSEL4 | ANSEL3 | ANSEL2 | ANSEL1 | ANSEL0 |

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTA.

Note 1: These bits are enabled depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read as 'x'.

### 16.5 Timer3 Gates

Timer3 can be configured to count freely or the count can be enabled and disabled using the Timer3 gate circuitry. This is also referred to as the Timer3 gate count enable.

The Timer3 gate can also be driven by multiple selectable sources.

### 16.5.1 TIMER3 GATE COUNT ENABLE

The Timer3 Gate Enable mode is enabled by setting the TMR3GE bit (TxGCON<7>). The polarity of the Timer3 Gate Enable mode is configured using the T3GPOL bit (T3GCON<6>).

When Timer3 Gate Enable mode is enabled, Timer3 will increment on the rising edge of the Timer3 clock source. When Timer3 Gate Enable mode is disabled, no incrementing will occur and Timer3 will hold the current count. See Figure 16-2 for timing details.

### TABLE 16-1: TIMER3 GATE ENABLE SELECTIONS

| T3CLK <sup>(†)</sup> | T3GPOL<br>(T3GCON<6>) | T3G Pin | Timer3<br>Operation |
|----------------------|-----------------------|---------|---------------------|
| $\uparrow$           | 0                     | 0       | Counts              |
| $\uparrow$           | 0                     | 1       | Holds Count         |
| $\uparrow$           | 1                     | 0       | Holds Count         |
| $\uparrow$           | 1                     | 1       | Counts              |

† The clock on which TMR3 is running. For more information, see T3CLK in Figure 16-1.



### FIGURE 16-2: TIMER3 GATE COUNT ENABLE MODE

### 18.2.5 INTERRUPTS

The CTMU sets its interrupt flag (PIR3<3>) whenever the current source is enabled, then disabled. An interrupt is generated only if the corresponding interrupt enable bit (PIE3<3>) is also set. If edge sequencing is not enabled (i.e., Edge 1 must occur before Edge 2), it is necessary to monitor the edge status bits and determine which edge occurred last and caused the interrupt.

### 18.3 CTMU Module Initialization

The following sequence is a general guideline used to initialize the CTMU module:

- 1. Select the current source range using the IRNGx bits (CTMUICON<1:0>).
- 2. Adjust the current source trim using the ITRIMx bits (CTMUICON<7:2>).
- Configure the edge input sources for Edge 1 and Edge 2 by setting the EDG1SEL and EDG2SEL bits (CTMUCONL<3:2> and <6:5>, respectively).
- Configure the input polarities for the edge inputs using the EDG1POL and EDG2POL bits (CTMUCONL<4,7>).

The default configuration is for negative edge polarity (high-to-low transitions).

5. Enable edge sequencing using the EDGSEQEN bit (CTMUCONH<2>).

By default, edge sequencing is disabled.

6. Select the operating mode (Measurement or Time Delay) with the TGEN bit (CTMUCONH<4>).

The default mode is Time/Capacitance Measurement.

 Configure the module to automatically trigger an A/D conversion when the second edge event has occurred using the CTTRIG bit (CTMUCONH<0>).

The conversion trigger is disabled by default.

- 8. Discharge the connected circuit by setting the IDISSEN bit (CTMUCONH<1>).
- 9. After waiting a sufficient time for the circuit to discharge, clear the IDISSEN bit.
- 10. Disable the module by clearing the CTMUEN bit (CTMUCONH<7>).
- 11. Clear the Edge Status bits, EDG2STAT and EDG1STAT (CTMUCONL<1:0>).

Both bits should be cleared simultaneously, if possible, to avoid re-enabling the CTMU current source.

- 12. Enable both edge inputs by setting the EDGEN bit (CTMUCONH<3>).
- 13. Enable the module by setting the CTMUEN bit.

Depending on the type of measurement or pulse generation being performed, one or more additional modules may also need to be initialized and configured with the CTMU module:

- Edge Source Generation: In addition to the external edge input pins, ECCP1/CCP2 Special Event Triggers can be used as edge sources for the CTMU.
- Capacitance or Time Measurement: The CTMU module uses the A/D Converter to measure the voltage across a capacitor that is connected to one of the analog input channels.
- Pulse Generation: When generating system clock independent, output pulses, the CTMU module uses Comparator 2 and the associated comparator voltage reference.

### 18.4 Calibrating the CTMU Module

The CTMU requires calibration for precise measurements of capacitance and time, as well as for accurate time delay. If the application only requires measurement of a relative change in capacitance or time, calibration is usually not necessary. An example of a less precise application is a capacitive touch switch, in which the touch circuit has a baseline capacitance and the added capacitance of the human body changes the overall capacitance of a circuit.

If actual capacitance or time measurement is required, two hardware calibrations must take place:

- The current source needs calibration to set it to a precise current.
- The circuit being measured needs calibration to measure or nullify any capacitance other than that to be measured.

### 18.4.1 CURRENT SOURCE CALIBRATION

The current source on board the CTMU module has a range of  $\pm 62\%$  nominal for each of three current ranges. For precise measurements, it is possible to measure and adjust this current source by placing a high-precision resistor, RCAL, onto an unused analog channel. An example circuit is shown in Figure 18-2.

To measure the current source:

- 1. Initialize the A/D Converter.
- 2. Initialize the CTMU.
- Enable the current source by setting EDG1STAT (CTMUCONL<0>).
- 4. Issue time delay for voltage across  $\rm RCAL$  to stabilize and A/D sample/hold capacitor to charge.
- 5. Perform the A/D conversion.
- 6. Calculate the current source current using  $I = V/R_{CAL}$ , where  $R_{CAL}$  is a high-precision resistance and V is measured by performing an A/D conversion.



#### FIGURE 19-2: COMPARE MODE OPERATION BLOCK DIAGRAM

#### 21.3.9 OPERATION IN POWER-MANAGED MODES

In SPI Master mode, module clocks may be operating at a different speed than when in full-power mode; in the case of the Sleep mode, all clocks are halted.

In Idle modes, a clock is provided to the peripherals. That clock can be from the primary clock source, the secondary clock (SOSC oscillator) or the INTOSC source. See **Section 3.3** "**Clock Sources and Oscillator Switching**" for additional information.

In most cases, the speed that the master clocks SPI data is not important; however, this should be evaluated for each system.

If MSSP interrupt is enabled, it can wake the controller from Sleep mode, or one of the Idle modes, when the master completes sending data. If an exit from Sleep or Idle mode is not desired, MSSP interrupts should be disabled.

If the Sleep mode is selected, all module clocks are halted and the transmission/reception will remain in that state until the device wakes. After the device returns to Run mode, the module will resume transmitting and receiving data.

In SPI Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in any power-managed mode and data to be shifted into the SPI Transmit/Receive Shift register. When all 8 bits have been received, the MSSP interrupt flag bit will be set, and if enabled, will wake the device.

### 21.3.10 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

### 21.3.11 BUS MODE COMPATIBILITY

Table 21-1 shows the compatibility between the standard SPI modes, and the states of the CKP and CKE control bits.

| Standard SPI Mode | Control Bits State |     |  |  |
|-------------------|--------------------|-----|--|--|
| Terminology       | СКР                | CKE |  |  |
| 0, 0              | 0                  | 1   |  |  |
| 0, 1              | 0                  | 0   |  |  |
| 1, 0              | 1                  | 1   |  |  |
| 1, 1              | 1                  | 0   |  |  |

### TABLE 21-1: SPI BUS MODES

There is also an SMP bit which controls when the data is sampled.

| Name    | Bit 7     | Bit 6           | Bit 5        | Bit 4  | Bit 3  | Bit 2   | Bit 1   | Bit 0  |
|---------|-----------|-----------------|--------------|--------|--------|---------|---------|--------|
| INTCON  | GIE/GIEH  | PEIE/GIEL       | TMR0IE       | INT0IE | RBIE   | TMR0IF  | INT0IF  | RBIF   |
| PIR1    | PSPIF     | ADIF            | RC1IF        | TX1IF  | SSPIF  | TMR1GIF | TMR2IF  | TMR1IF |
| PIE1    | PSPIE     | ADIE            | RC1IE        | TX1IE  | SSPIE  | TMR1GIE | TMR2IE  | TMR1IE |
| IPR1    | PSPIP     | ADIP            | RC1IP        | TX1IP  | SSPIP  | TMR1GIP | TMR2IP  | TMR1IP |
| TRISA   | TRISA7    | TRISA6          | TRISA5       | —      | TRISA3 | TRISA2  | TRISA1  | TRISA0 |
| TRISC   | TRISC7    | TRISC6          | TRISC5       | TRISC4 | TRISC3 | TRISC2  | TRISC1  | TRISC0 |
| SSPBUF  | MSSP Rece | eive Buffer/Tra | ansmit Regis | ter    |        |         |         |        |
| SSPCON1 | WCOL      | SSPOV           | SSPEN        | CKP    | SSPM3  | SSPM2   | SSPM1   | SSPM0  |
| SSPSTAT | SMP       | CKE             | D/Ā          | Р      | S      | R/W     | UA      | BF     |
| ODCON   | SSPOD     | CCP5OD          | CCP4OD       | CCP3OD | CCP2OD | CCP10D  | U2OD    | U10D   |
| PMD0    | CCP5MD    | CCP4MD          | CCP3MD       | CCP2MD | CCP1MD | UART2MD | UART1MD | SSPMD  |

### TABLE 21-2: REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: Shaded cells are not used by the MSSP module in SPI mode.

### 21.4.7 BAUD RATE

In I<sup>2</sup>C Master mode, the Baud Rate Generator (BRG) reload value is placed in the 8 bits of the SSPADD register (Figure 21-19). When a write occurs to SSPBUF, the Baud Rate Generator will automatically begin counting. The BRG counts down to 0 and stops until another reload has taken place. The BRG count is decremented twice per instruction cycle (Tcr) on the Q2 and Q4 clocks. In I<sup>2</sup>C Master mode, the BRG is reloaded automatically.

Once the given operation is complete (i.e., transmission of the last data bit is followed by ACK), the internal clock will automatically stop counting and the SCL pin will remain in its last state.

Table 21-3 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPADD. The SSPADD BRG value of 00h is not supported.

### FIGURE 21-19: BAUD RATE GENERATOR BLOCK DIAGRAM



### TABLE 21-3: I<sup>2</sup>C<sup>™</sup> CLOCK RATE w/BRG

| Fosc                  | Fcy    | Fcy * 2 | BRG Value | FscL<br>(2 Rollovers of BRG) |
|-----------------------|--------|---------|-----------|------------------------------|
| 40 MHz                | 10 MHz | 20 MHz  | 18h       | 400 kHz <sup>(1)</sup>       |
| 40 MHz                | 10 MHz | 20 MHz  | 1Fh       | 312.5 kHz                    |
| 40 MHz                | 10 MHz | 20 MHz  | 63h       | 100 kHz                      |
| 16 MHz                | 4 MHz  | 8 MHz   | 09h       | 400 kHz <sup>(1)</sup>       |
| 16 MHz                | 4 MHz  | 8 MHz   | 0Ch       | 308 kHz                      |
| 16 MHz                | 4 MHz  | 8 MHz   | 27h       | 100 kHz                      |
| 4 MHz                 | 1 MHz  | 2 MHz   | 02h       | 333 kHz <sup>(1)</sup>       |
| 4 MHz                 | 1 MHz  | 2 MHz   | 09h       | 100 kHz                      |
| 16 MHz <sup>(2)</sup> | 4 MHz  | 8 MHz   | 03h       | 1 MHz <sup>(1)</sup>         |

**Note 1:** The I<sup>2</sup>C interface does not conform to the 400 kHz I<sup>2</sup>C specification (which applies to rates greater than 100 kHz) in all details, but may be used with care where higher rates are required by the application.

2: A minimum 16-MHz Fosc is required for 1 MHz I<sup>2</sup>C.

### 22.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is one of two serial I/O modules. (Generically, the EUSART is also known as a Serial Communications Interface or SCI.)

The EUSART can be configured as a full-duplex, asynchronous system that can communicate with peripheral devices, such as CRT terminals and personal computers. It can also be configured as a half-duplex synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs, etc.

The Enhanced USARTx modules implement additional features, including automatic baud rate detection and calibration, automatic wake-up on Sync Break reception and 12-bit Break character transmit. These make it ideally suited for use in Local Interconnect Network bus (LIN/J2602 bus) systems.

All members of the PIC18F66K80 family are equipped with two independent EUSART modules, referred to as EUSART1 and EUSART2. They can be configured in the following modes:

- Asynchronous (full duplex) with:
  - Auto-wake-up on character reception
  - Auto-baud calibration
- 12-bit Break character transmission
- Synchronous Master (half duplex) with selectable clock polarity
- Synchronous Slave (half duplex) with selectable clock polarity

The pins of EUSART1 and EUSART2 are multiplexed with the functions with the following ports, depending on the device pin count. See Table 22-1.

| Pin       |       | EUSART1                        | EUSART2 |                                                      |  |  |
|-----------|-------|--------------------------------|---------|------------------------------------------------------|--|--|
| Count     | Port  | Pins                           | Port    | Pins                                                 |  |  |
| 28-pin    | PORTC | RC6/TX1/CK1 and<br>RC7/RX1/DT1 | PORTB   | RB6/PGC/TX2/CK2/KBI2 and<br>RB7/PGD/T3G/RX2/DT2/KBI3 |  |  |
| 40/44-pin | PORTC | RC6/TX1/CK1 and<br>RC7/RX1/DT1 | PORTD   | RD6/TX2/CK2/P1C/PSP6 and<br>RD7/RX2/DT2/P1D/PSP7     |  |  |
| 64-pin    | PORTG | RG3/TX1/CK1 and<br>RG0/RX1/DT1 | PORTE   | RE7/TX2/CK2 and RE6/RX2/DT2                          |  |  |

TABLE 22-1:CONFIGURING EUSARTx PINS<sup>(1)</sup>

Note 1: The EUSARTx control will automatically reconfigure the pin from input to output as needed.

In order to configure the pins as an EUSARTx:

- For EUSART1:
  - SPEN (RCSTA1<7>) must be set (= 1)
  - TRISx<x> must be set (= 1)
  - For Asynchronous and Synchronous Master modes, TRISx<x> must be cleared (= 0)
  - For Synchronous Slave mode, TRISx<x> must be set (= 1)

- For EUSART2:
  - SPEN (RCSTA2<7>) must be set (= 1)
  - TRISx<x> must be set (= 1)
  - For Asynchronous and Synchronous Master modes, TRISx<x> must be cleared (= 0)
  - For Synchronous Slave mode, TRISx<x> must be set (= 1)

### 23.2.2 A/D RESULT REGISTERS

The ADRESH:ADRESL register pair is where the 12-bit A/D result and extended sign bits (ADSGNx) are loaded at the completion of a conversion. This register pair is 16 bits wide. The A/D module gives the flexibility of left or right justifying the 12-bit result in the 16-bit result register. The A/D Format Select bit (ADFM) controls this justification.

Figure 23-3 shows the operation of the A/D result justification and the location of the sign bit (ADSGNx). The extended sign bits allow for easier 16-bit math to

be performed on the result. The results are represented as a two's compliment binary value. This means that when sign bits and magnitude bits are considered together in right justification, the ADRESH and ADRESL registers can be read as a single signed integer value.

When the A/D Converter is disabled, these 8-bit registers can be used as two general purpose registers.





### REGISTER 27-19: RXBnDLC: RECEIVE BUFFER 'n' DATA LENGTH CODE REGISTERS [0 $\leq$ n $\leq$ 1]

| U-0   | R-x   | R-x | R-x | R-x  | R-x  | R-x  | R-x   |
|-------|-------|-----|-----|------|------|------|-------|
| —     | RXRTR | RB1 | R0  | DLC3 | DLC2 | DLC1 | DLC0  |
| bit 7 |       |     |     |      |      |      | bit 0 |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | l as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit

| bit 7   | Unimplemented: Read as '0'                  |
|---------|---------------------------------------------|
| bit 6   | RXRTR: Receiver Remote Transmission Request |
|         | 1 = Remote transfer request                 |
|         | 0 = No remote transfer request              |
| bit 5   | RB1: Reserved bit 1                         |
|         | Reserved by CAN Spec and read as '0'.       |
| bit 4   | RB0: Reserved bit 0                         |
|         | Reserved by CAN Spec and read as '0'.       |
| bit 3-0 | DLC<3:0>: Data Length Code bits             |
|         | 1111 = Invalid                              |
|         | 1110 = Invalid                              |
|         | 1101 = Invalid                              |
|         | 1100 = Invalid                              |
|         | 1011 = Invalid                              |
|         | 1010 = Invalid                              |
|         | 1001 = Invalid                              |
|         | 1000 = Data length = 8 bytes                |
|         | 0111 = Data length = 7 bytes                |
|         | 0110 = Data length = 6 bytes                |
|         | 0101 = Data length = 5 bytes                |
|         | 0100 = Data length = 4 bytes                |
|         | 0011 = Data length = 3 bytes                |
|         | 0010 = Data length = 2 bytes                |
|         | 0001 = Data length = 1 byte                 |
|         | 0000 = Data length = 0 bytes                |
|         |                                             |

### REGISTER 27-20: RXBnDm: RECEIVE BUFFER 'n' DATA FIELD BYTE 'm' REGISTERS $[0 \le n \le 1, \, 0 \le m \le 7]$

| R-x                                                                        | R-x                                                                  | R-x     | R-x     | R-x     | R-x     | R-x     | R-x     |  |
|----------------------------------------------------------------------------|----------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|--|
| RXBnDm7                                                                    | RXBnDm6                                                              | RXBnDm5 | RXBnDm4 | RXBnDm3 | RXBnDm2 | RXBnDm1 | RXBnDm0 |  |
| bit 7 bit 0                                                                |                                                                      |         |         |         |         |         |         |  |
|                                                                            |                                                                      |         |         |         |         |         |         |  |
| Legend:                                                                    |                                                                      |         |         |         |         |         |         |  |
| R = Readable I                                                             | R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' |         |         |         |         |         |         |  |
| -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown |                                                                      |         |         |         | nown    |         |         |  |

### bit 7-0 **RXBnDm<7:0>:** Receive Buffer n Data Field Byte m bits (where 0 ≤ n < 1 and 0 < m < 7) Each receive buffer has an array of registers. For example, Receive Buffer 0 has 8 registers: RXB0D0 to RXB0D7.

### REGISTER 27-21: RXERRCNT: RECEIVE ERROR COUNT REGISTER

| R-0   | R-0  | R-0  | R-0  | R-0  | R-0  | R-0  | R-0   |
|-------|------|------|------|------|------|------|-------|
| REC7  | REC6 | REC5 | REC4 | REC3 | REC2 | REC1 | REC0  |
| bit 7 |      |      |      |      |      |      | bit 0 |
|       |      |      |      |      |      |      |       |
|       |      |      |      |      |      |      |       |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | as '0'             |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 7-0 REC<7:0>: Receive Error Counter bits

This register contains the receive error value as defined by the CAN specifications. When RXERRCNT > 127, the module will go into an error-passive state. RXERRCNT does not have the ability to put the module in "bus-off" state.

### EXAMPLE 27-5: READING A CAN MESSAGE

```
; Need to read a pending message from RXBO buffer.
; To receive any message, filter, mask and RXM1:RXM0 bits in RXB0CON registers must be
; programmed correctly.
; Make sure that there is a message pending in RXB0.
                                   ; Does RXB0 contain a message?
BTFSS RXBOCON, RXFUL
BRA
      NoMessage
                                    ; No. Handle this situation...
; We have verified that a message is pending in RXBO buffer.
; If this buffer can receive both Standard or Extended Identifier messages,
; identify type of message received.
BTFSS RXB0SIDL, EXID
                                     ; Is this Extended Identifier?
BRA
       StandardMessage
                                     ; No. This is Standard Identifier message.
                                     ; Yes. This is Extended Identifier message.
; Read all 29-bits of Extended Identifier message.
; Now read all data bytes
MOVFF RXB0DO, MY_DATA_BYTE1
; Once entire message is read, mark the RXBO that it is read and no longer FULL.
      RXB0CON, RXFUL
                                    ; This will allow CAN Module to load new messages
BCF
                                     ; into this buffer.
. . .
```

### REGISTER 27-23: BnCON: TX/RX BUFFER 'n' CONTROL REGISTERS IN TRANSMIT MODE $[0 \le n \le 5, TXnEN (BSEL0<n>) = 1]^{(1)}$

| R/W-0                 | ) R-0                                    | R-0                                                                    | R-0                         | R/W-0                  | R/W-0            | R/W-0                 | R/W-0                 |  |
|-----------------------|------------------------------------------|------------------------------------------------------------------------|-----------------------------|------------------------|------------------|-----------------------|-----------------------|--|
| TXBIF(                | 3) TXABT(3)                              | TXI ARB <sup>(3)</sup>                                                 | TXFRR <sup>(3)</sup>        | TXRFQ <sup>(2,4)</sup> | RTREN            | TXPRI1 <sup>(5)</sup> | TXPRI0 <sup>(5)</sup> |  |
| bit 7                 |                                          |                                                                        | .,                          |                        |                  |                       | bit 0                 |  |
|                       |                                          |                                                                        |                             |                        |                  |                       | 2.00                  |  |
| Legend:               |                                          |                                                                        |                             |                        |                  |                       |                       |  |
| R = Reada             | able bit                                 | W = Writable                                                           | bit                         | U = Unimplen           | nented bit, read | d as '0'              |                       |  |
| -n = Value            | at POR                                   | '1' = Bit is set                                                       |                             | '0' = Bit is cle       | ared             | x = Bit is unkr       | nown                  |  |
|                       |                                          |                                                                        |                             |                        |                  |                       |                       |  |
| bit 7                 | TXBIF: Trans                             | smit Buffer Inter                                                      | rupt Flag bit <sup>(3</sup> | 3)                     |                  |                       |                       |  |
|                       | 1 = A messa                              | ge was success                                                         | fully transmit              | ted                    |                  |                       |                       |  |
|                       | 0 = No mess                              | age was transm                                                         | nitted                      |                        |                  |                       |                       |  |
| bit 6                 | TXABT: Trar                              | smission Abort                                                         | ed Status bit <sup>(s</sup> | 5)                     |                  |                       |                       |  |
|                       | 1 = Message                              | e was aborted                                                          | d                           |                        |                  |                       |                       |  |
| bit 5                 |                                          |                                                                        | u<br>t Arbitration S        | tatus hit(3)           |                  |                       |                       |  |
| DIU                   |                                          | lost arbitration                                                       | while being s               | ont                    |                  |                       |                       |  |
|                       | 0 = Message                              | did not lose arl                                                       | bitration while             | being sent             |                  |                       |                       |  |
| bit 4                 | TXERR: Tra                               | nsmission Error                                                        | Detected Sta                | tus bit <sup>(3)</sup> |                  |                       |                       |  |
|                       | 1 = A bus eri                            | ror occurred wh                                                        | ile the messa               | ge was being s         | ent              |                       |                       |  |
|                       | 0 = A bus eri                            | or did not occu                                                        | while the me                | essage was bei         | ng sent          |                       |                       |  |
| bit 3                 | TXREQ: Trai                              | nsmit Request S                                                        | Status bit <sup>(2,4)</sup> |                        |                  |                       |                       |  |
|                       | 1 = Requests                             | s sending a mes                                                        | sage; clears                | the TXABT, TX          | LARB and TXE     | ERR bits              |                       |  |
| hit 2                 | 0 - Automati                             | cally cleared wi                                                       | Transmission                |                        | ully serit       |                       |                       |  |
| DIL Z                 | 1 = When a i                             | emote transmis                                                         | sion request                | is received TX         | REO will be au   | itomatically set      |                       |  |
|                       | 0 = When a i                             | remote transmis                                                        | sion request                | is received, TX        | REQ will be un   | affected              |                       |  |
| bit 1-0               | TXPRI<1:0>                               | : Transmit Prior                                                       | ity bits <sup>(5)</sup>     |                        |                  |                       |                       |  |
|                       | 11 = Priority Level 3 (highest priority) |                                                                        |                             |                        |                  |                       |                       |  |
| 10 = Priority Level 2 |                                          |                                                                        |                             |                        |                  |                       |                       |  |
|                       | 01 = Priority                            | Level 1<br>Level 0 (lowest                                             | priority)                   |                        |                  |                       |                       |  |
|                       | 00 – i nonty                             |                                                                        | priority)                   |                        |                  |                       |                       |  |
| Note 1:               | These registers a                        | re available in M                                                      | lode 1 and 2                | only.                  |                  |                       |                       |  |
| 2:                    | Clearing this bit in                     | software while                                                         | the bit is set              | will request a m       | essage abort.    |                       |                       |  |
| 3:                    | This bit is automa                       | <ol><li>This bit is automatically cleared when TXREQ is set.</li></ol> |                             |                        |                  |                       |                       |  |

4: While TXREQ is set or a transmission is in progress, Transmit Buffer registers remain read-only.

5: These bits set the order in which the Transmit Buffer register will be transferred. They do not alter the CAN message identifier.

# 28.0 SPECIAL FEATURES OF THE CPU

The PIC18F66K80 family of devices includes several features intended to maximize reliability and minimize cost through elimination of external components. These include:

- Oscillator Selection
- Resets:
  - Power-on Reset (POR)
  - Power-up Timer (PWRT)
  - Oscillator Start-up Timer (OST)
- Brown-out Reset (BOR)
- Interrupts
- · Watchdog Timer (WDT) and On-Chip Regulator
- Fail-Safe Clock Monitor
- Two-Speed Start-up
- Code Protection
- ID Locations
- In-Circuit Serial Programming<sup>™</sup>

The oscillator can be configured for the application depending on frequency, power, accuracy and cost. All of the options are discussed in detail in **Section 3.0 "Oscillator Configurations"**.

A complete discussion of device Resets and interrupts is available in previous sections of this data sheet.

In addition to their Power-up and Oscillator Start-up Timers provided for Resets, the PIC18F66K80 family of devices has a Watchdog Timer, which is either permanently enabled via the Configuration bits or software controlled (if configured as disabled).

The inclusion of an internal RC oscillator (LF-INTOSC) also provides the additional benefits of a Fail-Safe Clock Monitor (FSCM) and Two-Speed Start-up. FSCM provides for background monitoring of the peripheral clock and automatic switchover in the event of its failure. Two-Speed Start-up enables code to be executed almost immediately on start-up, while the primary clock source completes its start-up delays.

All of these features are enabled and configured by setting the appropriate Configuration register bits.

### 28.1 Configuration Bits

The Configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped starting at program memory location, 300000h.

The user will note that address, 300000h, is beyond the user program memory space. In fact, it belongs to the configuration memory space (300000h-3FFFFh), which can only be accessed using table reads and table writes.

Software programming the Configuration registers is done in a manner similar to programming the Flash memory. The WR bit in the EECON1 register starts a self-timed write to the Configuration register. In normal operation mode, a TBLWT instruction with the TBLPTR pointing to the Configuration register sets up the address and the data for the Configuration register write. Setting the WR bit starts a long write to the Configuration register. The Configuration registers are written a byte at a time. To write or erase a configuration cell, a TBLWT instruction can write a '1' or a '0' into the cell. For additional details on Flash programming, refer to Section 7.5 "Writing to Flash Program Memory".

ADD W to f

 $\mathsf{ADDWF} \quad \ \ f\left\{,d\left\{,a\right\}\right\}$ 

### 29.1.1 STANDARD INSTRUCTION SET

| ADD         | LW                                                 | ADD Litera                        | al to W         |                     |                      |      | ADDWF                                                   |
|-------------|----------------------------------------------------|-----------------------------------|-----------------|---------------------|----------------------|------|---------------------------------------------------------|
| Synt        | ax:                                                | ADDLW                             | k               |                     |                      |      | Syntax:                                                 |
| Oper        | rands:                                             | $0 \le k \le 255$                 |                 |                     |                      |      | Operands:                                               |
| Oper        | ration:                                            | (W) + k $\rightarrow$             | W               |                     |                      |      |                                                         |
| Statu       | is Affected:                                       | N, OV, C, E                       | DC, Z           |                     |                      |      | Operation                                               |
| Enco        | oding:                                             | 0000                              | 1111            | kkkk                | kk}                  | ĸk   | Status Affected:                                        |
| Desc        | cription:                                          | The conten<br>8-bit literal<br>W. | ts of W and the | re adde<br>e result | d to the<br>is place | d in | Encoding:<br>Description:                               |
| Word        | ds:                                                | 1                                 |                 |                     |                      |      |                                                         |
| Cycl        | es:                                                | 1                                 |                 |                     |                      |      |                                                         |
| QC          | vcle Activity:                                     |                                   |                 |                     |                      |      |                                                         |
|             | Q1                                                 | Q2                                | Q3              |                     | Q4                   |      |                                                         |
|             | Decode                                             | Read<br>literal 'k'               | Proces<br>Data  | S                   | Write to<br>W        | D    |                                                         |
| <u>Exar</u> | nple:<br>Before Instruc<br>W =<br>After Instructic | ADDLW 1<br>tion<br>10h<br>on      | L5h             |                     |                      |      |                                                         |
|             | W =                                                | 25h                               |                 |                     |                      |      | Words:                                                  |
|             |                                                    |                                   |                 |                     |                      |      | Cycles:                                                 |
|             |                                                    |                                   |                 |                     |                      |      | Q Cycle Activity:<br>Q1<br>Decode                       |
|             |                                                    |                                   |                 |                     |                      |      | Example:<br>Before Instru<br>W<br>REG<br>After Instruct |

| Operands:         | $0 \le f \le 255$<br>$d \in [0,1]$<br>$a \in [0,1]$                                                    |                                                                                                                                                                                                                                                 |                                            |                           |  |  |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------|--|--|--|--|
| Operation:        | (W) + (f) $\rightarrow$                                                                                | dest                                                                                                                                                                                                                                            |                                            |                           |  |  |  |  |
| Status Affected:  | N, OV, C, E                                                                                            | DC, Z                                                                                                                                                                                                                                           |                                            |                           |  |  |  |  |
| Encoding:         | 0010                                                                                                   | 01da                                                                                                                                                                                                                                            | ffff                                       | ffff                      |  |  |  |  |
| Description:      | Add W to result is sto<br>result is sto<br>(default).                                                  | egister 'f'.<br>pred in W.<br>pred back                                                                                                                                                                                                         | If 'd' is '0<br>If 'd' is '1<br>in registe | ', the<br>', the<br>r 'f' |  |  |  |  |
|                   | If 'a' is '0', t<br>If 'a' is '1', t<br>GPR bank.                                                      | he Acces<br>he BSR i                                                                                                                                                                                                                            | s Bank is used to                          | selected.<br>select the   |  |  |  |  |
|                   | If 'a' is '0' a<br>set is enab<br>in Indexed<br>mode wher<br>Section 29<br>Bit-Oriente<br>Literal Offs | If 'a' is '0' and the extended instruction<br>set is enabled, this instruction operates<br>in Indexed Literal Offset Addressing<br>mode whenever f ≤ 95 (5Fh). See<br>Section 29.2.3 "Byte-Oriented and<br>Bit-Oriented Instructions in Indexed |                                            |                           |  |  |  |  |
| Words:            | 1                                                                                                      |                                                                                                                                                                                                                                                 |                                            |                           |  |  |  |  |
| Cycles:           | 1                                                                                                      |                                                                                                                                                                                                                                                 |                                            |                           |  |  |  |  |
| Q Cycle Activity: |                                                                                                        |                                                                                                                                                                                                                                                 |                                            |                           |  |  |  |  |
| Q1                | Q2                                                                                                     | Q3                                                                                                                                                                                                                                              |                                            | Q4                        |  |  |  |  |
| Decode            | Read<br>register 'f'                                                                                   | Proce:<br>Data                                                                                                                                                                                                                                  | ss V<br>i des                              | /rite to<br>stination     |  |  |  |  |
| Example:          | ADDWF                                                                                                  | REG, (                                                                                                                                                                                                                                          | D, O                                       |                           |  |  |  |  |
| Before Instruc    | tion                                                                                                   |                                                                                                                                                                                                                                                 |                                            |                           |  |  |  |  |
| W<br>REG          | = 17h<br>= 0C2h                                                                                        |                                                                                                                                                                                                                                                 |                                            |                           |  |  |  |  |
| After Instructio  | )n<br>- 000b                                                                                           |                                                                                                                                                                                                                                                 |                                            |                           |  |  |  |  |
| REG               | = 0D9H<br>= 0C2h                                                                                       |                                                                                                                                                                                                                                                 |                                            |                           |  |  |  |  |

**Note:** All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).

| CLRF                                                |                                                   | Clear f                                                                                                                                                                                                                                                                                  |               |                                                                                                                                                                                              |                     | с         | LRWDT              |                 | Clear Watchdog Timer                                                                                                                |        |                 |          |            |            |
|-----------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|--------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------|----------|------------|------------|
| Syntax:                                             |                                                   | CLRF f {,a}                                                                                                                                                                                                                                                                              |               |                                                                                                                                                                                              |                     | S         | yntax:             |                 | CLRWDT                                                                                                                              |        |                 |          |            |            |
| Operands                                            | <b>3</b> :                                        | 0 ≤ f ≤ 255<br>a ∈ [0,1]                                                                                                                                                                                                                                                                 |               |                                                                                                                                                                                              | 0                   | perands:  |                    |                 |                                                                                                                                     |        |                 |          |            |            |
| Operation: $000h \rightarrow f, \\ 1 \rightarrow Z$ |                                                   |                                                                                                                                                                                                                                                                                          | 0             | $\begin{array}{c} 000h \rightarrow \text{WDT}, \\ 000h \rightarrow \text{WDT} \text{ postscaler}, \\ 1 \rightarrow \overline{\text{TO}}, \\ 1 \rightarrow \overline{\text{TO}}, \end{array}$ |                     |           |                    |                 |                                                                                                                                     |        |                 |          |            |            |
| Status Affected:                                    |                                                   | Z                                                                                                                                                                                                                                                                                        |               |                                                                                                                                                                                              |                     | 1 0       | $1 \rightarrow PD$ |                 |                                                                                                                                     |        |                 |          |            |            |
| Encoding                                            | :                                                 | 0110                                                                                                                                                                                                                                                                                     | 101a          | ffff                                                                                                                                                                                         | ffff                | 5         | atus Affecteo      | 1:              | TO, PL                                                                                                                              | ,      |                 |          | _          |            |
| Descriptio                                          | ription:                                          | Clears the contents of the specified                                                                                                                                                                                                                                                     |               |                                                                                                                                                                                              | E                   | Encoding: |                    | 000             |                                                                                                                                     | 0000   | 000             |          | 0100       |            |
|                                                     |                                                   | If 'a' is '0', the Access Bank is selected.<br>If 'a' is '1', the BSR is used to select the<br>GPR bank.                                                                                                                                                                                 |               |                                                                                                                                                                                              |                     | D         | escription.        |                 | Watchdog Timer. It also resets the postscaler of the WDT. Status bits, $\overline{\text{TO}}$ and $\overline{\text{PD}}$ , are set. |        |                 |          |            |            |
|                                                     |                                                   | If 'a' is '0' and the extended instruction<br>set is enabled, this instruction operates<br>in Indexed Literal Offset Addressing<br>mode whenever $f \le 95$ (5Fh). See<br>Section 29.2.3 "Byte-Oriented and<br>Bit-Oriented Instructions in Indexed<br>Literal Offset Mode" for details. |               |                                                                                                                                                                                              |                     | W         | Words:             |                 |                                                                                                                                     |        |                 |          |            |            |
|                                                     |                                                   |                                                                                                                                                                                                                                                                                          |               |                                                                                                                                                                                              |                     | С         | ycles:             |                 | 1                                                                                                                                   |        |                 |          |            |            |
|                                                     |                                                   |                                                                                                                                                                                                                                                                                          |               |                                                                                                                                                                                              |                     | (         | Q Cycle Activi     | ity:            |                                                                                                                                     |        |                 |          |            |            |
|                                                     |                                                   |                                                                                                                                                                                                                                                                                          |               |                                                                                                                                                                                              |                     |           | Q1<br>Decode       |                 | Q2                                                                                                                                  |        | Q               | 3        | C          | <u>)</u> 4 |
|                                                     |                                                   |                                                                                                                                                                                                                                                                                          |               |                                                                                                                                                                                              |                     |           |                    | е               | No<br>operatio                                                                                                                      | n      | Proce<br>Dat    | ess<br>a | N<br>opera | o<br>ation |
| Words:                                              |                                                   | 1                                                                                                                                                                                                                                                                                        |               |                                                                                                                                                                                              |                     |           |                    |                 |                                                                                                                                     |        |                 |          |            |            |
| Cycles:                                             |                                                   | 1                                                                                                                                                                                                                                                                                        |               |                                                                                                                                                                                              |                     | <u>E</u>  | xample:            |                 | CLRWD                                                                                                                               | Г      |                 |          |            |            |
| Q Cvcle Activity:                                   |                                                   |                                                                                                                                                                                                                                                                                          |               |                                                                                                                                                                                              |                     |           | Before Ins         | structio        | on                                                                                                                                  |        | •               |          |            |            |
| ,                                                   | Q1                                                | Q2 Q3 Q4                                                                                                                                                                                                                                                                                 |               |                                                                                                                                                                                              |                     |           | After Instr        | Cour<br>ruction | nter                                                                                                                                | =      | ?               |          |            |            |
| D                                                   | ecode                                             | Read<br>register 'f'                                                                                                                                                                                                                                                                     | Proce<br>Data | ess<br>a re                                                                                                                                                                                  | Write<br>gister 'f' | ]         | WDT Co<br>WDT Pos  |                 |                                                                                                                                     | =<br>= | <b>00h</b><br>0 |          |            |            |
|                                                     |                                                   |                                                                                                                                                                                                                                                                                          |               |                                                                                                                                                                                              |                     |           | TO                 |                 |                                                                                                                                     | =      | 1               |          |            |            |
| Example:                                            |                                                   | CLRF                                                                                                                                                                                                                                                                                     | FLAG_         | _REG,1                                                                                                                                                                                       |                     |           | PD                 |                 |                                                                                                                                     | =      | 1               |          |            |            |
| Befc<br>After                                       | ore Instruc<br>FLAG_RI<br>r Instructic<br>FLAG_RI | tion<br>EG = 5A<br>on<br>EG = 00                                                                                                                                                                                                                                                         | h<br>h        |                                                                                                                                                                                              |                     |           |                    |                 |                                                                                                                                     |        |                 |          |            |            |



| TABLE 31-9: C | LKO AND I/O | <b>TIMING R</b> | REQUIREMENTS |
|---------------|-------------|-----------------|--------------|
|---------------|-------------|-----------------|--------------|

| Param<br>No. | Symbol   | Characteristic                                                | Min           | Тур | Max          | Units | Conditions |
|--------------|----------|---------------------------------------------------------------|---------------|-----|--------------|-------|------------|
| 10           | TosH2cĸL | OSC1 ↑ to CLKO ↓                                              | —             | 75  | 200          | ns    | (Note 1)   |
| 11           | TosH2ckH | OSC1 ↑ to CLKO ↑                                              | —             | 75  | 200          | ns    | (Note 1)   |
| 12           | ТскR     | CLKO Rise Time                                                | —             | 15  | 30           | ns    | (Note 1)   |
| 13           | ТскF     | CLKO Fall Time                                                | —             | 15  | 30           | ns    | (Note 1)   |
| 14           | TCKL2IOV | CLKO $\downarrow$ to Port Out Valid                           | —             | _   | 0.5 Tcy + 20 | ns    |            |
| 15           | ТюV2скН  | Port In Valid before CLKO $\uparrow$                          | 0.25 Tcy + 25 | _   | —            | ns    |            |
| 16           | TckH2iol | Port In Hold after CLKO ↑                                     | 0             |     | —            | ns    |            |
| 17           | TosH2IoV | OSC1 $\uparrow$ (Q1 cycle) to Port Out Valid                  | —             | 50  | 150          | ns    |            |
| 18           | TosH2ıol | OSC1 ↑ (Q2 cycle) to Port Input Invalid<br>(I/O in hold time) | 100           | —   | —            | ns    |            |
| 19           | TioV2osH | Port Input Valid to OSC1 ↑<br>(I/O in setup time)             | 0             | —   | —            | ns    |            |
| 20           | TIOR     | Port Output Rise Time                                         | —             | 10  | 25           | ns    |            |
| 21           | TIOF     | Port Output Fall Time                                         | —             | 10  | 25           | ns    |            |
| 22†          | Tinp     | INTx pin High or Low Time                                     | 20            | _   | —            | ns    |            |
| 23†          | Trbp     | RB<7:4> Change INTx High or Low<br>Time                       | Тсү           |     |              | ns    |            |

† These parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in EC mode, where CLKO output is 4 x Tosc.