

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	ECANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f46k80-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin N	umber					
Pin Name	QFN	SSOP/ SPDIP /SOIC	Pin Type	Buffer Type	Description		
					PORTA is a bidirectional I/O port.		
RA0/CVREF/AN0/ULPWU	27	2					
RA0			I/O	ST/ CMOS	General purpose I/O pin.		
CVREF			0	Analog	Comparator reference voltage output.		
AN0			I	Analog	Analog Input 0.		
ULPWU			I.	Analog	Ultra Low-Power Wake-up input.		
RA1/AN1	28	3					
RA1			I/O	ST/ CMOS	Digital I/O.		
AN1			I	Analog	Analog Input 1.		
RA2/Vref-/AN2	1	4					
RA2			I/O	ST/ CMOS	Digital I/O.		
VREF-			I.	Analog	A/D reference voltage (low) input.		
AN2			I.	Analog	Analog Input 2.		
RA3/VREF+/AN3	2	5					
RA3			I/O	ST/ CMOS	Digital I/O.		
VREF+			I	Analog	A/D reference voltage (high) input.		
AN3			I	Analog	Analog Input 3.		
RA5/AN4/C2INB/HLVDIN/ T1CKI/SS/CTMUI	4	7					
RA5			I/O	ST/ CMOS	Digital I/O.		
AN4			I	Analog	Analog Input 4.		
C2INB			I	Analog	Comparator 2 Input B.		
HLVDIN			I	Analog	High/Low-Voltage Detect input.		
T1CKI			I	ST	Timer1 clock input.		
SS			I	ST	SPI slave select input.		
CTMUI					CTMU pulse generator charger for the C2INB.		
Legend:CMOS = CMOS compatible input or output I^2C^{TM} = $I^2C/SMBus$ input bufferST= Schmitt Trigger input with CMOS levelsAnalog= Analog inputI= InputO= Output							

TABLE 1-4:	PIC18F2XK80 I/O DESCRIPTIONS (CONTINUED)
------------	--

Ρ

= Power

© 2010-2012 Microchip Technology Inc.

	Pin N	umber				
Pin Name	Pin Name QFN SPDIP /SOIC			Description		
RC7/CANRX/RX1/DT1/ CCP4	15	18				
RC7			I/O	ST/ CMOS	Digital I/O.	
CANRX			Ι	ST	CAN bus RX.	
RX1			Ι	ST	EUSART asynchronous receive.	
DT1			I/O	ST	EUSART synchronous data. (See related TX2/CK2.)	
CCP4			I/O	ST CMOS	Capture 4 input/Compare 4 output/PWM4 output.	
Vss	5	8	Р			
Vss					Ground reference for logic and I/O pins.	
Vss	16	19				
Vss					Ground reference for logic and I/O pins.	
VDDCORE/VCAP	3	6	Р			
VDDCORE					External filter capacitor connection.	
VCAP					External filter capacitor connection	
Vdd	17	20	Р			
Vdd					Positive supply for logic and I/O pins.	

TABLE 1-4: PIC18F2XK80 I/O DESCRIPTIONS (CONTINUED)

ST = Schmitt Trigger input with CMOS levels

Analog = Analog input

0

= Output

I = Input

P = Power

© 2010-2012 Microchip Technology Inc.

8.0 DATA EEPROM MEMORY

The data EEPROM is a nonvolatile memory array, separate from the data RAM and program memory, that is used for long-term storage of program data. It is not directly mapped in either the register file or program memory space, but is indirectly addressed through the Special Function Registers (SFRs). The EEPROM is readable and writable during normal operation over the entire VDD range.

Five SFRs are used to read and write to the data EEPROM, as well as the program memory. They are:

- · EECON1
- EECON2
- EEDATA
- EEADR
- EEADRH

The data EEPROM allows byte read and write. When interfacing to the data memory block, EEDATA holds the 8-bit data for read/write and the EEADRH:EEADR register pair holds the address of the EEPROM location being accessed.

The EEPROM data memory is rated for high erase/write cycle endurance. A byte write automatically erases the location and writes the new data (erase-before-write). The write time is controlled by an on-chip timer; it will vary with voltage and temperature, as well as from chip-to-chip. Please refer to Parameter D122 (Table 31-1 in **Section 31.0** "**Electrical Characteristics**") for exact limits.

8.1 EEADR and EEADRH Registers

The EEADRH:EEADR register pair is used to address the data EEPROM for read and write operations. EEADRH holds the two MSbs of the address; the upper 6 bits are ignored. The 10-bit range of the pair can address a memory range of 1024 bytes (00h to 3FFh).

8.2 EECON1 and EECON2 Registers

Access to the data EEPROM is controlled by two registers: EECON1 and EECON2. These are the same registers which control access to the program memory and are used in a similar manner for the data EEPROM.

The EECON1 register (Register 8-1) is the control register for data and program memory access. Control bit, EEPGD, determines if the access will be to program memory or data EEPROM memory. When clear, operations will access the data EEPROM memory. When set, program memory is accessed.

Control bit, CFGS, determines if the access will be to the Configuration registers or to program memory/data EEPROM memory. When set, subsequent operations access Configuration registers. When CFGS is clear, the EEPGD bit selects either program Flash or data EEPROM memory.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set in hardware when the WREN bit is set and cleared, when the internal programming timer expires and the write operation is complete.

Note:	During normal operation, the WRERR is						
	read as '1'. This can indicate that a write						
	operation was prematurely terminated by						
	a Reset, or a write operation was						
	attempted improperly.						

The WR control bit initiates write operations. The bit cannot be cleared, only set, in software; it is cleared in hardware at the completion of the write operation.

Note:	The EEIF interrupt flag bit (PIR4<6>) is
	set when the write is complete. It must be
	cleared in software.

Control bits, RD and WR, start read and erase/write operations, respectively. These bits are set by firmware and cleared by hardware at the completion of the operation.

The RD bit cannot be set when accessing program memory (EEPGD = 1). Program memory is read using table read instructions. See **Section 7.1 "Table Reads and Table Writes"** regarding table reads.

The EECON2 register is not a physical register. It is used exclusively in the memory write and erase sequences. Reading EECON2 will read all '0's.

9.0 8 x 8 HARDWARE MULTIPLIER

9.1 Introduction

All PIC18 devices include an 8 x 8 hardware multiplier as part of the ALU. The multiplier performs an unsigned operation and yields a 16-bit result that is stored in the product register pair, PRODH:PRODL. The multiplier's operation does not affect any flags in the STATUS register.

Making multiplication a hardware operation allows it to be completed in a single instruction cycle. This has the advantages of higher computational throughput and reduced code size for multiplication algorithms and allows PIC18 devices to be used in many applications previously reserved for digital-signal processors. A comparison of various hardware and software multiply operations, along with the savings in memory and execution time, is shown in Table 9-1.

9.2 Operation

Example 9-1 shows the instruction sequence for an 8 x 8 unsigned multiplication. Only one instruction is required when one of the arguments is already loaded in the WREG register.

Example 9-2 shows the sequence to do an 8 x 8 signed multiplication. To account for the sign bits of the arguments, each argument's Most Significant bit (MSb) is tested and the appropriate subtractions are done.

EXAMPLE 9-1:	8 x 8 UNSIGNED MULTIPLY
	ROUTINE

MOVF ARG1, W MULWF ARG2

8 x 8 SIGNED MULTIPLY

EXAMPLE 9-2:

		ROUTINE	
MOVF	ARG1, W		
MULWF	ARG2	; ARG1 * ARG2 ->	
		; PRODH:PRODL	
BTFSC	ARG2, SB	; Test Sign Bit	
SUBWF	PRODH, F	; PRODH = PRODH	
		; – ARG1	
MOVF	ARG2, W		
BTFSC	ARG1, SB	; Test Sign Bit	
SUBWF	PRODH, F	; PRODH = PRODH	
		; – ARG2	

TADLE 3-1.		ANIOON					
		Program Memory (Words)	Cycles (Max)	Time			
Routine				@ 64 MHz	@ 48 MHz	@ 10 MHz	@ 4 MHz
8 x 8 unsigned	Without hardware multiply	13	69	4.3 μs	5.7 μs	27.6 μs	69 μs
	Hardware multiply	1	1	62.5 ns	83.3 ns	400 ns	1 μs
9 x 9 signed	Without hardware multiply	33	91	5.6 μs	7.5 μs	36.4 μs	91 μ s
8 x 8 signed	Hardware multiply	6	6	375 ns	500 ns	2.4 μs	6 μ s
16 x 16 unsigned 16 x 16 signed	Without hardware multiply	21	242	15.1 μs	20.1 μs	96.8 μs	242 μs
	Hardware multiply	28	28	1.7 μs	2.3 μs	11.2 μs	28 μ s
	Without hardware multiply	52	254	15.8 μs	21.2 μs	101.6 μs	254 μs
	Hardware multiply	35	40	2.5 μs	3.3 μs	16.0 μs	40 μs

TABLE 9-1: PERFORMANCE COMPARISON FOR VARIOUS MULTIPLY OPERATIONS

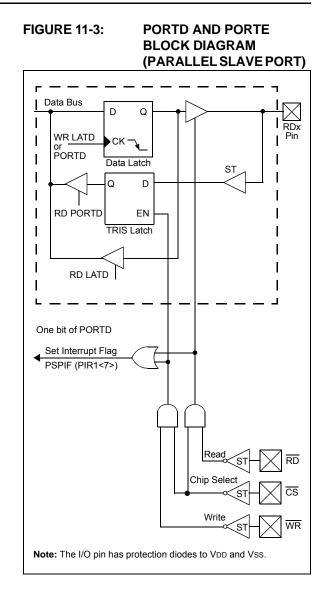
NOTES:

11.9 Parallel Slave Port

PORTD can function as an 8-bit-wide Parallel Slave Port (PSP), or microprocessor port, when control bit, PSPMODE (PSPCON<4>), is set. The port is asynchronously readable and writable by the external world through the RD control input pin (RE0/AN5/RD) and WR control input pin (RE1/AN6/C10UT/WR).

Note:	The Parallel Slave Port is available only on
	40/44-pin and 64-pin devices.

The PSP can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an eight-bit latch.


Setting <u>bit</u>, PSPMODE, enables <u>port</u> pin, RE0/AN5/RD, <u>to</u> be the <u>RD</u> input, RE1/AN6/C1OUT/WR to be the <u>WR</u> input and RE2/AN7/C2OUT/CS to be the <u>CS</u> (Chip Select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (= 111).

A write to the PSP occurs when both the \overline{CS} and \overline{WR} lines are first detected low and ends when either are detected high. The PSPIF and IBF flag bits (PIR1<7> and PSPCON<7>, respectively) are set when the write ends.

A read from the PSP occurs when both the $\overline{\text{CS}}$ and $\overline{\text{RD}}$ lines are first detected low. The data in PORTD is read out and the OBF bit (PSPCON<6>) is set. If the user writes new data to PORTD to set OBF, the data is immediately read out, but the OBF bit is not set.

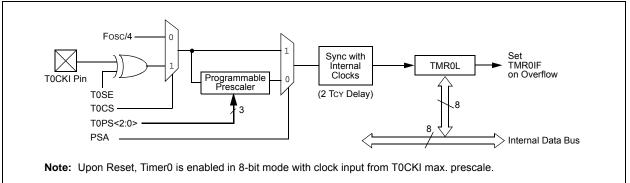
When either the \overline{CS} or \overline{RD} line is detected high, the PORTD pins return to the input state and the PSPIF bit is set. User applications should wait for PSPIF to be set before servicing the PSP. When this happens, the IBF and OBF bits can be polled and the appropriate action taken.

The timing for the control signals in Write and Read modes is shown in Figure 11-4 and Figure 11-5, respectively.

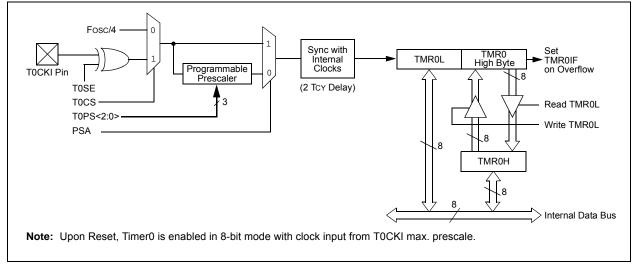
13.1 Timer0 Operation

Timer0 can operate as either a timer or a counter. The mode is selected with the TOCS bit (TOCON<5>). In Timer mode (TOCS = 0), the module increments on every clock by default unless a different prescaler value is selected (see **Section 13.3 "Prescaler"**). If the TMR0 register is written to, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.

The Counter mode is selected by setting the T0CS bit (= 1). In this mode, Timer0 increments either on every rising edge or falling edge of the T0CKI pin. The incrementing edge is determined by the Timer0 Source Edge Select bit, T0SE (T0CON<4>); clearing this bit selects the rising edge. Restrictions on the external clock input are discussed below.


An external clock source can be used to drive Timer0; however, it must meet certain requirements to ensure that the external clock can be synchronized with the internal phase clock (Tosc). There is a delay between synchronization and the onset of incrementing the timer/counter.

13.2 Timer0 Reads and Writes in 16-Bit Mode


TMR0H is not the actual high byte of Timer0 in 16-bit mode. It is actually a buffered version of the real high byte of Timer0, which is not directly readable nor writable. (See Figure 13-2.) TMR0H is updated with the contents of the high byte of Timer0 during a read of TMR0L. This provides the ability to read all 16 bits of Timer0 without having to verify that the read of the high and low byte were valid, due to a rollover between successive reads of the high and low byte.

Similarly, a write to the high byte of Timer0 must also take place through the TMR0H Buffer register. The high byte is updated with the contents of TMR0H when a write occurs to TMR0L. This allows all 16 bits of Timer0 to be updated at once.

FIGURE 13-1: TIMER0 BLOCK DIAGRAM (8-BIT MODE)

FIGURE 13-2: TIMER0 BLOCK DIAGRAM (16-BIT MODE)

REGISTER 14-1: T1CON: TIMER1 CONTROL REGISTER (CONTINUED)

- bit 1 RD16: 16-Bit Read/Write Mode Enable bit
 - 1 = Enables register read/write of Timer1 in one 16-bit operation
 - 0 = Enables register read/write of Timer1 in two 8-bit operations
- bit 0 **TMR10N:** Timer1 On bit
 - 1 = Enables Timer1
 - 0 = Stops Timer1
- **Note 1:** The Fosc clock source should not be selected if the timer will be used with the ECCP capture/compare features.

18.2 CTMU Operation

The CTMU works by using a fixed current source to charge a circuit. The type of circuit depends on the type of measurement being made.

In the case of charge measurement, the current is fixed and the amount of time the current is applied to the circuit is fixed. The amount of voltage read by the A/D becomes a measurement of the circuit's capacitance.

In the case of time measurement, the current, as well as the capacitance of the circuit, is fixed. In this case, the voltage read by the A/D is representative of the amount of time elapsed from the time the current source starts and stops charging the circuit.

If the CTMU is being used as a time delay, both capacitance and current source are fixed, as well as the voltage supplied to the comparator circuit. The delay of a signal is determined by the amount of time it takes the voltage to charge to the comparator threshold voltage.

18.2.1 THEORY OF OPERATION

The operation of the CTMU is based on the equation for charge:

$$I = C \bullet \frac{dV}{dT}$$

More simply, the amount of charge measured in coulombs in a circuit is defined as current in amperes (I) multiplied by the amount of time in seconds that the current flows (t). Charge is also defined as the capacitance in farads (C) multiplied by the voltage of the circuit (V). It follows that:

 $I \bullet t = C \bullet V$

The CTMU module provides a constant, known current source. The A/D Converter is used to measure (V) in the equation, leaving two unknowns: capacitance (C) and time (t). The above equation can be used to calculate capacitance or time, by either the relationship using the known fixed capacitance of the circuit:

 $t = (C \bullet V)/I$

or by:

 $C = (I \cdot t)/V$

using a fixed time that the current source is applied to the circuit.

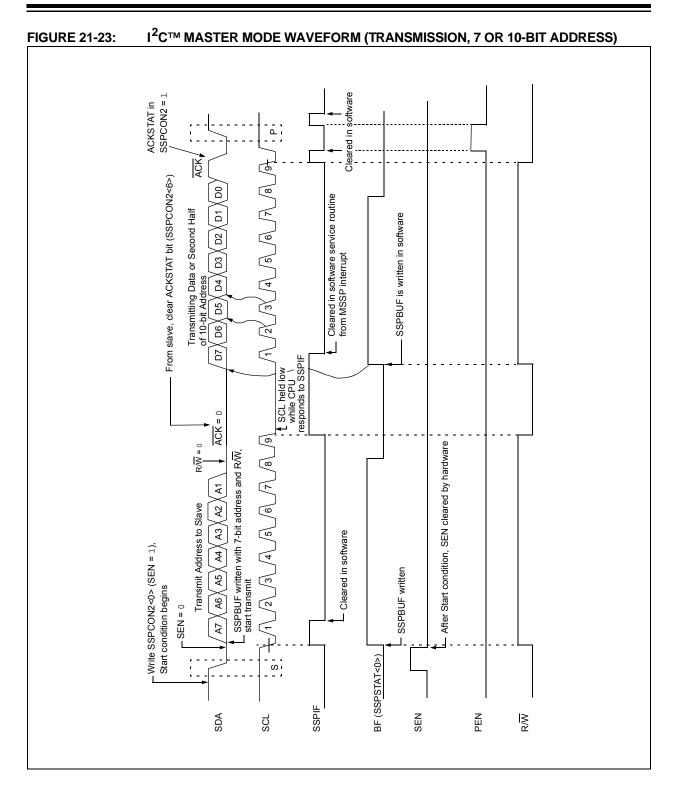
18.2.2 CURRENT SOURCE

At the heart of the CTMU is a precision current source, designed to provide a constant reference for measurements. The level of current is user-selectable across three ranges, or a total of two orders of magnitude, with the ability to trim the output in $\pm 2\%$ increments (nominal). The current range is selected by the IRNG<1:0> bits (CTMUICON<1:0>), with a value of '01' representing the lowest range.

Current trim is provided by the ITRIM<5:0> bits (CTMUICON<7:2>). These six bits allow trimming of the current source in steps of approximately 2% per step. Half of the range adjusts the current source positively and the other half reduces the current source. A value of '000000' is the neutral position (no change). A value of '100001' is the maximum negative adjustment (approximately -62%) and '011111' is the maximum positive adjustment (approximately +62%).

18.2.3 EDGE SELECTION AND CONTROL

CTMU measurements are controlled by edge events occurring on the module's two input channels. Each channel, referred to as Edge 1 and Edge 2, can be configured to receive input pulses from one of the edge input pins (CTED1 and CTED2) or CCPx Special Event Triggers (ECCP1 and CCP2). The input channels are level-sensitive, responding to the instantaneous level on the channel rather than a transition between levels. The inputs are selected using the EDG1SEL and EDG2SEL bit pairs (CTMUCONL<3:2>, 6:5>).


In addition to source, each channel can be configured for event polarity using the EDGE2POL and EDGE1POL bits (CTMUCONL<7,4>). The input channels can also be filtered for an edge event sequence (Edge 1 occurring before Edge 2) by setting the EDGSEQEN bit (CTMUCONH<2>).

18.2.4 EDGE STATUS

The CTMUCONL register also contains two status bits, EDG2STAT and EDG1STAT (CTMUCONL<1:0>). Their primary function is to show if an edge response has occurred on the corresponding channel. The CTMU automatically sets a particular bit when an edge response is detected on its channel. The level-sensitive nature of the input channels also means that the status bits become set immediately if the channel's configuration is changed and matches the channel's current state.

The module uses the edge status bits to control the current source output to external analog modules (such as the A/D Converter). Current is only supplied to external modules when only one (not both) of the status bits is set. Current is shut off when both bits are either set or cleared. This allows the CTMU to measure current only during the interval between edges. After both status bits are set, it is necessary to clear them before another measurement is taken. Both bits should be cleared simultaneously, if possible, to avoid re-enabling the CTMU current source.

In addition to being set by the CTMU hardware, the edge status bits can also be set by software. This permits a user application to manually enable or disable the current source. Setting either (but not both) of the bits enables the current source. Setting or clearing both bits at once disables the source.

27.2 CAN Module Registers

Note:	Not all CAN registers are available in the
	Access Bank.

There are many control and data registers associated with the CAN module. For convenience, their descriptions have been grouped into the following sections:

- Control and Status Registers
- Dedicated Transmit Buffer Registers
- Dedicated Receive Buffer Registers
- Programmable TX/RX and Auto RTR Buffers
- Baud Rate Control Registers
- I/O Control Register
- Interrupt Status and Control Registers

Detailed descriptions of each register and their usage are described in the following sections.

27.2.1 CAN CONTROL AND STATUS REGISTERS

The registers described in this section control the overall operation of the CAN module and show its operational status.

RXFBCON0	R/W-0							
KAFDCUNU	F1BP_3	F1BP_2	F1BP_1	F1BP_0	F0BP_3	F0BP_2	F0BP_1	F0BP_0
RXFBCON1	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-1
KAFDCUNI	F3BP_3	F3BP_2	F3BP_1	F3BP_0	F2BP_3	F2BP_2	F2BP_1	F2BP_0
RXFBCON2	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-1
KAFBCONZ	F5BP_3	F5BP_2	F5BP_1	F5BP_0	F4BP_3	F4BP_2	F4BP_1	F4BP_0
	•							
RXFBCON3	R/W-0							
KAFDCUNJ	F7BP_3	F7BP_2	F7BP_1	F7BP_0	F6BP_3	F6BP_2	F6BP_1	F6BP_0
RXFBCON4	R/W-0							
	F9BP_3	F9BP_2	F9BP_1	F9BP_0	F8BP_3	F8BP_2	F8BP_1	F8BP_0
	•							
RXFBCON5	R/W-0							
KAFBCONJ	F11BP_3	F11BP_2	F11BP_1	F11BP_0	F10BP_3	F10BP_2	F10BP_1	F10BP_0
	•							
RXFBCON6	R/W-0							
	F13BP_3	F13BP_2	F13BP_1	F13BP_0	F12BP_3	F12BP_2	F12BP_1	F12BP_0
RXFBCON7	R/W-0							
20011	F15BP_3	F15BP_2	F15BP_1	F15BP_0	F14BP_3	F14BP_2	F14BP_1	F14BP_0
	bit 7							bit C
I a manal.								

REGISTER 27-47: RXFBCONn: RECEIVE FILTER BUFFER CONTROL REGISTER 'n'⁽¹⁾

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 F<15:2>BP_<3:0>: Filter n Buffer Pointer Nibble bits

0000 = Filter n is associated with RXB0

0001 = Filter n is associated with RXB1

0010 = Filter n is associated with B0

0011 = Filter n is associated with B1

0111 = Filter n is associated with B5 1111-1000 = Reserved

Note 1: This register is available in Mode 1 and 2 only.

...

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FIL15_1	FIL15_0	FIL14_1	FIL14_0	FIL13_1	FIL13_0	FIL12_1	FIL12_0
bit 7		- -				-	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-6 FIL15_<1:0>: Filter 15 Select bits 1 and 0 11 = No mask 10 = Filter 15							
	01 = Accepta 00 = Accepta						
bit 5-4 FIL14_<1:0>: Filter 14 Select bits 1 and 0 11 = No mask 10 = Filter 15 01 = Acceptance Mask 1 00 = Acceptance Mask 0							
bit 3-2							
bit 1-0	FIL12_<1:0>: 11 = No mast 10 = Filter 15 01 = Accepta 00 = Accepta	nce Mask 1	ct bits 1 and 0				

REGISTER 27-51: MSEL3: MASK SELECT REGISTER 3⁽¹⁾

Note 1: This register is available in Mode 1 and 2 only.

REGISTER 28-13: DEVID1: DEVICE ID REGISTER 1 FOR THE PIC18F66K80 FAMILY

R	R	R	R	R	R	R	R
DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	DEV<2:0>: Device ID bits
	These bits are used with the DEV<10:3> bits in the Device ID Register 2 to identify the part number: 000 = PIC18F46K80, PIC18LF26K80
	000 = PIC18F26K80, PIC18LF65K80 001 = PIC18F26K80, PIC18LF65K80
	010 = PIC18F65K80, PIC18LF45K80
	011 = PIC18F45K80, PIC18LF25K80
	100 = PIC18F25K80
	110 = PIC18LF66K80
	111 = PIC18F66K80, PIC18LF46K80
bit 4-0	REV<4:0>: Revision ID bits
	These bits are used to indicate the device revision.

REGISTER 28-14: DEVID2: DEVICE ID REGISTER 2 FOR THE PIC18F66K80 FAMILY

R	R	R	R	R	R	R	R
DEV10 ⁽¹⁾	DEV9 ⁽¹⁾	DEV8 ⁽¹⁾	DEV7 ⁽¹⁾	DEV6 ⁽¹⁾	DEV5 ⁽¹⁾	DEV4 ⁽¹⁾	DEV3 ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 DEV<10:3>: Device ID bits⁽¹⁾

These bits are used with the DEV<2:0> bits in the Device ID Register 1 to identify the part number.

Note 1: These values for DEV<10:3> may be shared with other devices. The specific device is always identified by using the entire DEV<10:0> bit sequence.

RCA	LL	Relative C	all					
Synta	ax:	RCALL n	RCALL n					
Oper	ands:	-1024 ≤ n ≤	≤ 1023					
Oper	ation:	(PC) + 2 → (PC) + 2 +	,	;				
Statu	s Affected:	None						
Enco	ding:	1101	1nnn	nnn	n n	nnn		
Desc	ription:	from the cu address (P stack. Ther number '2r have increr instruction, PC + 2 + 2	Subroutine call with a jump up to 1K from the current location. First, return address (PC + 2) is pushed onto the stack. Then, add the 2's complement number '2n' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is a two-cycle instruction.					
Word	ls:	1	1					
Cycle	es:	2						
QC	ycle Activity:							
	Q1	Q2	Q	3	Q	4		
	Decode	Read literal 'n' PUSH PC	Proce Data		Write to	o PC		
		to stack						
	No	No	No		Nc)		

RES	ET	Reset						
Synta	ax:	RESET	RESET					
Oper	ands:	None						
Oper	ation:		Reset all registers and flags that are affected by a MCLR Reset.					
Statu	s Affected:	All	All					
Enco	ding:	0000	0000	1111 3		1111		
Desc	ription:	_	This instruction provides a way to execute a MCLR Reset in software.					
Word	ls:	1						
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q3	8		Q4		
	Decode	Start reset	No operat		ор	No eration		

Example:

r	Instruction	

After Instruction	
Registers =	Reset Value
Flags* =	Reset Value

RESET

Example: HERE RCALL Jump

operation

operation

operation

Before Instruction

operation

PC = Address (HERE) After Instruction PC = TOS = Address (Jump) Address (HERE + 2)

RETURN Return from Subroutine								
Synta	ax:	RETURN	RETURN {s}					
Operands:		s ∈ [0,1]	s ∈ [0,1]					
Oper	ation:	if s = 1, (WS) \rightarrow W, (STATUSS) (BSRS) \rightarrow	$(TOS) \rightarrow PC;$					
Statu	s Affected:	None						
Enco	ding:	0000	0000 000	001s				
	ription:	popped and is loaded in 's' = 1, the registers W loaded into registers W 's' = 0, no u	Return from subroutine. The stack is popped and the top of the stack (TOS) is loaded into the Program Counter. If 's' = 1, the contents of the shadow registers WS, STATUSS and BSRS are loaded into their corresponding registers W, STATUS and BSR. If 's' = 0, no update of these registers occurs (default).					
Words:		1	1					
Cycles:		2	2					
Q Cycle Activity:								
	Q1	Q2	Q3	Q4				
	Decode	No operation	Process Data	POP PC from stack				
	No	No	No	No				
	operation	operation	operation	operation				
<u>Exan</u>	nple: After Instructio							

PC = TOS

Suptor		(d (a)) -					
Syntax:		{,d {,a}}					
Operands:	0 ≤ f ≤ 255 d ∈ [0,1]						
	a ∈ [0,1]						
Operation:	$(f) \rightarrow dest,$						
	$(f<7>) \rightarrow C,$						
	$(C) \rightarrow dest$	<0>					
Status Affected:	C, N, Z						
Encoding:	0011	01da	ffff	ffff			
Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f' (default).						
	lf 'a' is '0', t lf 'a' is '1', t GPR bank.			is selected. o select the			
	If 'a' is '0' a set is enab in Indexed mode wher Section 29 Bit-Oriente	ed, this in Literal Off never f ≤ 9 .2.3 "Byte ed Instruc	nstructio set Add 5 (5Fh) e-Orien ctions in	n operates ressing . See ted and			
	I itoral Off						
		set Mode					
		1	" for det egister f				
Words:	<u> </u>	1					
	C	1					
Cycles:	C 1	1					
	C 1	1	egister f				
Cycles: Q Cycle Activity:	1 1	- re	egister f	tails.			
Cycles: Q Cycle Activity: Q1	1 1 Q2	Q3	egister f	Q4			
Cycles: Q Cycle Activity: Q1 Decode	C 1 1 Q2 Read register 'f'	Q3 Proce Data	egister f	Q4 Write to destination			
Cycles: Q Cycle Activity: Q1 Decode Example:	C 1 1 Q2 Read register 'f' RLCF	Q3 Proce Data	egister f	Q4 Write to destination			
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct	C 1 1 Q2 Read register 'f' RLCF	Q3 Proce Data REG	egister f	Q4 Write to destination			
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct REG C	Q2 Read register 'f' RLCF Ction = 1110 = 0	Q3 Proce Data REG	egister f	Q4 Write to destination			
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct REG C After Instructi	$\begin{array}{c} \hline C \\ 1 \\ 1 \\ \hline \\ 2 \\ \hline \\ Read \\ register 'f' \\ \hline \\ RLCF \\ \hline \\ ction \\ = 1110 \\ = 0 \\ on \\ \end{array}$	Q3 Proce Data REG 0110	egister f	Q4 Write to destination			
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct REG C After Instructi REG W	$\begin{array}{c} & \\ & \\ 1 \\ 1 \\ \\ & \\ \hline \\ Read \\ register 'f' \\ \\ RLCF \\ \hline \\ ction \\ = 1110 \\ 0 \\ on \\ = 1110 \\ = 1100 \\ \end{array}$	Q3 Proce Data REG 0110	egister f	Q4 Write to destination			
Q1 Decode Example: Before Instruc REG C After Instructi REG	C 1 Q2 Read register 'f' RLCF Ction = 1110 0 on = 1110	Q3 Proce Data REG 0110 0110	egister f	Q4 Write to destination			
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct REG C After Instructi REG W	$\begin{array}{c} & \\ & \\ 1 \\ 1 \\ \\ & \\ \hline \\ Read \\ register 'f' \\ \\ RLCF \\ \hline \\ ction \\ = 1110 \\ 0 \\ on \\ = 1110 \\ = 1100 \\ \end{array}$	Q3 Proce Data REG 0110 0110	egister f	Q4 Write to destination			

30.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

30.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

30.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

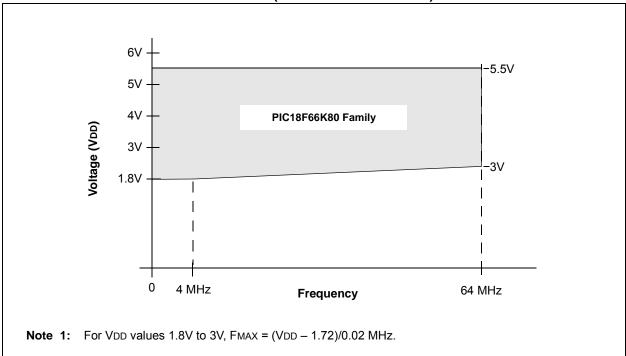
- · Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

30.5 MPLINK Object Linker/ MPLIB Object Librarian

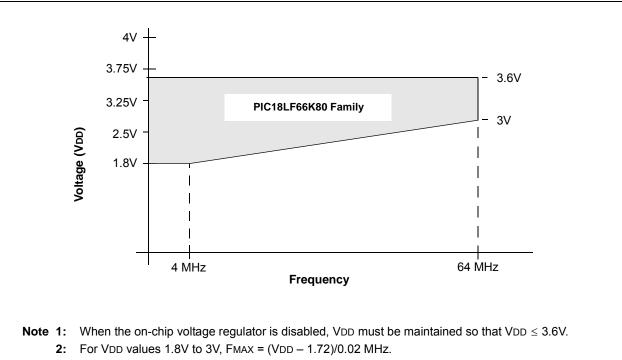
The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:


- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

30.6 MPLAB Assembler, Linker and Librarian for Various Device Families


MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

FIGURE 31-1: VOLTAGE-FREQUENCY GRAPH, REGULATOR ENABLED (INDUSTRIAL/EXTENDED)⁽¹⁾

FIGURE 31-2: VOLTAGE-FREQUENCY GRAPH, REGULATOR DISABLED (INDUSTRIAL/EXTENDED)^(1,2)

31.2 DC Characteristics: Power-Down and Supply Current PIC18F66K80 Family (Industrial/Extended) (Continued)

PIC18F66K80 Family (Industrial/Extended)			$ \begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \end{array} $					
Param No.	Device	Тур	Max	Units	Conditions			
	Supply Current (IDD)	Cont. ^(2,3)						
	PIC18LFXXK80	20	70	μA	-40°C			
		20	70	μA	+25°C			
		20	70	μA	+60°C	$V_{DD} = 1.8V^{(4)}$ Regulator disabled		
		25	80	μA	+85°C			
		30	100	μA	+125°C			
	PIC18LFXXK80	37	120	μA	-40°C			
		37	120	μA	+25°C			
		37	120	μA	+60°C	$V_{DD} = 3.3V^{(4)}$ Regulator disabled		
		40	130	μA	+85°C			
		45	150	μA	+125°C		Fosc = 1 MHz	
	PIC18FXXK80	85	140	μA	-40°C		(PRI_IDLE mode, EC oscillator)	
		100	140	μA	+25°C) () (5)	,	
		105	140	μA	+60°C	$V_{DD} = 3.3 V^{(5)}$ Regulator enabled		
		110	150	μA	+85°C			
		120	170	μA	+125°C			
	PIC18FXXK80	110	225	μA	-40°C			
		110	225	μA	+25°C) (
		110	225	μA	+60°C	$V_{DD} = 5V^{(5)}$ Regulator enabled		
		120	230	μA	+85°C	. legulator onabied		
		130	250	μA	+125°C			

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or Vss, and all features that add delta current are disabled (such as WDT, SOSC oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

- 4: For LF devices, RETEN (CONFIG1L<0>) = 1.
- 5: For F devices, SRETEN (WDTCON<4>) = 1 and RETEN (CONFIG1L<0>) = 0.

	. 174
SLRCON (Slew Rate Control) SSPCON1 (MSSP Control 1, I ² C Mode)	.298
SSPCON1 (MSSP Control 1, SPI Mode)	
SSPCON2 (MSSP Control 2, I ² C Master Mode)	. 299
SSPCON2 (MSSP Control 2, I ² C Slave Mode)	. 300
SSPMSK (I ² C Slave Address Mask)	. 300
SSPSTAT (MSSP Status, I ² C Mode)	
SSPSTAT (MSSP Status, SPI Mode)	. 288
STATUS	. 122
STKPTR (Stack Pointer)	
T0CON (Timer0 Control)	. 205
T1CON (Timer1 Control)	
T1GCON (Timer1 Gate Control)	
T2CON (Timer2 Control)	
T3CON (Timer3 Control)	. 223
T3GCON (Timer3 Gate Control)	
T4CON (Timer4 Control)	. 233
TXBIE (Transmit Buffers Interrupt Enable)	
TXBnCON (Transmit Buffer n Control)	
TXBnDLC (Transmit Buffer n Data Length Code)	
TXBnDm (Transmit Buffer n Data Field Byte m)	
TXBnEIDH (Transmit Buffer n Extended Identifier,	
Byte) TXBnEIDL (Transmit Buffer n Extended Identifier,	
Byte)	
TXBnSIDH (Transmit Buffer n Standard Identifier,	
Byte)	
TXBnSIDL (Transmit Buffer n Standard Identifier,	
	LOW
Byte)	
	.401
Byte)	.401 .403
Byte) TXERRCNT (Transmit Error Count) TXSTAx (Transmit Status and Control) WDTCON (Watchdog Timer Control)	.401 .403 .334 .473
Byte) TXERRCNT (Transmit Error Count) TXSTAx (Transmit Status and Control) WDTCON (Watchdog Timer Control) WPUB (Weak Pull-up PORTB Enable)	.401 .403 .334 .473 .172
Byte) TXERRCNT (Transmit Error Count) TXSTAx (Transmit Status and Control) WDTCON (Watchdog Timer Control) WPUB (Weak Pull-up PORTB Enable) RESET	.401 .403 .334 .473 .172 .513
Byte) TXERRCNT (Transmit Error Count) TXSTAx (Transmit Status and Control) WDTCON (Watchdog Timer Control) WPUB (Weak Pull-up PORTB Enable) RESET Resets	.401 .403 .334 .473 .172 .513 ,457
Byte) TXERRCNT (Transmit Error Count) TXSTAx (Transmit Status and Control) WDTCON (Watchdog Timer Control) WPUB (Weak Pull-up PORTB Enable) RESET Resets	.401 .403 .334 .473 .172 .513 ,457 .457
Byte) TXERRCNT (Transmit Error Count) TXSTAx (Transmit Status and Control) WDTCON (Watchdog Timer Control) WPUB (Weak Pull-up PORTB Enable) RESET Resets	.401 .403 .334 .473 .172 .513 ,457 .457 .457
Byte) TXERRCNT (Transmit Error Count) TXSTAx (Transmit Status and Control) WDTCON (Watchdog Timer Control) WPUB (Weak Pull-up PORTB Enable) RESET Resets	.401 .403 .334 .473 .172 .513 ,457 .457 .457 .457
Byte) TXERRCNT (Transmit Error Count) TXSTAx (Transmit Status and Control) WDTCON (Watchdog Timer Control) WPUB (Weak Pull-up PORTB Enable) RESET Resets	.401 .403 .334 .473 .172 .513 .457 .457 .457 .457 .457
Byte) TXERRCNT (Transmit Error Count) TXSTAx (Transmit Status and Control) WDTCON (Watchdog Timer Control) WPUB (Weak Pull-up PORTB Enable) RESET Resets	.401 .403 .334 .473 .172 .513 .457 .457 .457 .457 .457 .514
Byte) TXERRCNT (Transmit Error Count) TXSTAx (Transmit Status and Control) WDTCON (Watchdog Timer Control) WPUB (Weak Pull-up PORTB Enable) RESET Resets	.401 .403 .334 .473 .513 .457 .457 .457 .457 .457 .514 .514
Byte) TXERRCNT (Transmit Error Count) TXSTAx (Transmit Status and Control) WDTCON (Watchdog Timer Control) WPUB (Weak Pull-up PORTB Enable) RESET Resets	.401 .403 .334 .473 .172 .513 .457 .457 .457 .457 .457 .514 .514 .515
Byte) TXERRCNT (Transmit Error Count) TXSTAx (Transmit Status and Control) WDTCON (Watchdog Timer Control) WPUB (Weak Pull-up PORTB Enable) RESET Resets	.401 .403 .334 .473 .172 .513 ,457 .457 .457 .457 .457 .514 .514 .515 .103
Byte) TXERRCNT (Transmit Error Count) TXSTAx (Transmit Status and Control) WDTCON (Watchdog Timer Control) WPUB (Weak Pull-up PORTB Enable) RESET Resets	.401 .403 .334 .473 .172 .513 ,457 .457 .457 .457 .457 .514 .514 .515 .103 .104
Byte) TXERRCNT (Transmit Error Count) TXSTAx (Transmit Status and Control) WDTCON (Watchdog Timer Control) WPUB (Weak Pull-up PORTB Enable) RESET Resets	.401 .403 .334 .473 .172 .513 .457 .457 .457 .457 .457 .514 .514 .515 .103 .104 .601
Byte) TXERRCNT (Transmit Error Count) TXSTAx (Transmit Status and Control) WDTCON (Watchdog Timer Control) WPUB (Weak Pull-up PORTB Enable) RESET Resets	.401 .403 .334 .473 .172 .513 .457 .457 .457 .457 .457 .514 .515 .103 .104 .601 .515
Byte) TXERRCNT (Transmit Error Count) TXSTAx (Transmit Status and Control) WDTCON (Watchdog Timer Control) WPUB (Weak Pull-up PORTB Enable) RESET Resets	.401 .403 .334 .473 .172 .513 .457 .457 .457 .457 .514 .515 .103 .104 .601 .515 .516
Byte) TXERRCNT (Transmit Error Count) TXSTAx (Transmit Status and Control) WDTCON (Watchdog Timer Control) WPUB (Weak Pull-up PORTB Enable) RESET Resets	.401 .403 .334 .473 .172 .513 .457 .457 .457 .457 .457 .514 .515 .103 .104 .515 .516 .516

S

SCK	
SDI	
SDO	
SEC_IDLE Mode	71
SEC_RUN Mode	66
Selective Peripheral Module Control	72
Serial Clock, SCK	
Serial Data In (SDI)	
Serial Data Out (SDO)	
Serial Peripheral Interface. See SPI Mode.	
SETF	517
Shoot-Through Current	
Slave Select (SS)	
SLEEP	518
Sleep Mode	70

Software Simulator (MPLAB SIM)	535
Special Event Trigger. See Compare (CCP Module).	
Special Event Trigger. See Compare (ECCP Mode).	
SPI Mode (MSSP)	
Associated Registers	
Bus Mode Compatibility	
Effects of a Reset	
Enabling SPI I/O	
Master Mode Master/Slave Connection	
Operation Operation in Power-Managed Modes	290
Serial Clock	
Serial Data In	
Serial Data Out	
Slave Mode	
Slave Node	
Slave Select Synchronization	
SPI Clock	
SSPBUF Register	
SSPSR Register	
Typical Connection	
<u>SS</u>	
SSPOV	
SSPOV Status Flag	
SSPSTAT Register	
R/W Bit	304
Stack Full/Underflow Resets	
SUBFSR	
SUBFWB	518
SUBLW	
SUBULNK	529
SUBWF	
SUBWFB	520
SWAPF	520
т	
-	400
Table Pointer Operations (table) Table Reads/Table Writes	
Table Reads/Table Writes	
TBLRD	
Time-out in Various Situations (table)	. 84
Time-out in Various Situations (table) Timer0	. 84 205
Time-out in Various Situations (table) Timer0 Associated Registers	. 84 205 207
Time-out in Various Situations (table) Timer0 Associated Registers Operation	. 84 205 207 206
Time-out in Various Situations (table) Timer0 Associated Registers	. 84 205 207 206 207

Table Pointer Operations (table)	. 132
Table Reads/Table Writes	. 105
TBLRD	. 521
TBLWT	. 522
Time-out in Various Situations (table)	84
Timer0	. 205
Associated Registers	. 207
Operation	. 206
Overflow Interrupt	. 207
Prescaler	. 207
Switching Assignment	. 207
Prescaler Assignment (PSA Bit)	. 207
Prescaler Select (T0PS2:T0PS0 Bits)	
Reads and Writes in 16-Bit Mode	. 206
Source Edge Select (T0SE Bit)	. 206
Source Select (T0CS Bit)	. 206
Timer1	. 209
16-Bit Read/Write Mode	. 214
Associated Registers	. 220
Clock Source Selection	. 212
Gate	. 216
Interrupt	. 215
Operation	. 212
Oscillator	. 209
Oscillator, as Secondary Clock	56
Resetting, Using the ECCP Special Event Trigger	. 216
SOSC Oscillator	. 214
Layout Considerations	. 215
Use as a Clock Source	. 215