
Microchip Technology - PIC18F46K80T-I/PT Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 64MHz

Connectivity ECANbus, I²C, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, LVD, POR, PWM, WDT

Number of I/O 35

Program Memory Size 64KB (32K x 16)

Program Memory Type FLASH

EEPROM Size 1K x 8

RAM Size 3.6K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 5.5V

Data Converters A/D 11x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 44-TQFP

Supplier Device Package 44-TQFP (10x10)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18f46k80t-i-pt

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18f46k80t-i-pt-4385714
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18F66K80 FAMILY
Pin Diagrams (Continued)

64-Pin QFN(1)/TQFP

R
A

1/
A

N
1

/C
1I

N
C

RB3/CANRX/CTED2/INT3

R
A

2
/V

R
E

F
-/

A
N

2
/C

2I
N

C

RA5/AN4/HLVDIN/T1CKI/SS

R
A

0
/C

V
R

E
F
/A

N
0/

U
L

P
W

U

M
C

LR
/R

E
3

RC0/SOSCO/SCLKI

R
C

1
/S

O
S

C
I

R
C

2
/T

1
G

/C
C

P
2

R
C

3
/R

E
F

O
/S

C
L/

S
C

K

R
A

3/
V

R
E

F
+

/A
N

3

VSS

RB1/AN8/CTDIN/INT1

RB0/AN10/FLT0/INT0

R
C

4
/S

D
A

/S
D

I

R
C

5
/S

D
O

R
C

6/
C

C
P

3

R
B

6
/P

G
C

/K
B

I2

R
B

5/
T

0C
K

I/T
3C

K
I/C

C
P

5/
K

B
I1

R
B

4
/A

N
9/

C
T

P
LS

/K
B

I0

RC7/CCP4

RD4/ECCP1/P1A/PSP4

RD5/P1B/PSP5

RD6/P1C/PSP6

RD7/P1D/PSP7

AVDD

RB2/CANTX/CTED1/INT2

OSC1/CLKIN/RA7

OSC2/CLKOUT/RA6

RE0/AN5/RD

RE1/AN6/C1OUT/WR

RE2/AN7/C2OUT/CS

R
D

0
/C

1I
N

A
/P

S
P

0

R
D

1
/C

1I
N

B
/P

S
P

1

R
D

3
/C

2I
N

B
/C

T
M

U
I/P

S
P

3

R
D

2
/C

2I
N

A
/P

S
P

2

R
F

0/
M

D
M

IN

RG0/RX1/DT1

RG1/CANTX2

VDD

RG2/T3CKI

RG3/TX1/CK1

R
G

4/
T

0
C

K
I

R
F

1

R
E

5/
C

A
N

T
X

V
D

D

V
S

S

R
E

4
/C

A
N

R
X

VDDCORE/VCAP

RF2/MDCIN1

RF3

AVDD

VDD

AVSS

VSS

RF4/MDCIN2

RF5

R
F

6/
M

D
O

U
T

R
F

7

V
S

S

V
D

D

R
E

6/
R

X
2/

D
T

2

R
E

7/
T

X
2/

C
K

2

R
B

7/
P

G
D

/T
3G

/K
B

I3

Note 1: For the QFN package, it is recommended that the bottom pad be connected to VSS.

1
2
3

4

7

5
6

43
42

2
4

2
3

2
0

2
2

38

37

36
35

34

33

2
7

8

9
10
11

1
7

1
8

1
9

2
1

2
5

2
6

39
40
41

5
7

5
8

6
1

5
9

5
4

6
4

6
3

6
2

6
0

5
6

5
5

12

13
14

15
16

2
9

2
8

3
2

3
0

3
1

48
47

44
45
46

5
2

5
3

4
9

5
1

5
0

PIC18F6XK80

PIC18LF6XK80
 2010-2012 Microchip Technology Inc. DS39977F-page 7

PIC18F66K80 FAMILY
TABLE 1-3: DEVICE FEATURES FOR THE PIC18F6XK80 (64-PIN DEVICES)

Features PIC18F65K80 PIC18F66K80

Operating Frequency DC – 64 MHz

Program Memory (Bytes) 32K 64K

Program Memory (Instructions) 16,384 32,768

Data Memory (Bytes) 3.6K

Interrupt Sources 32

I/O Ports Ports A, B, C, D, E, F, G

Parallel Communications Parallel Slave Port (PSP)

Timers Five

Comparators Two

CTMU Yes

Capture/Compare/PWM (CCP)
Modules

Four

Enhanced CCP (ECCP) Modules One

DSM Yes Yes

Serial Communications One MSSP and Two Enhanced USARTs (EUSART)

12-Bit Analog-to-Digital Module Eleven Input Channels

Resets (and Delays) POR, BOR, RESET Instruction, Stack Full, Stack Underflow, MCLR,
WDT (PWRT, OST)

Instruction Set 75 Instructions, 83 with Extended Instruction Set Enabled

Packages 64-Pin QFN and TQFP
DS39977F-page 14  2010-2012 Microchip Technology Inc.

PIC18F66K80 FAMILY
4.1.3 CLOCK TRANSITIONS AND STATUS
INDICATORS

The length of the transition between clock sources is
the sum of two cycles of the old clock source and three
to four cycles of the new clock source. This formula
assumes that the new clock source is stable. The HF-
INTOSC and MF-INTOSC are termed as INTOSC in
this chapter.

Three bits indicate the current clock source and its
status, as shown in Table 4-2. The three bits are:

• OSTS (OSCCON<3>)
• HFIOFS (OSCCON<2>)
• SOSCRUN (OSCCON2<6>)

When the OSTS bit is set, the primary clock is providing
the device clock. When the HFIOFS or MFIOFS bit is
set, the INTOSC output is providing a stable clock
source to a divider that actually drives the device clock.
When the SOSCRUN bit is set, the SOSC oscillator is
providing the clock. If none of these bits are set, either
the LF-INTOSC clock source is clocking the device or
the INTOSC source is not yet stable.

If the internal oscillator block is configured as the
primary clock source by the FOSC<3:0> Configuration
bits (CONFIG1H<3:0>). Then, the OSTS and HFIOFS
or MFIOFS bits can be set when in PRI_RUN or
PRI_IDLE mode. This indicates that the primary clock
(INTOSC output) is generating a stable output. Enter-
ing another INTOSC power-managed mode at the
same frequency would clear the OSTS bit.

4.1.4 MULTIPLE SLEEP COMMANDS

The power-managed mode that is invoked with the
SLEEP instruction is determined by the setting of the
IDLEN bit at the time the instruction is executed. If
another SLEEP instruction is executed, the device will
enter the power-managed mode specified by IDLEN at
that time. If IDLEN has changed, the device will enter
the new power-managed mode specified by the new
setting.

4.2 Run Modes
In the Run modes, clocks to both the core and
peripherals are active. The difference between these
modes is the clock source.

4.2.1 PRI_RUN MODE
The PRI_RUN mode is the normal, full-power execu-
tion mode of the microcontroller. This is also the default
mode upon a device Reset, unless Two-Speed Start-up
is enabled. (For details, see Section 28.4 “Two-Speed
Start-up”.) In this mode, the OSTS bit is set. The
HFIOFS or MFIOFS bit may be set if the internal
oscillator block is the primary clock source. (See
Section 3.2 “Control Registers”.)

4.2.2 SEC_RUN MODE
The SEC_RUN mode is the compatible mode to the
“clock-switching” feature offered in other PIC18
devices. In this mode, the CPU and peripherals are
clocked from the SOSC oscillator. This enables lower
power consumption while retaining a high-accuracy
clock source.

SEC_RUN mode is entered by setting the SCS<1:0>
bits to ‘01’. The device clock source is switched to the
SOSC oscillator (see Figure 4-1), the primary oscillator
is shut down, the SOSCRUN bit (OSCCON2<6>) is set
and the OSTS bit is cleared.

On transitions from SEC_RUN mode to PRI_RUN
mode, the peripherals and CPU continue to be clocked
from the SOSC oscillator while the primary clock is
started. When the primary clock becomes ready, a
clock switch back to the primary clock occurs (see
Figure 4-2). When the clock switch is complete, the
SOSCRUN bit is cleared, the OSTS bit is set and the
primary clock is providing the clock. The IDLEN and
SCSx bits are not affected by the wake-up and the
SOSC oscillator continues to run.

TABLE 4-2: SYSTEM CLOCK INDICATOR

Main Clock Source OSTS
HFIOFS or
MFIOFS

SOSCRUN

Primary Oscillator 1 0 0

INTOSC (HF-INTOSC
or MF-INTOSC)

0 1 0

Secondary Oscillator 0 0 1

MF-INTOSC or
HF-INTOSC as Primary
Clock Source

1 1 0

LF-INTOSC is
Running or INTOSC is
Not Yet Stable

0 0 0

Note 1: Caution should be used when modifying
a single IRCF bit. At a lower VDD, it is
possible to select a higher clock speed
than is supportable by that VDD. Improper
device operation may result if the VDD/
FOSC specifications are violated.

2: Executing a SLEEP instruction does not
necessarily place the device into Sleep
mode. It acts as the trigger to place the
controller into either the Sleep mode, or
one of the Idle modes, depending on the
setting of the IDLEN bit.

Note: The SOSC oscillator can be enabled by
setting the SOSCGO bit (OSCCON2<3>).
If this bit is set, the clock switch to the
SEC_RUN mode can switch immediately
once SCS<1:0> are set to ‘01’.
DS39977F-page 66  2010-2012 Microchip Technology Inc.

PIC18F66K80 FAMILY
6.1.2 PROGRAM COUNTER

The Program Counter (PC) specifies the address of the
instruction to fetch for execution. The PC is 21 bits wide
and contained in three separate 8-bit registers.

The low byte, known as the PCL register, is both
readable and writable. The high byte, or PCH register,
contains the PC<15:8> bits and is not directly readable
or writable. Updates to the PCH register are performed
through the PCLATH register. The upper byte is called
PCU. This register contains the PC<20:16> bits; it is also
not directly readable or writable. Updates to the PCU
register are performed through the PCLATU register.

The contents of PCLATH and PCLATU are transferred to
the Program Counter by any operation that writes PCL.
Similarly, the upper two bytes of the Program Counter
are transferred to PCLATH and PCLATU by an operation
that reads PCL. This is useful for computed offsets to the
PC (see Section 6.1.5.1 “Computed GOTO”).

The PC addresses bytes in the program memory. To
prevent the PC from becoming misaligned with word
instructions, the Least Significant bit (LSb) of PCL is
fixed to a value of ‘0’. The PC increments by two to
address sequential instructions in the program memory.

The CALL, RCALL, GOTO and program branch
instructions write to the Program Counter directly. For
these instructions, the contents of PCLATH and
PCLATU are not transferred to the Program Counter.

6.1.3 RETURN ADDRESS STACK

The return address stack enables execution of any
combination of up to 31 program calls and interrupts.
The PC is pushed onto the stack when a CALL or
RCALL instruction is executed or an interrupt is
Acknowledged. The PC value is pulled off the stack on
a RETURN, RETLW or a RETFIE instruction. The value
is also pulled off the stack on ADDULNK and SUBULNK
instructions if the extended instruction set is enabled.
PCLATU and PCLATH are not affected by any of the
RETURN or CALL instructions.

The stack operates as a 31-word by 21-bit RAM and a
5-bit Stack Pointer, STKPTR. The stack space is not
part of either program or data space. The Stack Pointer
is readable and writable and the address on the top of
the stack is readable and writable through the
Top-of-Stack (TOS) Special Function Registers. Data
can also be pushed to, or popped from the stack, using
these registers.

A CALL type instruction causes a push onto the stack.
The Stack Pointer is first incremented and the location
pointed to by the Stack Pointer is written with the
contents of the PC (already pointing to the instruction
following the CALL). A RETURN type instruction causes
a pop from the stack. The contents of the location
pointed to by the STKPTR are transferred to the PC
and then the Stack Pointer is decremented.

The Stack Pointer is initialized to ‘00000’ after all
Resets. There is no RAM associated with the location
corresponding to a Stack Pointer value of ‘00000’; this
is only a Reset value. Status bits indicate if the stack is
full, has overflowed or has underflowed.

6.1.3.1 Top-of-Stack Access

Only the top of the return address stack is readable and
writable. A set of three registers, TOSU:TOSH:TOSL,
holds the contents of the stack location pointed to by
the STKPTR register (Figure 6-3). This allows users to
implement a software stack, if necessary. After a CALL,
RCALL or interrupt (or ADDULNK and SUBULNK instruc-
tions, if the extended instruction set is enabled), the
software can read the pushed value by reading the
TOSU:TOSH:TOSL registers. These values can be
placed on a user-defined software stack. At return time,
the software can return these values to
TOSU:TOSH:TOSL and do a return.

While accessing the stack, users must disable the
Global Interrupt Enable bits to prevent inadvertent
stack corruption.

FIGURE 6-3: RETURN ADDRESS STACK AND ASSOCIATED REGISTERS

00011
001A34h

11111
11110
11101

00010
00001
00000

00010

Return Address Stack<20:0>

Top-of-Stack
000D58h

TOSLTOSHTOSU
34h1Ah00h

STKPTR<4:0>

Top-of-Stack Registers Stack Pointer
 2010-2012 Microchip Technology Inc. DS39977F-page 103

PIC18F66K80 FAMILY
7.5 Writing to Flash Program Memory

The programming blocks are 32 words or 64 bytes.

Word or byte programming is not supported.

Table writes are used internally to load the holding regis-
ters needed to program the Flash memory. There are
64 holding registers for programming by the table writes.

Since the Table Latch (TABLAT) is only a single byte, the
TBLWT instruction may need to be executed 64 times for
each programming operation. All of the table write oper-
ations will essentially be short writes because only the
holding registers are written. At the end of updating the
64 or 128 holding registers, the EECON1 register must
be written to in order to start the programming operation
with a long write.

The long write is necessary for programming the inter-
nal Flash. Instruction execution is halted while in a long
write cycle. The long write is terminated by the internal
programming timer.

The EEPROM on-chip timer controls the write time.
The write/erase voltages are generated by an on-chip
charge pump, rated to operate over the voltage range
of the device.

FIGURE 7-5: TABLE WRITES TO FLASH PROGRAM MEMORY

7.5.1 FLASH PROGRAM MEMORY WRITE
SEQUENCE

The sequence of events for programming an internal
program memory location should be:

1. Read the 64 bytes into RAM.

2. Update the data values in RAM as necessary.

3. Load the Table Pointer register with the address
being erased.

4. Execute the row erase procedure.

5. Load the Table Pointer register with the address
of the first byte being written.

6. Write the 64 bytes into the holding registers with
auto-increment.

7. Set the EECON1 register for the write operation:

• Set the EEPGD bit to point to program memory

• Clear the CFGS bit to access program memory

• Set the WREN to enable byte writes

8. Disable the interrupts.

9. Write 55h to EECON2.

10. Write 0AAh to EECON2.

11. Set the WR bit. This will begin the write cycle.
The CPU will stall for the duration of the write for
TIW (see Parameter D133A).

12. Re-enable the interrupts.

13. Verify the memory (table read).

An example of the required code is shown in
Example 7-3 on the following page.

Note: The default value of the holding registers on
device Resets and after write operations is
FFh. A write of FFh to a holding register
does not modify that byte. This means that
individual bytes of program memory may
be modified, provided that the change does
not attempt to change any bit from a ‘0’ to a
‘1’. When modifying individual bytes, it is
not necessary to load all 64 holding
registers before executing a write
operation.

TABLAT

TBLPTR = xxxx3FTBLPTR = xxxxx1TBLPTR = xxxxx0

Write Register

TBLPTR = xxxxx2

Program Memory

Holding Register Holding Register Holding Register Holding Register

8 8 8 8

Note: Before setting the WR bit, the Table
Pointer address needs to be within the
intended address range of the 64 bytes in
the holding register.
 2010-2012 Microchip Technology Inc. DS39977F-page 135

PIC18F66K80 FAMILY
FIGURE 14-7: TIMER1 GATE SINGLE PULSE AND TOGGLE COMBINED MODE

TABLE 14-5: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF

PIR1 PSPIF ADIF RC1IF TX1IF SSPIF TMR1GIF TMR2IF TMR1IF

PIE1 PSPIE ADIE RC1IE TX1IE SSPIE TMR1GIE TMR2IE TMR1IE

IPR1 PSPIP ADIP RC1IP TX1IP SSPIP TMR1GIP TMR2IP TMR1IP

TMR1L Timer1 Register Low Byte

TMR1H Timer1 Register High Byte

T1CON TMR1CS1 TMR1CS0 T1CKPS1 T1CKPS0 SOSCEN T1SYNC RD16 TMR1ON

T1GCON TMR1GE T1GPOL T1GTM T1GSPM T1GGO/
T1DONE

T1GVAL T1GSS1 T1GSS0

OSCCON2 — SOSCRUN — SOSCDRV SOSCGO — MFIOFS MFIOSEL

PMD1 PSPMD CTMUMD ADCMD TMR4MD TMR3MD TMR2MD TMR1MD TMR0MD

Legend: Shaded cells are not used by the Timer1 module.

TMR1GE

T1GPOL

T1G_IN

T1CKI

T1GVAL

Timer1 N N + 1 N + 2

T1GSPM

T1GGO/

T1DONE

Set by Software
Cleared by Hardware on
Falling Edge of T1GVAL

T1GTM

Counting Enabled on
Rising Edge of T1G

N + 4N + 3
DS39977F-page 220  2010-2012 Microchip Technology Inc.

PIC18F66K80 FAMILY
16.5 Timer3 Gates

Timer3 can be configured to count freely or the count
can be enabled and disabled using the Timer3 gate
circuitry. This is also referred to as the Timer3 gate
count enable.

The Timer3 gate can also be driven by multiple
selectable sources.

16.5.1 TIMER3 GATE COUNT ENABLE

The Timer3 Gate Enable mode is enabled by setting
the TMR3GE bit (TxGCON<7>). The polarity of the
Timer3 Gate Enable mode is configured using the
T3GPOL bit (T3GCON<6>).

When Timer3 Gate Enable mode is enabled, Timer3 will
increment on the rising edge of the Timer3 clock source.
When Timer3 Gate Enable mode is disabled, no incre-
menting will occur and Timer3 will hold the current count.
See Figure 16-2 for timing details.

TABLE 16-1: TIMER3 GATE ENABLE
SELECTIONS

FIGURE 16-2: TIMER3 GATE COUNT ENABLE MODE

T3CLK(†) T3GPOL
(T3GCON<6>)

T3G Pin
Timer3

Operation

 0 0 Counts

 0 1 Holds Count

 1 0 Holds Count

 1 1 Counts

† The clock on which TMR3 is running. For more
information, see T3CLK in Figure 16-1.

TMR3GE

T3GPOL

T3G_IN

T3CKI

T3GVAL

N N + 1 N + 2 N + 3 N + 4Timer3
DS39977F-page 228  2010-2012 Microchip Technology Inc.

PIC18F66K80 FAMILY
REGISTER 21-3: SSPSTAT: MSSP STATUS REGISTER (I2C™ MODE)

R/W-0 R/W-0 R-0 R-0 R-0 R-0 R-0 R-0

SMP CKE D/A P(1) S(1) R/W(2,3) UA BF

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 SMP: Slew Rate Control bit

In Master or Slave mode:
1 = Slew rate control is disabled for Standard Speed mode (100 kHz and 1 MHz)
0 = Slew rate control is enabled for High-Speed mode (400 kHz)

bit 6 CKE: SMBus Select bit

In Master or Slave mode:
1 = Enables SMBus specific inputs
0 = Disables SMBus specific inputs

bit 5 D/A: Data/Address bit

In Master mode:
Reserved.

In Slave mode:
1 = Indicates that the last byte received or transmitted was data
0 = Indicates that the last byte received or transmitted was address

bit 4 P: Stop bit(1)

1 = Indicates that a Stop bit has been detected last
0 = Stop bit was not detected last

bit 3 S: Start bit(1)

1 = Indicates that a Start bit has been detected last
0 = Start bit was not detected last

bit 2 R/W: Read/Write Information bit(2,3)

In Slave mode:
1 = Read
0 = Write

In Master mode:
1 = Transmit is in progress
0 = Transmit is not in progress

bit 1 UA: Update Address bit (10-Bit Slave mode only)

1 = Indicates that the user needs to update the address in the SSPADD register
0 = Address does not need to be updated

bit 0 BF: Buffer Full Status bit

In Transmit mode:
1 = SSPBUF is full
0 = SSPBUF is empty

In Receive mode:
1 = SSPBUF is full (does not include the ACK and Stop bits)
0 = SSPBUF is empty (does not include the ACK and Stop bits)

Note 1: This bit is cleared on Reset and when SSPEN is cleared.

2: This bit holds the R/W bit information following the last address match. This bit is only valid from the
address match to the next Start bit, Stop bit or not ACK bit.

3: ORing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSP is in Active mode.
 2010-2012 Microchip Technology Inc. DS39977F-page 297

PIC18F66K80 FAMILY
REGISTER 21-4: SSPCON1: MSSP CONTROL REGISTER 1 (I2C™ MODE)

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

WCOL SSPOV SSPEN(1) CKP SSPM3(2) SSPM2(2) SSPM1(2) SSPM0(2)

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 WCOL: Write Collision Detect bit

In Master Transmit mode:
1 = A write to the SSPBUF register was attempted while the I2C conditions were not valid for a

transmission to be started (must be cleared in software)
0 = No collision

In Slave Transmit mode:
1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared in

software)
0 = No collision

In Receive mode (Master or Slave modes):
This is a “don’t care” bit.

bit 6 SSPOV: Receive Overflow Indicator bit

In Receive mode:
1 = A byte is received while the SSPBUF register is still holding the previous byte (must be cleared in

software)
0 = No overflow

In Transmit mode:
This is a “don’t care” bit in Transmit mode.

bit 5 SSPEN: Master Synchronous Serial Port Enable bit(1)

1 = Enables the serial port and configures the SDA and SCL pins as the serial port pins
0 = Disables serial port and configures these pins as I/O port pins

bit 4 CKP: SCK Release Control bit

In Slave mode:
1 = Releases clock
0 = Holds clock low (clock stretch), used to ensure data setup time

In Master mode:
Unused in this mode.

bit 3-0 SSPM<3:0>: Master Synchronous Serial Port Mode Select bits(2)

1111 = I2C Slave mode, 10-bit address with Start and Stop bit interrupts enabled
1110 = I2C Slave mode, 7-bit address with Start and Stop bit interrupts enabled
1011 = I2C Firmware Controlled Master mode (slave Idle)
1001 = Load SSPMSK register at SSPADD SFR address(3,4)

1000 = I2C Master mode, clock = FOSC/(4 * (SSPADD + 1))
0111 = I2C Slave mode, 10-bit address
0110 = I2C Slave mode, 7-bit address

Note 1: When enabled, the SDA and SCL pins must be configured as inputs.

2: Bit combinations not specifically listed here are either reserved or implemented in SPI mode only.

3: When SSPM<3:0> = 1001, any reads or writes to the SSPADD SFR address actually access the
SSPMSK register.

4: This mode is only available when 7-Bit Address Masking mode is selected (MSSPMSK Configuration bit
is ‘1’).
DS39977F-page 298  2010-2012 Microchip Technology Inc.

PIC18F66K80 FAMILY
REGISTER 21-5: SSPCON2: MSSP CONTROL REGISTER 2 (I2C™ MASTER MODE)

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

GCEN ACKSTAT ACKDT(1) ACKEN(2) RCEN(2) PEN(2) RSEN(2) SEN(2)

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 GCEN: General Call Enable bit

Unused in Master mode.

bit 6 ACKSTAT: Acknowledge Status bit (Master Transmit mode only)

1 = Acknowledge was not received from slave
0 = Acknowledge was received from slave

bit 5 ACKDT: Acknowledge Data bit (Master Receive mode only)(1)

1 = Not Acknowledged
0 = Acknowledged

bit 4 ACKEN: Acknowledge Sequence Enable bit(2)

1 = Initiates Acknowledge sequence on SDA and SCL pins and transmits ACKDT data bit;
automatically cleared by hardware

0 = Acknowledge sequence is Idle

bit 3 RCEN: Receive Enable bit (Master Receive mode only)(2)

1 = Enables Receive mode for I2C™
0 = Receive is Idle

bit 2 PEN: Stop Condition Enable bit(2)

1 = Initiates Stop condition on SDA and SCL pins; automatically cleared by hardware
0 = Stop condition is Idle

bit 1 RSEN: Repeated Start Condition Enable bit(2)

1 = Initiates Repeated Start condition on SDA and SCL pins; automatically cleared by hardware
0 = Repeated Start condition Idle

bit 0 SEN: Start Condition Enable bit(2)

1 = Initiates Start condition on SDA and SCL pins; automatically cleared by hardware
0 = Start condition Idle

Note 1: The value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive.

2: If the I2C module is active, these bits may not be set (no spooling) and the SSPBUF may not be written to
(or writes to the SSPBUF are disabled).
 2010-2012 Microchip Technology Inc. DS39977F-page 299

PIC18F66K80 FAMILY
REGISTER 22-2: RCSTAx: RECEIVE STATUS AND CONTROL REGISTER

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0 R-0 R-x

SPEN RX9 SREN CREN ADDEN FERR OERR RX9D

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 SPEN: Serial Port Enable bit

1 = Serial port is enabled (configures RXx/DTx and TXx/CKx pins as serial port pins)
0 = Serial port is disabled (held in Reset)

bit 6 RX9: 9-Bit Receive Enable bit

1 = Selects 9-bit reception
0 = Selects 8-bit reception

bit 5 SREN: Single Receive Enable bit

Asynchronous mode:
Don’t care.

Synchronous mode – Master:
1 = Enables single receive
0 = Disables single receive
This bit is cleared after reception is complete.

Synchronous mode – Slave:
Don’t care.

bit 4 CREN: Continuous Receive Enable bit

Asynchronous mode:
1 = Enables receiver
0 = Disables receiver

Synchronous mode:
1 = Enables continuous receive until enable bit, CREN, is cleared (CREN overrides SREN)
0 = Disables continuous receive

bit 3 ADDEN: Address Detect Enable bit

Asynchronous mode 9-Bit (RX9 = 1):
1 = Enables address detection; enables interrupt and loads the receive buffer when RSR<8> is set
0 = Disables address detection; all bytes are received and the ninth bit can be used as a parity bit

Asynchronous mode 9-Bit (RX9 = 0):
Don’t care.

bit 2 FERR: Framing Error bit

1 = Framing error (can be cleared by reading the RCREGx register and receiving next valid byte)
0 = No framing error

bit 1 OERR: Overrun Error bit

1 = Overrun error (can be cleared by clearing bit, CREN)
0 = No overrun error

bit 0 RX9D: 9th bit of Received Data

This can be address/data bit or a parity bit and must be calculated by user firmware.
 2010-2012 Microchip Technology Inc. DS39977F-page 335

PIC18F66K80 FAMILY
FIGURE 26-3: HIGH-VOLTAGE DETECT OPERATION (VDIRMAG = 1)

26.5 Applications

In many applications, it is desirable to detect a drop
below, or rise above, a particular voltage threshold. For
example, the HLVD module could be periodically
enabled to detect Universal Serial Bus (USB) attach or
detach. This assumes the device is powered by a lower
voltage source than the USB when detached. An attach
would indicate a high-voltage detect from, for example,
3.3V to 5V (the voltage on USB) and vice versa for a
detach. This feature could save a design a few extra
components and an attach signal (input pin).

For general battery applications, Figure 26-4 shows a
possible voltage curve. Over time, the device voltage
decreases. When the device voltage reaches voltage,
VA, the HLVD logic generates an interrupt at time, TA.
The interrupt could cause the execution of an ISR,
which would allow the application to perform “house-
keeping tasks” and a controlled shutdown before the
device voltage exits the valid operating range at TB.
This would give the application a time window, repre-
sented by the difference between TA and TB, to safely
exit.

FIGURE 26-4: TYPICAL LOW-VOLTAGE
DETECT APPLICATION

VHLVD

VDD

HLVDIF

VHLVD

VDD

Enable HLVD

TIRVST

HLVDIF may not be set

Enable HLVD

HLVDIF

HLVDIF cleared in software

HLVDIF cleared in software

HLVDIF cleared in software,

CASE 1:

CASE 2:

HLVDIF remains set since HLVD condition still exists

TIRVST

IRVST

Internal reference is stable

Internal reference is stable

IRVST

Time

V
o

lt
a

g
e

VA

VB

TA TB

VA = HLVD trip point
VB = Minimum valid device
 operating voltage

Legend:
 2010-2012 Microchip Technology Inc. DS39977F-page 389

PIC18F66K80 FAMILY
EXAMPLE 27-2: WIN AND ICODE BITS USAGE IN INTERRUPT SERVICE ROUTINE TO ACCESS
TX/RX BUFFERS (CONTINUED)

ErrorInterrupt
BCF PIR3, ERRIF ; Clear the interrupt flag
… ; Handle error.
RETFIE

TXB2Interrupt
BCF PIR3, TXB2IF ; Clear the interrupt flag
GOTO AccessBuffer

TXB1Interrupt
BCF PIR3, TXB1IF ; Clear the interrupt flag
GOTO AccessBuffer

TXB0Interrupt
BCF PIR3, TXB0IF ; Clear the interrupt flag
GOTO AccessBuffer

RXB1Interrupt
BCF PIR3, RXB1IF ; Clear the interrupt flag
GOTO Accessbuffer

RXB0Interrupt
BCF PIR3, RXB0IF ; Clear the interrupt flag
GOTO AccessBuffer

AccessBuffer ; This is either TX or RX interrupt
; Copy CANSTAT.ICODE bits to CANCON.WIN bits
MOVF TempCANCON, W ; Clear CANCON.WIN bits before copying

; new ones.
ANDLW B’11110001’ ; Use previously saved CANCON value to

; make sure same value.
MOVWF TempCANCON ; Copy masked value back to TempCANCON
MOVF TempCANSTAT, W ; Retrieve ICODE bits
ANDLW B’00001110’ ; Use previously saved CANSTAT value

; to make sure same value.
IORWF TempCANCON ; Copy ICODE bits to WIN bits.
MOVFF TempCANCON, CANCON ; Copy the result to actual CANCON
; Access current buffer…
; User code
; Restore CANCON.WIN bits
MOVF CANCON, W ; Preserve current non WIN bits
ANDLW B’11110001’
IORWF TempCANCON ; Restore original WIN bits
; Do not need to restore CANSTAT - it is read-only register.
; Return from interrupt or check for another module interrupt source
 2010-2012 Microchip Technology Inc. DS39977F-page 397

PIC18F66K80 FAMILY

REGISTER 27-49: MSEL1: MASK SELECT REGISTER 1(1)

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-1 R/W-0 R/W-1

FIL7_1 FIL7_0 FIL6_1 FIL6_0 FIL5_1 FIL5_0 FIL4_1 FIL4_0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-6 FIL7_<1:0>: Filter 7 Select bits 1 and 0

11 = No mask
10 = Filter 15
01 = Acceptance Mask 1
00 = Acceptance Mask 0

bit 5-4 FIL6_<1:0>: Filter 6 Select bits 1 and 0

11 = No mask
10 = Filter 15
01 = Acceptance Mask 1
00 = Acceptance Mask 0

bit 3-2 FIL5_<1:0>: Filter 5 Select bits 1 and 0

11 = No mask
10 = Filter 15
01 = Acceptance Mask 1
00 = Acceptance Mask 0

bit 1-0 FIL4_<1:0>: Filter 4 Select bits 1 and 0

11 = No mask
10 = Filter 15
01 = Acceptance Mask 1
00 = Acceptance Mask 0

Note 1: This register is available in Mode 1 and 2 only.
 2010-2012 Microchip Technology Inc. DS39977F-page 427

PIC18F66K80 FAMILY

REGISTER 27-57: PIE5: PERIPHERAL INTERRUPT ENABLE REGISTER 5

Mode 0
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

IRXIE WAKIE ERRIE TXB2IE TXB1IE(1) TXB0IE(1) RXB1IE RXB0IE

Mode 1
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

IRXIE WAKIE ERRIE TXBnIE TXB1IE(1) TXB0IE(1) RXBnIE FIFOWMIE

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 IRXIE: CAN Bus Error Message Received Interrupt Enable bit
1 = Enable invalid message received interrupt
0 = Disable invalid message received interrupt

bit 6 WAKIE: CAN bus Activity Wake-up Interrupt Enable bit
1 = Enable bus activity wake-up interrupt
0 = Disable bus activity wake-up interrupt

bit 5 ERRIE: CAN bus Error Interrupt Enable bit
1 = Enable CAN module error interrupt
0 = Disable CAN module error interrupt

bit 4 When CAN is in Mode 0:
TXB2IE: CAN Transmit Buffer 2 Interrupt Enable bit
1 = Enable Transmit Buffer 2 interrupt
0 = Disable Transmit Buffer 2 interrupt

When CAN is in Mode 1 or 2:
TXBnIE: CAN Transmit Buffer Interrupts Enable bit
1 = Enable transmit buffer interrupt; individual interrupt is enabled by TXBIE and BIE0
0 = Disable all transmit buffer interrupts

bit 3 TXB1IE: CAN Transmit Buffer 1 Interrupt Enable bit(1)

1 = Enable Transmit Buffer 1 interrupt
0 = Disable Transmit Buffer 1 interrupt

bit 2 TXB0IE: CAN Transmit Buffer 0 Interrupt Enable bit(1)

1 = Enable Transmit Buffer 0 interrupt
0 = Disable Transmit Buffer 0 interrupt

bit 1 When CAN is in Mode 0:
RXB1IE: CAN Receive Buffer 1 Interrupt Enable bit
1 = Enable Receive Buffer 1 interrupt
0 = Disable Receive Buffer 1 interrupt
When CAN is in Mode 1 or 2:
RXBnIE: CAN Receive Buffer Interrupts Enable bit
1 = Enable receive buffer interrupt; individual interrupt is enabled by BIE0
0 = Disable all receive buffer interrupts

bit 0 When CAN is in Mode 0:
RXB0IE: CAN Receive Buffer 0 Interrupt Enable bit
1 = Enable Receive Buffer 0 interrupt
0 = Disable Receive Buffer 0 interrupt
When CAN is in Mode 1:
Unimplemented: Read as ‘0’

When CAN is in Mode 2:
FIFOWMIE: FIFO Watermark Interrupt Enable bit
1 = Enable FIFO watermark interrupt
0 = Disable FIFO watermark interrupt

Note 1: In CAN Mode 1 and 2, these bits are forced to ‘0’.
 2010-2012 Microchip Technology Inc. DS39977F-page 435

PIC18F66K80 FAMILY

BNC Branch if Not Carry

Syntax: BNC n

Operands: -128  n  127

Operation: if Carry bit is ‘0’,
(PC) + 2 + 2n  PC

Status Affected: None

Encoding: 1110 0011 nnnn nnnn

Description: If the Carry bit is ‘0’, then the program
will branch.

The 2’s complement number, ‘2n’, is
added to the PC. Since the PC will have
incremented to fetch the next
instruction, the new address will be
PC + 2 + 2n. This instruction is then a
two-cycle instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:
If Jump:

Q1 Q2 Q3 Q4

Decode Read literal
‘n’

Process
Data

Write to
PC

No
operation

No
operation

No
operation

No
operation

If No Jump:

Q1 Q2 Q3 Q4

Decode Read literal
‘n’

Process
Data

No
operation

Example: HERE BNC Jump

Before Instruction
PC = address (HERE)

After Instruction
If Carry = 0;

PC = address (Jump)
If Carry = 1;

PC = address (HERE + 2)

BNN Branch if Not Negative

Syntax: BNN n

Operands: -128  n  127

Operation: if Negative bit is ‘0’,
(PC) + 2 + 2n  PC

Status Affected: None

Encoding: 1110 0111 nnnn nnnn

Description: If the Negative bit is ‘0’, then the
program will branch.

The 2’s complement number, ‘2n’, is
added to the PC. Since the PC will have
incremented to fetch the next
instruction, the new address will be
PC + 2 + 2n. This instruction is then a
two-cycle instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:
If Jump:

Q1 Q2 Q3 Q4

Decode Read literal
‘n’

Process
Data

Write to
PC

No
operation

No
operation

No
operation

No
operation

If No Jump:

Q1 Q2 Q3 Q4

Decode Read literal
‘n’

Process
Data

No
operation

Example: HERE BNN Jump

Before Instruction
PC = address (HERE)

After Instruction
If Negative = 0;

PC = address (Jump)
If Negative = 1;

PC = address (HERE + 2)
 2010-2012 Microchip Technology Inc. DS39977F-page 493

PIC18F66K80 FAMILY

CALLW Subroutine Call Using WREG

Syntax: CALLW

Operands: None

Operation: (PC + 2)  TOS,
(W)  PCL,
(PCLATH)  PCH,
(PCLATU)  PCU

Status Affected: None

Encoding: 0000 0000 0001 0100

Description First, the return address (PC + 2) is
pushed onto the return stack. Next, the
contents of W are written to PCL; the
existing value is discarded. Then, the
contents of PCLATH and PCLATU are
latched into PCH and PCU,
respectively. The second cycle is
executed as a NOP instruction while the
new next instruction is fetched.

Unlike CALL, there is no option to
update W, STATUS or BSR.

Words: 1

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
WREG

Push PC to
stack

No
operation

No
operation

No
operation

No
operation

No
operation

Example: HERE CALLW

Before Instruction
PC = address (HERE)
PCLATH = 10h
PCLATU = 00h
W = 06h

After Instruction
PC = 001006h
TOS = address (HERE + 2)
PCLATH = 10h
PCLATU = 00h
W = 06h

MOVSF Move Indexed to f

Syntax: MOVSF [zs], fd

Operands: 0  zs  127
0  fd  4095

Operation: ((FSR2) + zs)  fd

Status Affected: None

Encoding:
1st word (source)
2nd word (destin.)

1110
1111

1011
ffff

0zzz
ffff

zzzzs
ffffd

Description: The contents of the source register are
moved to destination register ‘fd’. The
actual address of the source register is
determined by adding the 7-bit literal
offset ‘zs’, in the first word, to the value
of FSR2. The address of the destination
register is specified by the 12-bit literal
‘fd’ in the second word. Both addresses
can be anywhere in the 4096-byte data
space (000h to FFFh).

The MOVSF instruction cannot use the
PCL, TOSU, TOSH or TOSL as the
destination register.

If the resultant source address points to
an Indirect Addressing register, the
value returned will be 00h.

Words: 2

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Determine
source addr

Determine
source addr

Read
source reg

Decode No
operation

No dummy
read

No
operation

Write
register ‘f’

(dest)

Example: MOVSF [05h], REG2

Before Instruction
FSR2 = 80h
Contents
of 85h = 33h
REG2 = 11h

After Instruction
FSR2 = 80h
Contents
of 85h = 33h
REG2 = 33h
 2010-2012 Microchip Technology Inc. DS39977F-page 527

PIC18F66K80 FAMILY
FIGURE 31-16: I2C™ BUS DATA TIMING

TABLE 31-20: I2C™ BUS DATA REQUIREMENTS (SLAVE MODE)

Param.
No.

Symbol Characteristic Min Max Units Conditions

100 THIGH Clock High Time 100 kHz mode 4.0 — s

400 kHz mode 0.6 — s

MSSP module 1.5 TCY —

101 TLOW Clock Low Time 100 kHz mode 4.7 — s

400 kHz mode 1.3 — s

MSSP module 1.5 TCY —

102 TR SDA and SCL Rise Time 100 kHz mode — 1000 ns

400 kHz mode 20 + 0.1 CB 300 ns CB is specified to be from
10 to 400 pF

103 TF SDA and SCL Fall Time 100 kHz mode — 300 ns

400 kHz mode 20 + 0.1 CB 300 ns CB is specified to be from
10 to 400 pF

90 TSU:STA Start Condition Setup Time 100 kHz mode 4.7 — s Only relevant for Repeated
Start condition400 kHz mode 0.6 — s

91 THD:STA Start Condition Hold Time 100 kHz mode 4.0 — s After this period, the first clock
pulse is generated400 kHz mode 0.6 — s

106 THD:DAT Data Input Hold Time 100 kHz mode 0 — ns

400 kHz mode 0 0.9 s

107 TSU:DAT Data Input Setup Time 100 kHz mode 250 — ns (Note 2)

400 kHz mode 100 — ns

92 TSU:STO Stop Condition Setup Time 100 kHz mode 4.7 — s

400 kHz mode 0.6 — s

109 TAA Output Valid from Clock 100 kHz mode — 3500 ns (Note 1)

400 kHz mode — — ns

110 TBUF Bus Free Time 100 kHz mode 4.7 — s Time the bus must be free before
a new transmission can start400 kHz mode 1.3 — s

D102 CB Bus Capacitive Loading — 400 pF

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of
the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode I2C™ bus device can be used in a Standard mode I2C bus system, but the requirement, TSU:DAT  250 ns,
must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If
such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line,
TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification), before the SCL line
is released.

Note: Refer to Figure 31-3 for load conditions.

90

91 92

100

101

103

106 107

109 109
110

102

SCL

SDA
In

SDA
Out
 2010-2012 Microchip Technology Inc. DS39977F-page 575

PIC18F66K80 FAMILY
32.1 Package Marking Information (Continued)

40-Lead PDIP

XXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXX
YYWWNNN

Example

PIC18F45K80-I/P
1010017

XXXXXXXXXX

44-Lead QFN

XXXXXXXXXX
XXXXXXXXXX

YYWWNNN

18F45K80

Example

-I/ML
1010017

44-Lead TQFP

XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX

YYWWNNN

Example

18F45K80
-I/PT

1010017

3e

3e

3e

3e

64-Lead TQFP

XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX

YYWWNNN

Example

18F65K80
-I/PT
1010017

3e

64-Lead QFN

XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX

YYWWNNN

Example

18F65K80
-I/MR
1010017
DS39977F-page 582  2010-2012 Microchip Technology Inc.

PIC18F66K80 FAMILY
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
 2010-2012 Microchip Technology Inc. DS39977F-page 589

