

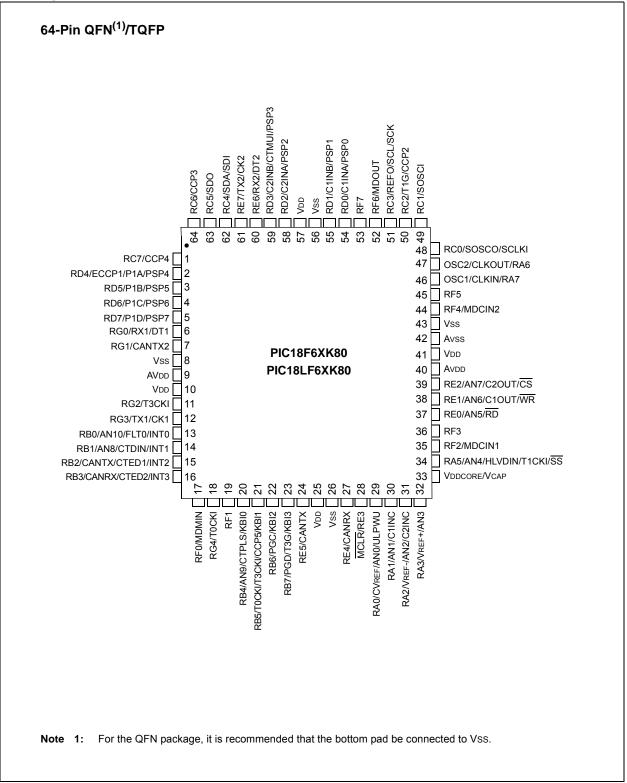
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	ECANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f46k80t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

TABLE 1-3: DEVICE FEATURES FOR THE PIC18F6XK80 (64-PIN DEVICES)

Features	PIC18F65K80	PIC18F66K80		
Operating Frequency	DC – 64 MHz			
Program Memory (Bytes)	32K	64K		
Program Memory (Instructions)	16,384	32,768		
Data Memory (Bytes)	3	.6K		
Interrupt Sources		32		
I/O Ports	Ports A, B, C, D, E, F, G			
Parallel Communications	Parallel Slave Port (PSP)			
Timers	Five			
Comparators	Тwo			
CTMU	Ŋ	/es		
Capture/Compare/PWM (CCP) Modules	F	our		
Enhanced CCP (ECCP) Modules	C	Dne		
DSM	Yes	Yes		
Serial Communications	One MSSP and Two Enh	anced USARTs (EUSART)		
12-Bit Analog-to-Digital Module	Eleven Input Channels			
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow, MCLR, WDT (PWRT, OST)			
Instruction Set	75 Instructions, 83 with Exte	ended Instruction Set Enabled		
Packages	64-Pin QF	N and TQFP		

4.1.3 CLOCK TRANSITIONS AND STATUS INDICATORS

The length of the transition between clock sources is the sum of two cycles of the old clock source and three to four cycles of the new clock source. This formula assumes that the new clock source is stable. The HF-INTOSC and MF-INTOSC are termed as INTOSC in this chapter.

Three bits indicate the current clock source and its status, as shown in Table 4-2. The three bits are:

- OSTS (OSCCON<3>)
- HFIOFS (OSCCON<2>)
- SOSCRUN (OSCCON2<6>)

 TABLE 4-2:
 SYSTEM CLOCK INDICATOR

Main Clock Source	OSTS	HFIOFS or MFIOFS	SOSCRUN
Primary Oscillator	1	0	0
INTOSC (HF-INTOSC or MF-INTOSC)	0	1	0
Secondary Oscillator	0	0	1
MF-INTOSC or HF-INTOSC as Primary Clock Source	1	1	0
LF-INTOSC is Running or INTOSC is Not Yet Stable	0	0	0

When the OSTS bit is set, the primary clock is providing the device clock. When the HFIOFS or MFIOFS bit is set, the INTOSC output is providing a stable clock source to a divider that actually drives the device clock. When the SOSCRUN bit is set, the SOSC oscillator is providing the clock. If none of these bits are set, either the LF-INTOSC clock source is clocking the device or the INTOSC source is not yet stable.

If the internal oscillator block is configured as the primary clock source by the FOSC<3:0> Configuration bits (CONFIG1H<3:0>). Then, the OSTS and HFIOFS or MFIOFS bits can be set when in PRI_RUN or PRI_IDLE mode. This indicates that the primary clock (INTOSC output) is generating a stable output. Entering another INTOSC power-managed mode at the same frequency would clear the OSTS bit.

- Note 1: Caution should be used when modifying a single IRCF bit. At a lower VDD, it is possible to select a higher clock speed than is supportable by that VDD. Improper device operation may result if the VDD/ Fosc specifications are violated.
 - 2: Executing a SLEEP instruction does not necessarily place the device into Sleep mode. It acts as the trigger to place the controller into either the Sleep mode, or one of the Idle modes, depending on the setting of the IDLEN bit.

4.1.4 MULTIPLE SLEEP COMMANDS

The power-managed mode that is invoked with the SLEEP instruction is determined by the setting of the IDLEN bit at the time the instruction is executed. If another SLEEP instruction is executed, the device will enter the power-managed mode specified by IDLEN at that time. If IDLEN has changed, the device will enter the new power-managed mode specified by the new setting.

4.2 Run Modes

In the Run modes, clocks to both the core and peripherals are active. The difference between these modes is the clock source.

4.2.1 PRI_RUN MODE

The PRI_RUN mode is the normal, full-power execution mode of the microcontroller. This is also the default mode upon a device Reset, unless Two-Speed Start-up is enabled. (For details, see **Section 28.4 "Two-Speed Start-up"**.) In this mode, the OSTS bit is set. The HFIOFS or MFIOFS bit may be set if the internal oscillator block is the primary clock source. (See **Section 3.2 "Control Registers"**.)

4.2.2 SEC_RUN MODE

The SEC_RUN mode is the compatible mode to the "clock-switching" feature offered in other PIC18 devices. In this mode, the CPU and peripherals are clocked from the SOSC oscillator. This enables lower power consumption while retaining a high-accuracy clock source.

SEC_RUN mode is entered by setting the SCS<1:0> bits to '01'. The device clock source is switched to the SOSC oscillator (see Figure 4-1), the primary oscillator is shut down, the SOSCRUN bit (OSCCON2<6>) is set and the OSTS bit is cleared.

Note:	The SOSC oscillator can be enabled by setting the SOSCGO bit (OSCCON2<3>). If this bit is set, the clock switch to the SEC_RUN mode can switch immediately
	once SCS<1:0> are set to '01'.

On transitions from SEC_RUN mode to PRI_RUN mode, the peripherals and CPU continue to be clocked from the SOSC oscillator while the primary clock is started. When the primary clock becomes ready, a clock switch back to the primary clock occurs (see Figure 4-2). When the clock switch is complete, the SOSCRUN bit is cleared, the OSTS bit is set and the primary clock is providing the clock. The IDLEN and SCSx bits are not affected by the wake-up and the SOSC oscillator continues to run.

6.1.2 PROGRAM COUNTER

The Program Counter (PC) specifies the address of the instruction to fetch for execution. The PC is 21 bits wide and contained in three separate 8-bit registers.

The low byte, known as the PCL register, is both readable and writable. The high byte, or PCH register, contains the PC<15:8> bits and is not directly readable or writable. Updates to the PCH register are performed through the PCLATH register. The upper byte is called PCU. This register contains the PC<20:16> bits; it is also not directly readable or writable. Updates to the PCU register are performed through the PCLATU register.

The contents of PCLATH and PCLATU are transferred to the Program Counter by any operation that writes PCL. Similarly, the upper two bytes of the Program Counter are transferred to PCLATH and PCLATU by an operation that reads PCL. This is useful for computed offsets to the PC (see **Section 6.1.5.1 "Computed** GOTO").

The PC addresses bytes in the program memory. To prevent the PC from becoming misaligned with word instructions, the Least Significant bit (LSb) of PCL is fixed to a value of '0'. The PC increments by two to address sequential instructions in the program memory.

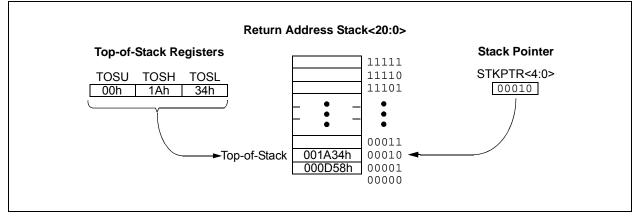
The CALL, RCALL, GOTO and program branch instructions write to the Program Counter directly. For these instructions, the contents of PCLATH and PCLATU are not transferred to the Program Counter.

6.1.3 RETURN ADDRESS STACK

The return address stack enables execution of any combination of up to 31 program calls and interrupts. The PC is pushed onto the stack when a CALL or RCALL instruction is executed or an interrupt is Acknowledged. The PC value is pulled off the stack on a RETURN, RETLW or a RETFIE instruction. The value is also pulled off the stack on ADDULNK and SUBULNK instructions if the extended instruction set is enabled. PCLATU and PCLATH are not affected by any of the RETURN or CALL instructions.

The stack operates as a 31-word by 21-bit RAM and a 5-bit Stack Pointer, STKPTR. The stack space is not part of either program or data space. The Stack Pointer is readable and writable and the address on the top of the stack is readable and writable through the Top-of-Stack (TOS) Special Function Registers. Data can also be pushed to, or popped from the stack, using these registers.

A CALL type instruction causes a push onto the stack. The Stack Pointer is first incremented and the location pointed to by the Stack Pointer is written with the contents of the PC (already pointing to the instruction following the CALL). A RETURN type instruction causes a pop from the stack. The contents of the location pointed to by the STKPTR are transferred to the PC and then the Stack Pointer is decremented.


The Stack Pointer is initialized to '00000' after all Resets. There is no RAM associated with the location corresponding to a Stack Pointer value of '00000'; this is only a Reset value. Status bits indicate if the stack is full, has overflowed or has underflowed.

6.1.3.1 Top-of-Stack Access

Only the top of the return address stack is readable and writable. A set of three registers, TOSU:TOSH:TOSL, holds the contents of the stack location pointed to by the STKPTR register (Figure 6-3). This allows users to implement a software stack, if necessary. After a CALL, RCALL or interrupt (or ADDULNK and SUBULNK instructions, if the extended instruction set is enabled), the software can read the pushed value by reading the TOSU:TOSH:TOSL registers. These values can be placed on a user-defined software stack. At return time, the software can return these values to TOSU:TOSH:TOSL and do a return.

While accessing the stack, users must disable the Global Interrupt Enable bits to prevent inadvertent stack corruption.

FIGURE 6-3: RETURN ADDRESS STACK AND ASSOCIATED REGISTERS

7.5 Writing to Flash Program Memory

The programming blocks are 32 words or 64 bytes.

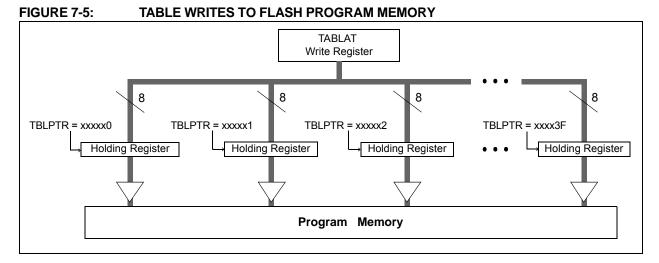

Word or byte programming is not supported.

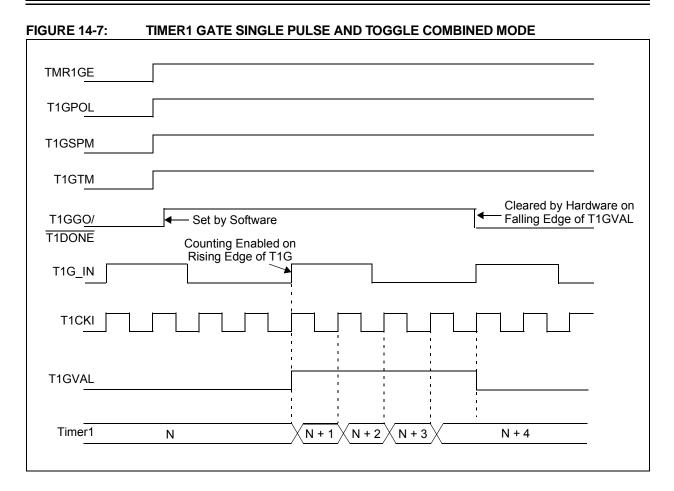
Table writes are used internally to load the holding registers needed to program the Flash memory. There are 64 holding registers for programming by the table writes.

Since the Table Latch (TABLAT) is only a single byte, the TBLWT instruction may need to be executed 64 times for each programming operation. All of the table write operations will essentially be short writes because only the holding registers are written. At the end of updating the 64 or 128 holding registers, the EECON1 register must be written to in order to start the programming operation with a long write.

The long write is necessary for programming the internal Flash. Instruction execution is halted while in a long write cycle. The long write is terminated by the internal programming timer. The EEPROM on-chip timer controls the write time. The write/erase voltages are generated by an on-chip charge pump, rated to operate over the voltage range of the device.

Note: The default value of the holding registers on device Resets and after write operations is FFh. A write of FFh to a holding register does not modify that byte. This means that individual bytes of program memory may be modified, provided that the change does not attempt to change any bit from a '0' to a '1'. When modifying individual bytes, it is not necessary to load all 64 holding registers before executing a write operation.

7.5.1 FLASH PROGRAM MEMORY WRITE SEQUENCE


The sequence of events for programming an internal program memory location should be:

- 1. Read the 64 bytes into RAM.
- 2. Update the data values in RAM as necessary.
- 3. Load the Table Pointer register with the address being erased.
- 4. Execute the row erase procedure.
- 5. Load the Table Pointer register with the address of the first byte being written.
- 6. Write the 64 bytes into the holding registers with auto-increment.
- 7. Set the EECON1 register for the write operation:
 - Set the EEPGD bit to point to program memory
 - · Clear the CFGS bit to access program memory
 - · Set the WREN to enable byte writes
- 8. Disable the interrupts.

- 9. Write 55h to EECON2.
- 10. Write 0AAh to EECON2.
- Set the WR bit. This will begin the write cycle. The CPU will stall for the duration of the write for Tiw (see Parameter D133A).
- 12. Re-enable the interrupts.
- 13. Verify the memory (table read).

An example of the required code is shown in Example 7-3 on the following page.

Note: Before setting the WR bit, the Table Pointer address needs to be within the intended address range of the 64 bytes in the holding register.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
PIR1	PSPIF	ADIF	RC1IF	TX1IF	SSPIF	TMR1GIF	TMR2IF	TMR1IF
PIE1	PSPIE	ADIE	RC1IE	TX1IE	SSPIE	TMR1GIE	TMR2IE	TMR1IE
IPR1	PSPIP	ADIP	RC1IP	TX1IP	SSPIP	TMR1GIP	TMR2IP	TMR1IP
TMR1L	Timer1 Regi	ster Low Byte	9					
TMR1H	Timer1 Regi	ster High Byte	е					
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	SOSCEN	T1SYNC	RD16	TMR10N
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ T1DONE	T1GVAL	T1GSS1	T1GSS0
OSCCON2	_	SOSCRUN	_	SOSCDRV	SOSCGO		MFIOFS	MFIOSEL
PMD1	PSPMD	CTMUMD	ADCMD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	TMR0MD

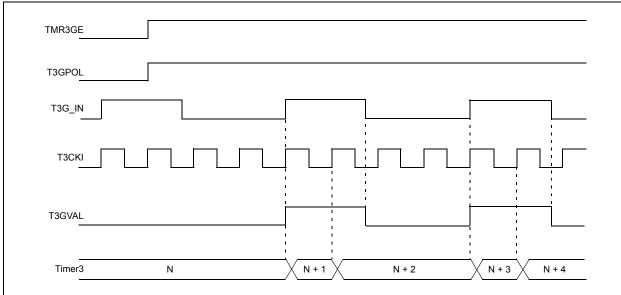
Legend: Shaded cells are not used by the Timer1 module.

16.5 Timer3 Gates

Timer3 can be configured to count freely or the count can be enabled and disabled using the Timer3 gate circuitry. This is also referred to as the Timer3 gate count enable.

The Timer3 gate can also be driven by multiple selectable sources.

16.5.1 TIMER3 GATE COUNT ENABLE


The Timer3 Gate Enable mode is enabled by setting the TMR3GE bit (TxGCON<7>). The polarity of the Timer3 Gate Enable mode is configured using the T3GPOL bit (T3GCON<6>).

When Timer3 Gate Enable mode is enabled, Timer3 will increment on the rising edge of the Timer3 clock source. When Timer3 Gate Enable mode is disabled, no incrementing will occur and Timer3 will hold the current count. See Figure 16-2 for timing details.

TABLE 16-1: TIMER3 GATE ENABLE SELECTIONS

T3CLK ^(†)	T3GPOL (T3GCON<6>)	T3G Pin	Timer3 Operation
1	0	0	Counts
\uparrow	0	1	Holds Count
\uparrow	1	0	Holds Count
\uparrow	1	1	Counts

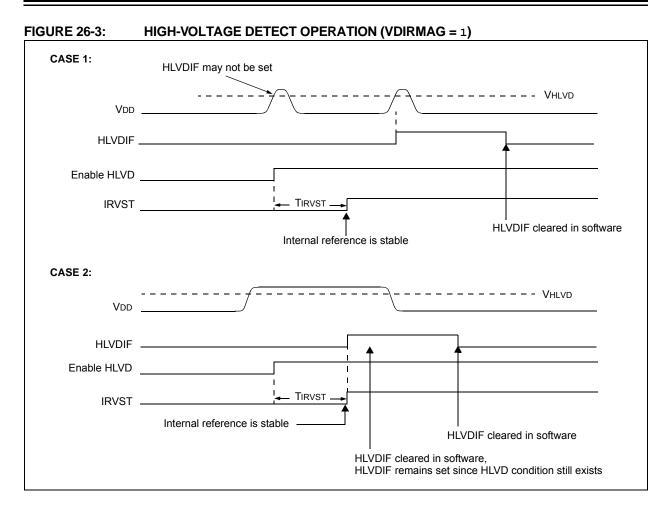
† The clock on which TMR3 is running. For more information, see T3CLK in Figure 16-1.

FIGURE 16-2: TIMER3 GATE COUNT ENABLE MODE

REGISTER 21-3: SSPSTAT: MSSP STATUS REGISTER (I²C[™] MODE)

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0				
SMP	CKE	D/A	P ⁽¹⁾	S ⁽¹⁾	R/W ^(2,3)	UA	BF				
bit 7		- 1	1		•		bit C				
Legend:											
R = Reada	able bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'					
-n = Value	at POR	'1' = Bit is set	t	'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 7		Rate Control bit									
		<u>Slave mode:</u>	abled for Stand	lard Speed mo	de (100 kHz and	1 MHz)					
		ite control is ena				1 1011 12)					
bit 6	CKE: SMBu		0	I V	,						
	In Master or	Slave mode:									
		SMBus specific									
		s SMBus specifi	c inputs								
bit 5	D/A: Data/A										
	In Master m Reserved.	In Master mode: Reserved									
	In Slave mo	de:									
		s that the last by	te received or	transmitted wa	as data						
		s that the last by	te received or	transmitted wa	as address						
bit 4	P: Stop bit ⁽¹)									
		s that a Stop bit		ected last							
bit 3	0 = Stop bit S: Start bit ⁽¹	was not detecte	ulasi								
DILS		, s that a Start bit	has been dete	acted last							
		was not detecte									
bit 2	R/W: Read/	Write Informatio	n bit ^(2,3)								
	In Slave mo	<u>de:</u>									
	1 = Read										
	0 = Write										
	<u>In Master m</u> 1 = Transmi	<u>ode:</u> t is in progress									
		t is not in progre	ss								
bit 1	UA: Update	Address bit (10	-Bit Slave mod	le only)							
	1 = Indicate	s that the user n	eeds to update	e the address i	n the SSPADD r	egister					
	0 = Address	does not need	to be updated								
bit 0		ull Status bit									
	In Transmit										
	1 = SSPBUI 0 = SSPBUI										
	In Receive r										
		F is full (does no	t include the \overline{A}	KCK and Stop t	oits)						
	0 = SSPBUI	F is empty (does	s not include th	ACK and Sto	op bits)						
Note 1:	This bit is cleare	ed on Reset and	when SSPEN	is cleared.							
2:					ess match. This b	oit is only valid	from the				
	address match t					-					

3: ORing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSP is in Active mode.

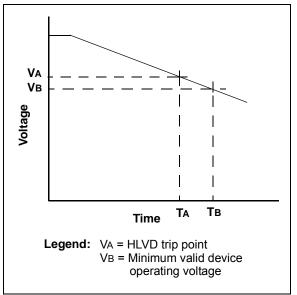

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
WCOL	SSPOV	SSPEN ⁽¹⁾	CKP	SSPM3 ⁽²⁾	SSPM2 ⁽²⁾	SSPM1 ⁽²⁾	SSPM0 ⁽²⁾		
bit 7	I						bit 0		
Legend:									
R = Reada	able bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown		
bit 7	WCOL: Write	e Collision Dete	ct bit						
	In Master Tra								
		to the SSPBUR				nditions were i	not valid for a		
	0 = No collis	sion to be starte	ea (must be ci	eared in softwar	e)				
	In Slave Trar								
		PBUF register is	written while	it is still transm	itting the previ	ous word (mus	t be cleared in		
	software	,							
	0 = No collis								
	In Receive m This is a "dor	node (Master or	Slave modes	<u>):</u>					
bit 6		ceive Overflow li	ndicator hit						
	In Receive m								
		received while	the SSPBUF	register is still h	olding the prev	vious byte (mus	t be cleared in		
	software	/							
	0 = No over								
	<u>In Transmit n</u> This is a "dor	<u>node:</u> n't care" bit in Tr	ansmit mode						
bit 5		ster Synchronou							
bit 0		the serial port a			CL pins as the	serial port pins			
		serial port and							
bit 4	CKP: SCK R	elease Control	bit						
	In Slave mod								
		1 = Releases clock							
		0 = Holds clock low (clock stretch), used to ensure data setup time In Master mode:							
	Unused in th								
bit 3-0	SSPM<3:0>:	: Master Synchr	onous Serial I	Port Mode Selec	ct bits ⁽²⁾				
	1111 = I ² C S	Slave mode, 10-	bit address wi	th Start and Sto	p bit interrupts				
		Slave mode, 7-b				nabled			
		Firmware Contro							
		I SSPMSK regis							
		1000 = I ² C Master mode, clock = Fosc/(4 * (SSPADD + 1)) 0111 = I ² C Slave mode, 10-bit address							
	0110 = I ² C S	Slave mode, 7-b	it address						
Note 1:	When enabled, t	he SDA and SC	L pins must b	e configured as	inputs.				
2:	Bit combinations			-	-	ed in SPI mode	e only.		
3:	When SSPM<3:0						•		
	SSPMSK registe								
4:	This mode is only	y available whe	n 7-Bit Addres	s Masking mod	e is selected (N	ASSPMSK Cor	figuration bit		
	is '1').								

REGISTER 21-4: SSPCON1: MSSP CONTROL REGISTER 1 (I²C[™] MODE)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
GCEN	ACKSTAT	ACKDT ⁽¹⁾	ACKEN ⁽²⁾	RCEN ⁽²⁾	PEN ⁽²⁾	RSEN ⁽²⁾	SEN ⁽²⁾		
bit 7							bit		
Legend:	1- 1-14		L .1			-l (O)			
R = Readab		W = Writable		•	nented bit, read				
-n = Value a	IT POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own		
bit 7	GCEN: Gene	eral Call Enable	bit						
	Unused in M								
bit 6	ACKSTAT: A	cknowledge Sta	itus bit (Mastei	r Transmit mod	e only)				
		ACKSTAT: Acknowledge Status bit (Master Transmit mode only) 1 = Acknowledge was not received from slave							
	0 = Acknowle	edge was receiv	ed from slave						
bit 5	ACKDT: Ack	nowledge Data	bit (Master Re	ceive mode onl	y) ⁽¹⁾				
	1 = Not Ackn								
	0 = Acknowle	•		(2)					
bit 4		ACKEN: Acknowledge Sequence Enable bit ⁽²⁾ 1 = Initiates Acknowledge sequence on SDA and SCL pins and transmits ACKDT data bit;							
		ically cleared by		SDA and St	JE pins and	transmits ACK	DI Uala D		
		edge sequence							
bit 3	RCEN: Rece	vive Enable bit (Master Receive	e mode only) ⁽²⁾					
		Receive mode f	or l ² C™						
	0 = Receive		(2)						
bit 2		ondition Enable							
		Stop condition o	n SDA and SC	L pins; automa	tically cleared	by hardware			
bit 1	•	= Stop condition is Idle SEN: Repeated Start Condition Enable bit ⁽²⁾							
					ns: automatica	ally cleared by h	ardware		
		d Start condition			,				
bit 0	SEN: Start C	ondition Enable	bit ⁽²⁾						
	1 = Initiates \$ 0 = Start con	Start condition o dition Idle	n SDA and SC	L pins; automa	tically cleared	by hardware			
Note 1: ⊺	he value that wi	II be transmitted	when the user	· initiates an Acl	knowledge seq	uence at the end	d of a receive		
2: If	f the I ² C module	he I ² C module is active, these bits may not be set (no spooling) and the SSPBUF may not be written to							

2: If the I²C module is active, these bits may not be set (no spooling) and the SSPBUF may not be written to (or writes to the SSPBUF are disabled).

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x				
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D				
oit 7							bit				
_egend:											
R = Readab	le bit	W = Writable		U = Unimplem		d as '0'					
n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkn	iown				
L:1 7		l Dort Enchlo hi									
bit 7		Il Port Enable bi ort is enabled (c		/DTv and TXv/C	Ky nine as sa	rial nort nins)					
		ort is disabled (h									
oit 6	RX9: 9-Bit R	eceive Enable b	bit								
		9-bit reception									
		8-bit reception									
bit 5	•	e Receive Enab	le bit								
	Asynchronou Don't care.	<u>is mode</u> .									
		s mode – Maste	<u>r:</u>								
		single receive									
		s single receive eared after recep	otion is comple	te.							
		<u>s mode – Slave:</u>									
	Don't care.										
bit 4		inuous Receive	Enable bit								
	<u>Asynchronou</u> 1 = Enables										
	0 = Disables										
	Synchronous mode:										
	 1 = Enables continuous receive until enable bit, CREN, is cleared (CREN overrides SREN) 0 = Disables continuous receive 										
bit 3		dress Detect En									
		us mode 9-Bit (F									
	1 = Enables address detection; enables interrupt and loads the receive buffer when RSR<8> is set										
	0 = Disables address detection; all bytes are received and the ninth bit can be used as a parity bit <u>Asynchronous mode 9-Bit (RX9 = 0)</u> :										
	Don't care.		<u>(79 = 0)</u> .								
bit 2	FERR: Fram	ing Error bit									
	 1 = Framing error (can be cleared by reading the RCREGx register and receiving next valid byte) 0 = No framing error 						valid byte)				
bit 1	OERR: Over	run Error bit									
		error (can be c	eared by clear	ing bit, CREN)							
bit 0	0 = No over		- 4 -								
	RX9D: 9th bit of Received Data										


26.5 Applications

In many applications, it is desirable to detect a drop below, or rise above, a particular voltage threshold. For example, the HLVD module could be periodically enabled to detect Universal Serial Bus (USB) attach or detach. This assumes the device is powered by a lower voltage source than the USB when detached. An attach would indicate a high-voltage detect from, for example, 3.3V to 5V (the voltage on USB) and vice versa for a detach. This feature could save a design a few extra components and an attach signal (input pin).

For general battery applications, Figure 26-4 shows a possible voltage curve. Over time, the device voltage decreases. When the device voltage reaches voltage, VA, the HLVD logic generates an interrupt at time, TA. The interrupt could cause the execution of an ISR, which would allow the application to perform "house-keeping tasks" and a controlled shutdown before the device voltage exits the valid operating range at TB. This would give the application a time window, represented by the difference between TA and TB, to safely exit.

TYPICAL LOW-VOLTAGE DETECT APPLICATION

EXAMPLE 27-2: WIN AND ICODE BITS USAGE IN INTERRUPT SERVICE ROUTINE TO ACCESS TX/RX BUFFERS (CONTINUED)

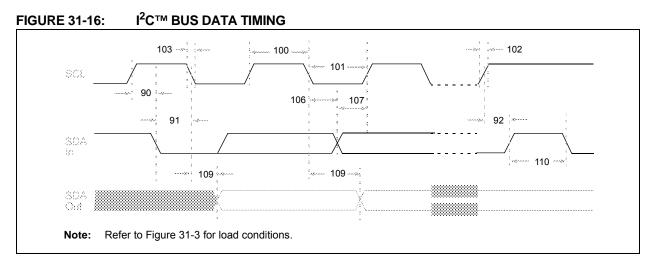
ErrorInter	rupt	
BCF	PIR3, ERRIF	; Clear the interrupt flag
		; Handle error.
RETFIE		
TXB2Interr	rupt	
BCF	PIR3, TXB2IF	; Clear the interrupt flag
GOTO	AccessBuffer	
TXBlInterr	rupt	
BCF	PIR3, TXB1IF	; Clear the interrupt flag
GOTO	AccessBuffer	
TXB0Interr	rupt	
BCF	PIR3, TXB0IF	; Clear the interrupt flag
GOTO	AccessBuffer	
RXB1Interr	rupt	
BCF	PIR3, RXB1IF	; Clear the interrupt flag
GOTO	Accessbuffer	
RXB0Interr	rupt	
BCF	PIR3, RXB0IF	; Clear the interrupt flag
GOTO	AccessBuffer	
AccessBuff	er	; This is either TX or RX interrupt
; Copy	CANSTAT.ICODE bits to CA	NCON.WIN bits
MOVF	TempCANCON, W	; Clear CANCON.WIN bits before copying
		; new ones.
ANDLW	B'11110001'	; Use previously saved CANCON value to
		; make sure same value.
MOVWF	TempCANCON	; Copy masked value back to TempCANCON
MOVF	TempCANSTAT, W	; Retrieve ICODE bits
ANDLW	B'00001110'	; Use previously saved CANSTAT value
		; to make sure same value.
IORWF	TempCANCON	; Copy ICODE bits to WIN bits.
MOVFF	TempCANCON, CANCON	; Copy the result to actual CANCON
; Acce	ss current buffer…	
; User	code	
; Rest	ore CANCON.WIN bits	
MOVF	CANCON, W	; Preserve current non WIN bits
ANDLW	B'11110001'	
IORWF	TempCANCON	; Restore original WIN bits
; Do n	ot need to restore CANSTA	T - it is read-only register.
; Retu	rn from interrupt or chec	k for another module interrupt source
1		

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1
FIL7_1	FIL7_0	FIL6_1	FIL6_0	FIL5_1	FIL5_0	FIL4_1	FIL4_0
bit 7				•			bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-6	FIL7_<1:0>:	Filter 7 Select I	oits 1 and 0				
	11 = No mas						
	10 = Filter 15						
	01 = Accepta 00 = Accepta						
bit 5-4		Filter 6 Select I	nite 1 and 0				
bit 5-4	11 = No mas						
	10 = Filter 15						
	01 = Accepta	nce Mask 1					
	00 = Accepta	nce Mask 0					
bit 3-2	FIL5_<1:0>:	Filter 5 Select I	oits 1 and 0				
	11 = No mas						
	10 = Filter 15						
	01 = Accepta 00 = Accepta						
bit 1-0	•	Filter 4 Select I	nite 1 and 0				
	11 = No mas						
	10 = Filter 15						
	01 = Accepta	nce Mask 1					
	00 = Accepta	nce Mask 0					

REGISTER 27-49: MSEL1: MASK SELECT REGISTER 1⁽¹⁾

Note 1: This register is available in Mode 1 and 2 only.

Mode 0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	IRXIE	WAKIE	ERRIE	TXB2IE	TXB1IE ⁽¹⁾	TXB0IE ⁽¹⁾	RXB1IE	RXB0IE
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
Mode 1	IRXIE	WAKIE	ERRIE	TXBnIE	TXB1IE ⁽¹⁾	TXB0IE ⁽¹⁾	RXBnIE	FIFOWMIE
	bit 7							bit C
Legend:								
R = Read			W = Writabl		•	emented bit, re		
-n = Value	e at POR		'1' = Bit is s	et	'0' = Bit is cl	eared	x = Bit is un	known
bit 7	1 = Enable	Bus Error Me invalid messa invalid messa	ge received i	nterrupt	ot Enable bit			
bit 6		N bus Activity	•		le bit			
		bus activity was bus activity w						
bit 5	1 = Enable	N bus Error In CAN module CAN module	error interrup	t				
bit 4	TXB2IE: CA 1 = Enable 0 = Disable When CAN	<u>is in Mode 0:</u> AN Transmit B Transmit Buff Transmit Buff <u>is in Mode 1 (</u> AN Transmit B	er 2 interrupt er 2 interrupt or 2:	:				
	1 = Enable		r interrupt; in	dividual inte	rrupt is enable	ed by TXBIE a	and BIE0	
bit 3	TXB1IE: CA	AN Transmit B Transmit Buffe	uffer 1 Interr	upt Enable b	Dit ⁽¹⁾			
		Transmit Buff						
bit 2	1 = Enable	AN Transmit B Transmit Buffe Transmit Buff	er 0 interrupt	•	_{Dit} (1)			
bit 1	When CAN RXB1IE: CA 1 = Enable	<u>is in Mode 0:</u> AN Receive B Receive Buffe Receive Buffe	uffer 1 Interru er 1 interrupt		it			
	RXBnIE: C/ 1 = Enable	<u>is in Mode 1 c</u> AN Receive B receive buffer all receive bu	uffer Interrup interrupt; inc	lividual inter	t rupt is enable	d by BIE0		
bit 0	RXB0IE: CA 1 = Enable	<u>is in Mode 0:</u> AN Receive B Receive Buffe Receive Buffe	er 0 interrupt	upt Enable b	it			
	Unimpleme	is in Mode 1: ented: Read a	IS '0'					
		is in Mode 2: FIFO Watern		t Enable bit				


© 2010-2012 Microchip Technology Inc.

BNC	;	Branch if N	lot Carry		BNN			
Synta	ax:	BNC n			Syntax:			
Oper	ands:	$-128 \le n \le 1$	127		Operand			
Oper	ation:	if Carry bit i (PC) + 2 + 2			Operatio			
Statu	is Affected:	None			Status A			
Enco	oding:	1110	0011 nnr	nn nnnn	Encodin			
Desc	cription:	If the Carry will branch.	bit is '0', then	the program	Descript			
		added to the incremented instruction,	nplement num e PC. Since the d to fetch the r the new addre n. This instruct istruction.	e PC will have next ess will be				
Word	ds:	1			Words:			
Cycle	es:	1(2)	1(2)					
	ycle Activity: imp:				Q Cycle If Jump			
	Q1	Q2	Q3	Q4				
	Decode	Read literal 'n'	Process Data	Write to PC				
	No operation	No operation	No operation	No operation	c			
lf No	o Jump:				lf No Ju			
	Q1	Q2	Q3	Q4				
	Decode	Read literal 'n'	Process Data	No operation				
<u>Exar</u>	Before Instruc		BNC Jump	,	<u>Example</u> Be			
	PC After Instruction If Carry PC If Carry PC	on = 0; = ad = 1;	dress (HERE) dress (Jump) dress (HERE)	Aft			

BNN		Branch if	Not Negative						
Syntax:		BNN n	BNN n						
	ands:	-128 < n <	127						
•	ation:	if Negative (PC) + 2 +							
Statu	s Affected:	None							
Enco	ding:	1110	0111 ni	nnn nnnn					
Desc	ription:	If the Nega program w	tive bit is '0', ill branch.	then the					
		added to th incremente instruction, PC + 2 + 2	The 2's complement number, '2n', is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.						
Words:		1	1						
Cycles:		1(2)	1(2)						
Q C If Ju	ycle Activity: mp:								
	Q1	Q2	Q3	Q4					
	Decode	Read literal 'n'	Process Data	Write to PC					
	No operation	No operation	No operation	No operation					
lf No	o Jump:	•		<u>.</u>					
	Q1	Q2	Q3	Q4					
	Decode	Read literal 'n'	Process Data	No operation					
<u>Exan</u>	nple:	HERE	BNN Jum	p					
	Before Instruc PC After Instructio	= ac	dress (HERI	Ξ)					
	If Negativ PC If Negativ PC	= ac /e = 1;	ldress (Jum Idress (HER)	9) E + 2)					
	10	ac		_ · ∠/					

CAL	LW	Subroutine	Subroutine Call Using WREG						
Synt	ax:	CALLW	CALLW						
Oper	rands:	None							
Oper	ration:	$(W) \rightarrow PCL$ (PCLATH)	$(PC + 2) \rightarrow TOS,$ $(W) \rightarrow PCL,$ $(PCLATH) \rightarrow PCH,$ $(PCLATU) \rightarrow PCU$						
Statu	is Affected:	None							
Enco	oding:	0000	0000	0001	0100				
Desc	pription	pushed ont contents of existing val contents of latched into respectively executed as	First, the return address (PC + 2) is pushed onto the return stack. Next, the contents of W are written to PCL; the existing value is discarded. Then, the contents of PCLATH and PCLATU are latched into PCH and PCU, respectively. The second cycle is executed as a NOP instruction while the new next instruction is fetched.						
			Unlike CALL, there is no option to update W, STATUS or BSR.						
Word	ds:	1	1						
Cycle	es:	2							
QC	ycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read WREG	Push PC stack		No eration				
	No	No	No		No				
	operation	operation	operatio	n op	operation				
Exar	nple: PC PCLATH PCLATU W After Instructio PC TOS PCLATH PCLATU W	= address = 10h = 00h = 06h on = 001006 = address = 10h	h	+ 2)					

MOV	36	Move Inde						
Synta	ax:	MOVSF [2	z _s], f _d					
Oper	ands:	$0 \le z_s \le 12^{\circ}$ $0 \le f_d \le 408^{\circ}$						
Oper	ation:	((FSR2) + 2	$z_s) \rightarrow f_d$					
Statu	is Affected:	None						
1st w	oding: /ord (source) word (destin.)	1110 1111	1011 ffff	0zz fff		zzzz _s ffff _d		
Desc	ription:	moved to d actual addr determined offset 'z _s ', i of FSR2. TI register is s 'f _d ' in the se	The contents of the source register are moved to destination register 'f _d '. The actual address of the source register is determined by adding the 7-bit literal offset ' z_s ', in the first word, to the value of FSR2. The address of the destination register is specified by the 12-bit literal 'f _d ' in the second word. Both addresses can be anywhere in the 4096-byte data					
		The MOVSF PCL, TOSU	The MOVSF instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register.					
		If the resultant source address points to an Indirect Addressing register, the value returned will be 00h.						
Word	ls:	2						
Cycle	es:	2						
QC	ycle Activity:							
	Q1	Q2	Q3		(Q4		
	Decode	Determine source addr	Determ source a	-		ead ce reg		
	Decode	No operation No dummy read	No operati	ion	regis	′rite ster 'f' est)		
Exan	nple:	MOVSF	[05h],	reg2				
	Before Instruct FSR2 Contents of 85h REG2 After Instructict FSR2 Contents of 85h REG2	= 80 = 33 = 11 on = 80	h h h					

Param. No.	Symbol	Characteris	tic	Min	Max	Units	Conditions
100	Тнідн	Clock High Time	100 kHz mode	4.0		μS	
			400 kHz mode	0.6	_	μS	
			MSSP module	1.5 TCY	—		
101	TLOW	Clock Low Time	100 kHz mode	4.7	—	μS	
			400 kHz mode	1.3	—	μS	
			MSSP module	1.5 TCY	—		
102	TR	SDA and SCL Rise Time	100 kHz mode	—	1000	ns	
			400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
103	TF	SDA and SCL Fall Time	100 kHz mode	—	300	ns	
			400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
90	TSU:STA	Start Condition Setup Time	100 kHz mode	4.7	_	μS	Only relevant for Repeated
			400 kHz mode	0.6	_	μS	Start condition
91	THD:STA	Start Condition Hold Time	100 kHz mode	4.0	_	μS	After this period, the first clock
			400 kHz mode	0.6	_	μS	pulse is generated
106	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μS	
107	TSU:DAT	Data Input Setup Time	100 kHz mode	250	—	ns	(Note 2)
			400 kHz mode	100	—	ns	
92	Tsu:sto	Stop Condition Setup Time	100 kHz mode	4.7	—	μS	
			400 kHz mode	0.6	—	μS	
109	ΤΑΑ	Output Valid from Clock	100 kHz mode	—	3500	ns	(Note 1)
			400 kHz mode	—	—	ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7	—	μS	Time the bus must be free before
			400 kHz mode	1.3	—	μS	a new transmission can start
D102	Св	Bus Capacitive Loading		—	400	pF	

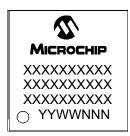
TABLE 31-20: I²C[™] BUS DATA REQUIREMENTS (SLAVE MODE)

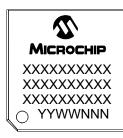
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode I²C[™] bus device can be used in a Standard mode I²C bus system, but the requirement, TSU:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

32.1 Package Marking Information (Continued)

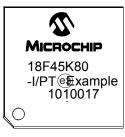
40-Lead PDIP

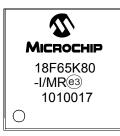

44-Lead QFN


44-Lead TQFP

64-Lead QFN

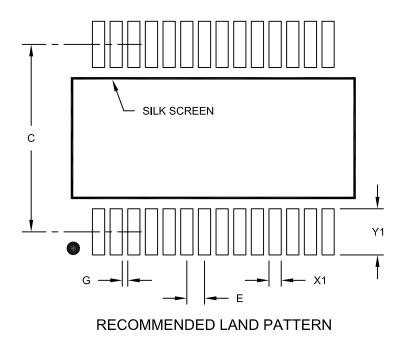
64-Lead TQFP


Example



Example

Example



Example

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Ν	ILLIMETER	S	
Dimension	MIN	NOM	MAX	
Contact Pitch	E	0.65 BSC		
Contact Pad Spacing	С		7.20	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A