

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	ECANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf25k80-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-1:	HS, EC, XT, LP AND RC MODES: RANGES AND SETTINGS
	, ,,

Mode	Frequency Range	FOSC<3:0> Setting
EC1 (low power)		1101
(EC1 & EC1IO)	DC-160 KH2	1100
EC2 (medium power)		1011
(EC2 & EC2IO)		1010
EC3 (high power)		0101
(EC3 & EC3IO)		0100
HS1 (medium power)	4 MHz-16 MHz	0011
HS2 (high power)	16 MHz-25 MHz	0010
XT	100 kHz-4 MHz	0001
LP	31.25 kHz	0000
RC (External)	0-4 MHz	001x
INTIO	32 kHz-16 MHz	100x (and OSCCON, OSCCON2)

PIC18F66K80 FAMILY CLOCK DIAGRAM

4.3 Sleep Mode

The power-managed Sleep mode in the PIC18F66K80 family of devices is identical to the legacy Sleep mode offered in all other PIC devices. It is entered by clearing the IDLEN bit (the default state on device Reset) and executing the SLEEP instruction. This shuts down the selected oscillator (Figure 4-5). All clock source status bits are cleared.

Entering Sleep mode from any other mode does not require a clock switch. This is because no clocks are needed once the controller has entered Sleep. If the WDT is selected, the LF-INTOSC source will continue to operate. If the SOSC oscillator is enabled, it will also continue to run.

When a wake event occurs in Sleep mode (by interrupt, Reset or WDT time-out), the device will not be clocked until the clock source selected by the SCS<1:0> bits becomes ready (see Figure 4-6). Alternately, the device will be clocked from the internal oscillator block if either the Two-Speed Start-up or the Fail-Safe Clock Monitor is enabled (see **Section 28.0 "Special Features of the CPU"**). In either case, the OSTS bit is set when the primary clock is providing the device clocks. The IDLEN and SCSx bits are not affected by the wake-up.

4.4 Idle Modes

The Idle modes allow the controller's CPU to be selectively shut down while the peripherals continue to operate. Selecting a particular Idle mode allows users to further manage power consumption.

If the IDLEN bit is set to a '1' when a SLEEP instruction is executed, the peripherals will be clocked from the clock source selected using the SCS<1:0> bits. The CPU, however, will not be clocked. The clock source status bits are not affected. This approach is a quick method to switch from a given Run mode to its corresponding Idle mode.

If the WDT is selected, the LF-INTOSC source will continue to operate. If the SOSC oscillator is enabled, it will also continue to run.

Since the CPU is not executing instructions, the only exits from any of the Idle modes are by interrupt, WDT time-out or a Reset. When a wake event occurs, CPU execution is delayed by an interval of TCSD (Parameter 38, Table 31-11) while it becomes ready to execute code. When the CPU begins executing code, it resumes with the same clock source for the current Idle mode. For example, when waking from RC_IDLE mode, the internal oscillator block will clock the CPU and peripherals (in other words, RC_RUN mode). The IDLEN and SCSx bits are not affected by the wake-up.

While in any Idle mode or Sleep mode, a WDT timeout will result in a WDT wake-up to the Run mode currently specified by the SCS<1:0> bits.

FIGURE 4-5: TRANSITION TIMING FOR ENTRY TO SLEEP MODE

IADL	.C 0-2. F	IC IOF OON		T REGIS		SUIVIIVIAN		INUED)		
Addr.	File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR on page
ED6h	B5D0	B5D07	B5D06	B5D05	B5D04	B5D03	B5D02	B5D01	B5D00	95
ED5h	B5DLC	_	TXRTR	_	_	DLC3	DLC2	DLC1	DLC0	95
ED4h	B5EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	95
ED3h	B5EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	95
ED2h	B5SIDL	SID2	SID1	SID0	SRR	EXID		EID17	EID16	95
ED1h	B5SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	95
ED0h	B5CON	TXBIF	TXABT	TXLARB	TXERR	TXREQ		TXPRI1	TXPRI0	95
ECFh	CANCON RO5	CANCON R	05			11			1	95
ECEh	 CANSTAT RO5	CANSTAT R	05							96
ECDh	 B4D7	 B4D77	B4D76	B4D75	B4D74	B4D73	B4D72	B4D71	B4D70	96
ECCh	B4D6	B4D67	B4D66	B4D65	B4D64	B4D63	B4D62	B4D61	B4D60	96
ECBh	B4D5	B4D57	B4D56	B4D55	B4D54	B4D53	B4D52	B4D51	B4D50	96
ECAh	B4D4	B4D47	B4D46	B4D45	B4D44	B4D43	B4D42	B4D41	B4D40	96
EC9h	B4D3	B4D37	B4D36	B4D35	B4D34	B4D33	B4D32	B4D31	B4D30	96
EC8h	B4D2	B4D27	B4D26	B4D25	B4D24	B4D23	B4D22	B4D21	B4D20	96
EC7h	B4D1	B4D17	B4D16	B4D15	B4D14	B4D13	B4D12	B4D11	B4D10	96
EC6h	B4D0	B4D07	B4D06	B4D05	B4D04	B4D03	B4D02	B4D01	B4D00	96
EC5h	B4DLC	_	TXRTR	_	_	DLC3	DLC2	DLC1	DLC0	96
EC4h	B4EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	96
EC3h	B4EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	96
FC2h	B4SIDI	SID2	SID1	SID0	SRR	FXID		FID17	FID16	96
FC1h	B4SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	96
EC0h	B4CON	TXBIE	TXABT	TXI ARB	TXERR	TXREQ	_	TXPRI1	TXPRI0	96
FBFh	CANCON RO6	CANCON R	06	1712 1112	17 El al C	a				96
FBFh	CANSTAT RO6	CANSTAT R	06							96
FBDh	B3D7	B3D77	B3D76	B3D75	B3D73	B3D73	B3D72	B3D71	B3D70	96
FBCh	B3D6	B3D67	B3D66	B3D65	B3D63	B3D63	B3D62	B3D61	B3D60	96
FBBh	B3D5	B3D57	B3D56	B3D55	B3D53	B3D53	B3D52	B3D51	B3D50	96
FBAh	B3D4	B3D47	B3D46	B3D45	B3D43	B3D43	B3D42	B3D41	B3D40	96
FB9h	B3D3	B3D37	B3D36	B3D35	B3D33	B3D33	B3D32	B3D31	B3D30	96
FB8h	B3D2	B3D27	B3D26	B3D25	B3D23	B3D23	B3D22	B3D21	B3D20	96
EB7h	B3D1	B3D17	B3D16	B3D15	B3D13	B3D13	B3D12	B3D11	B3D10	96
EB6h	B3D0	B3D07	B3D06	B3D05	B3D03	B3D03	B3D02	B3D01	B3D00	96
EB5h	B3DLC	_	TXRTR	_	_	DI C3	DI C2	DI C1	DI C0	96
FB4h	B3FIDI	FID7	FID6	FID5	FID4	FID3	FID2	FID1	FID0	96
EB3h	B3EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	96
EB2h	B3SIDL	SID2	SID1	SID0	SRR	EXID		EID17	EID16	96
EB1h	B3SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	96
EB0h	B3CON	TXBIE	TXABT	TXI ARB	TXERR	TXREQ	_	TXPRI1	TXPRI0	96
FAFh	CANCON RO7	CANCON R	07	1712 112	1712111	a				96
FAFh	CANSTAT RO7	CANSTAT R	07							96
FADh	B2D7	B2D77	B2D76	B2D75	B2D72	B2D73	B2D72	B2D71	B2D70	96
FACh	B2D6	B2D67	B2D66	B2D65	B2D62	B2D63	B2D62	B2D61	B2D60	96
FABh	B2D5	B2D57	B2D56	B2D55	B2D52	B2D53	B2D52	B2D51	B2D50	97
FAAh	B2D4	B2D47	B2D46	B2D45	B2D02 B2D42	B2D43	B2D42	B2D01	B2D40	97
E/041	B2D3	B2D37	B2D36	B2D35	B2D32	B2D33	B2D32	B2D41 B2D31	B2D40	97
FARh	B2D2	B2D27	B2D26	B2D05	B2D22	B2D23	B2D92	B2D21	B2D20	97
EA7h	B2D1	B2D17	B2D16	B2D15	B2D12	B2D23	B2D12	B2D21	B2D10	97
EA6h	B2D0	B2D07	B2D06	B2D05	B2D02	B2D03	B2D02	B2D01	B2D00	97
EA5h	B2DLC		TXRTR			DL C3	DI C2	DL C1	DLCO	97
EA/h	B2EIDI	EID7	FIDE	EID5	EID4	FID3	EID2	FID1	FIDO	97
			2000	2100		2103				31

TABLES		
IADLE 0-2:	PICTOFOOROU FAMILT REGISTER FILE SUMMART	CONTINUED)

10.2 PIR Registers

The PIR registers contain the individual flag bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are six Peripheral Interrupt Request (Flag) registers (PIR1 through PIR5).

- Note 1: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE (INTCON<7>).
 - 2: User software should ensure the appropriate interrupt flag bits are cleared prior to enabling an interrupt and after servicing that interrupt.

REGISTER 10-4: PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
PSPIF	ADIF	RC1IF	TX1IF	SSPIF	TMR1GIF	TMR2IF	TMR1IF
bit 7							bit 0

Legend:								
R = Readable	e bit	W = Writable bit	U = Unimplemented bit,	read as '0'				
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 7	PSPIF: Pa	arallel Slave Port Read/Write	e Interrupt Flag bit					
	1 = A rea 0 = No re	d or write operation has take ad or write operation has oc	en place (must be cleared in so ccurred	oftware)				
bit 6	ADIF: A/D	OConverter Interrupt Flag bit	t					
	1 = An A/D conversion completed (must be cleared in software)							
	0 = The A	VD conversion is not comple	ete					
bit 5	RC1IF: EL	JSARTx Receive Interrupt F	lag bit					

1 =	• The	EUSARTx	receive	buffer	, RCREG1	, is full (cle	eared when	RCREG1	is read)

- 0 = The EUSARTx receive buffer is empty
- bit 4 **TX1IF:** EUSARTx Transmit Interrupt Flag bit
 - 1 = The EUSARTx transmit buffer, TXREG1, is empty (cleared when TXREG1 is written)
 - 0 = The EUSARTx transmit buffer is full

bit 3	SSPIF: Master Synchronous Serial Port Interrupt Flag bit
	 1 = The transmission/reception is complete (must be cleared in software) 0 = Waiting to transmit/receive
bit 2	TMR1GIF: Timer1 Gate Interrupt Flag bit
	 1 = Timer gate interrupt occurred (must be cleared in software) 0 = No timer gate interrupt occurred
bit 1	TMR2IF: TMR2 to PR2 Match Interrupt Flag bit

1 = TMR2 to PR2 match occurred (must be cleared in software)

0 = No TMR2 to PR2 match occurred

bit 0 **TMR1IF:** TMR1 Overflow Interrupt Flag bit 1 = TMR1 register overflowed (must be cleared in software)

0 = TMR1 register did not overflow

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0				
TMR4IE	EEIE	CMP2IE	CMP1IE		CCP5IE	CCP4IE	CCP3IE				
bit 7			•				bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 7	TMR4IE: TM	R4 Overflow In	terrupt Flag b	it							
	1 = Interrupt	is enabled									
	0 = Interrupt	is disabled									
bit 6	EEIE: Data E	EDATA/Flash \	Nrite Operatio	on Interrupt Fla	ag bit						
	1 = Interrupt	is enabled									
	0 = Interrupt	is disabled									
bit 5	CMP2IE: CM	P2 Interrupt Fla	ag bit								
	1 = Interrupt	is enabled									
h:+ 4			I- ¹ 4								
DIT 4			ag dit								
	1 = Interrupt is enabled										
hit 3	Unimplemen	ited: Read as '	0'								
bit 2	CCP5IE: CCI	P5 Interrunt Fla	o na hit								
Dit 2	1 - Interrupt is enabled										
	0 = Interrupt	is disabled									
bit 1	CCP4IE: CCI	P4 Interrupt Fla	ig bit								
	1 = Interrupt	is enabled	0								
	0 = Interrupt	is disabled									
bit 0	CCP3IE: CCI	P3 Interrupt Fla	ig bits								
	1 = Interrupt	is enabled									
	0 = Interrupt	is disabled									

REGISTER 10-12: PIE4: PERIPHERAL INTERRUPT ENABLE REGISTER 4

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP
INTCON3	INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF
ODCON	SSPOD	CCP5OD	CCP4OD	CCP3OD	CCP2OD	CCP10D	U2OD	U10D
ANCON1	_	ANSEL14	ANSEL13	ANSEL12	ANSEL11	ANSEL10	ANSEL9	ANSEL8

TABLE 11-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Legend: Shaded cells are not used by PORTB.

REGISTER 12-4: MDCARL: MODULATION LOW CARRIER CONTROL REGISTER

DAMA	D 44/	DAA		D 44/	D 44/	DAA	D 44/
R/W-0	R/W-x	R/W-x	U-0	R/W-x	R/W-x	R/W-x	R/W-x
MDCLODIS	MDCLPOL	MDCLSYNC		MDCL3(")	MDCL2(')	MDCL1 ⁽¹⁾	MDCL0(")
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimplen	nented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	MDCLODIS:	Modulator Low	Carrier Outp	ut Disable bit			
	1 = Output si is disable	ignal driving the ed	peripheral o	utput pin (select	ted by MDCL<3	:0> of the MD0	CARL register)
	0 = Output si is enable	ignal driving the d	peripheral o	utput pin (select	ted by MDCL<3	:0> of the MD0	CARL register)
bit 6	MDCLPOL:	Modulator Low (Carrier Polari	tv Select bit			
	1 = Selected	low carrier sigr	nal is inverted	ł			
	0 = Selected	low carrier sigr	nal is not inve	erted			
bit 5	MDCLSYNC:	: Modulator Low	Carrier Syn	chronization En	able bit		
	1 = Modulato time carr	or waits for a fall ier	ing edge on t	he low time carr	ier signal before	e allowing a swi	tch to the high
	0 = Modulato	or output is not s	synchronized	to the low time	carrier signal ⁽¹)	
bit 4	Unimplemen	ted: Read as 'o)'				
bit 3-0	MDCL<3:0>	Modulator Data	High Carrier	Selection bits ⁽¹)		
	1111-1001 =	Reserved					
	1000 = CCP	5 output (PWM	Output mode	only)			
	$0111 = CCP^{2}$	4 output (PVVM 3 output (PWM	Output mode	e only)			
	0101 = CCP2	2 output (PWM	Output mode	e only)			
	0100 = ECCI	P1 output (PWN	1 Output moo	de only)			
	0011 = Refer	rence clock mod	lule signal				
	0010 = MDC	IN2 port pin					
	0000 = Vss						

Note 1: Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MDCARH	MDCHODIS	MDCHPOL	MDCHSYNC	_	MDCH3	MDCH2	MDCH1	MDCH0
MDCARL	MDCLODIS	MDCLPOL	MDCLSYNC	_	MDCL3	MDCL2	MDCL1	MDCL0
MDCON	MDEN	MDOE	MDSLR	MDOPOL	MDO	_	_	MDBIT
MDSRC	MDSODIS	_	—	—	MDSRC3	MDSRC2	MDSRC1	MDSRC0
PMD2		_	—	—	MODMD	ECANMD	CMP2MD	CMP1MD

TABLE 12-1: SUMMARY OF REGISTERS ASSOCIATED WITH DATA SIGNAL MODULATOR MODE

Legend: — = unimplemented, read as '0'. Shaded cells are not used in the Data Signal Modulator mode.

one of the STR<D:A> bits.

20.4.7.1 Steering Synchronization

The STRSYNC bit of the PSTR1CON register gives the user two choices for when the steering event will happen. When the STRSYNC bit is '0', the steering event will happen at the end of the instruction that writes to the PSTR1CON register. In this case, the output signal at the P1<D:A> pins may be an incomplete PWM waveform. This operation is useful when the user firmware needs to immediately remove a PWM signal from the pin.

When the STRSYNC bit is '1', the effective steering update will happen at the beginning of the next PWM period. In this case, steering on/off the PWM output will always produce a complete PWM waveform.

Figures 20-17 and 20-18 illustrate the timing diagrams of the PWM steering depending on the STRSYNC setting.

FIGURE 20-17: EXAMPLE OF STEERING EVENT AT END OF INSTRUCTION (STRSYNC = 0)

FIGURE 20-18: EXAMPLE OF STEERING EVENT AT BEGINNING OF INSTRUCTION (STRSYNC = 1)

REGISTER 27-14: RXB1CON: RECEIVE BUFFER 1 CONTROL REGISTER (CONTINUED)

bit 2-0 <u>Mode 0:</u>

FILHIT<2:0>: Filter Hit bits

These bits indicate which acceptance filter enabled the last message reception into Receive Buffer 1.

- 111 = Reserved
- 110 = Reserved
- 101 = Acceptance Filter 5 (RXF5)
- 100 = Acceptance Filter 4 (RXF4)
- 011 = Acceptance Filter 3 (RXF3)
- 010 = Acceptance Filter 2 (RXF2)
- 001 = Acceptance Filter 1 (RXF1), only possible when RXB0DBEN bit is set

000 = Acceptance Filter 0 (RXF0), only possible when RXB0DBEN bit is set

Mode 1, 2:

FILHIT<4:0>: Filter Hit bits<2:0> These bits, in combination with FILHIT<4:3>, indicate which acceptance filter enabled the message reception into this receive buffer.

01111 = Acceptance Filter 15 (RXF15) 01110 = Acceptance Filter 14 (RXF14)

00000 = Acceptance Filter 0 (RXF0)

Note 1: This bit is set by the CAN module upon receiving a message and must be cleared by software after the buffer is read. As long as RXFUL is set, no new message will be loaded and the buffer will be considered full.

REGISTER 27-15: RXBnSIDH: RECEIVE BUFFER 'n' STANDARD IDENTIFIER REGISTERS, HIGH BYTE [0 \leq n \leq 1]

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **SID<10:3>:** Standard Identifier bits (if EXID (RXBnSIDL<3>) = 0) Extended Identifier bits, EID<28:21> (if EXID = 1). The PIC18F66K80 family devices are error-active if both error counters are below the error-passive limit of 128. They are error-passive if at least one of the error counters equals or exceeds 128. They go to bus-off if the transmit error counter equals or exceeds the busoff limit of 256. The devices remain in this state until the bus-off recovery sequence is finished. The bus-off recovery sequence consists of 128 occurrences of 11 consecutive recessive bits (see Figure 27-8). Note that the CAN module, after going bus-off, will recover back to error-active without any intervention by the MCU if the bus remains Idle for 128 x 11 bit times. If this is not desired, the error Interrupt Service Routine should address this. The current Error mode of the CAN module can be read by the MCU via the COMSTAT register.

Additionally, there is an Error State Warning flag bit, EWARN, which is set if at least one of the error counters equals or exceeds the error warning limit of 96. EWARN is reset if both error counters are less than the error warning limit.

FIGURE 27-8: ERROR MODES STATE DIAGRAM

27.15 CAN Interrupts

The module has several sources of interrupts. Each of these interrupts can be individually enabled or disabled. The PIR5 register contains interrupt flags. The PIE5 register contains the enables for the 8 main interrupts. A special set of read-only bits in the CANSTAT register, the ICODE bits, can be used in combination with a jump table for efficient handling of interrupts.

All interrupts have one source, with the exception of the error interrupt and buffer interrupts in Mode 1 and 2. Any of the error interrupt sources can set the error interrupt flag. The source of the error interrupt can be determined by reading the Communication Status register, COMSTAT. In Mode 1 and 2, there are two interrupt enable/disable and flag bits – one for all transmit buffers and the other for all receive buffers.

The interrupts can be broken up into two categories: receive and transmit interrupts.

The receive related interrupts are:

- Receive Interrupts
- Wake-up Interrupt
- Receiver Overrun Interrupt
- Receiver Warning Interrupt
- Receiver Error-Passive Interrupt

The transmit related interrupts are:

- Transmit Interrupts
- Transmitter Warning Interrupt
- Transmitter Error-Passive Interrupt
- Bus-Off Interrupt

R/C-1	R/C-1	U-0	U-0	U-0	U-0	U-0	U-0	
CPD	CPB	—	_	—	—	—	—	
bit 7							bit 0	
Legend:		C = Clearable	bit					
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'		
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				
bit 7	CPD: Data EB	EPROM Code	Protection bit					
	1 = Data EEP	ROM is not co	de-protected					
	0 = Data EEP	ROM is code-p	protected					
bit 6	CPB: Boot Bl	ock Code Prote	ection bit					
	1 = Boot block	k is not code-p	rotected ⁽¹⁾					
	0 = Boot block	k is code-prote	cted ⁽¹⁾					
bit 5-0	Unimplemen	ted: Read as '	0'					

REGISTER 28-8: CONFIG5H: CONFIGURATION REGISTER 5 HIGH (BYTE ADDRESS 300009h)

Note 1: For the memory size of the blocks, see Figure 28-6. The boot block size changes with BBSIZ0.

28.3.3 OPERATION OF REGULATOR IN SLEEP

The difference in the two regulators' operation arises with Sleep mode. The ultra low-power regulator gives the device the lowest current in the Regulator Enabled mode.

The on-chip regulator can go into a lower power mode when the device goes to Sleep by setting the REGSLP bit (WDTCON<7>). This puts the regulator in a standby mode so that the device consumes much less current.

The on-chip regulator can also go into the Ultra Low-Power mode, which consumes the lowest current possible with the <u>regulator</u> enabled. This mode is controlled by the <u>RETEN</u> bit (CONFIG1L<0>) and SRETEN bit (WDTCON<4>). The various modes of regulator operation are shown in Table 28-3.

When the ultra low-power regulator is in Sleep mode, the internal reference voltages in the chip will be shut off and any interrupts referring to the internal reference will not wake up the device. If the BOR or LVD is enabled, the regulator will keep the internal references on and the lowest possible current will not be achieved.

When using the ultra low-power regulator in Sleep mode, the device will take about 250 μs to start executing code after it wakes up.

Device	Power Mode	REGSLP WDTCON<7>	SRETEN WDTCON<4>	RETEN CONFIG1L<0>
PIC18FXXK80	Normal Operation (Sleep)	0	x	1
PIC18FXXK80	Low-Power mode (Sleep)	1	x	1
PIC18FXXK80	Normal Operation (Sleep)	0	0	0
PIC18FXXK80	Low-Power mode (Sleep)	1	0	0
PIC18FXXK80	Ultra Low-Power mode (Sleep)	x	1	0
PIC18LFXXK80	Reserved ⁽²⁾	х	Don't Care	0
PIC18LFXXK80	Regulator Bypass mode (Sleep) ⁽²⁾	x	x	1

TABLE 28-3: SLEEP MODE REGULATOR SETTINGS⁽¹⁾

Note 1: x — Indicates that VIT status is invalid.

2: The ultra low-power regulator should be disabled (RETEN = 1, ULP disabled) on PIC18LFXXK80 devices to obtain the lowest possible Sleep current.

Mnemo	onic,	Description	Cycles	16-E	Bit Instr	uction V	Vord	Status	Netaa
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
BYTE-OR	ENTED	OPERATIONS							
ADDWF	f, d, a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
ADDWFC	f, d, a	Add WREG and Carry bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	1, 2
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1,2
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2
CPFSEQ	f, a	Compare f with WREG, Skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4
CPFSGT	f, a	Compare f with WREG, Skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4
CPFSLT	f, a	Compare f with WREG, Skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2
DECF	f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2
INCF	f, d, a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff	None	4
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1, 2
IORWF	f, d, a	Inclusive OR WREG with f	1	0001	00da	ffff	ffff	Z, N	1, 2
MOVF	f, d, a	Move f	1	0101	00da	ffff	ffff	Z, N	1
MOVFF	f _s , f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None	
	0 u	f _d (destination) 2nd word		1111	ffff	ffff	ffff		
MOVWF	f, a	Move WREG to f	1	0110	111a	ffff	ffff	None	
MULWF	f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	1, 2
NEGF	f, a	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N	
RLCF	f, d, a	Rotate Left f through Carry	1	0011	01da	ffff	ffff	C, Z, N	1, 2
RLNCF	f, d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff	Z, N	
RRCF	f, d, a	Rotate Right f through Carry	1	0011	00da	ffff	ffff	C, Z, N	
RRNCF	f, d, a	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N	
SETF	f, a	Set f	1	0110	100a	ffff	ffff	None	1, 2
SUBFWB	f, d, a	Subtract f from WREG with	1	0101	01da	ffff	ffff	C, DC, Z, OV, N	
		Borrow							
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	1, 2
SUBWFB	f, d, a	Subtract WREG from f with	1	0101	10da	ffff	ffff	C, DC, Z, OV, N	
		Borrow							
SWAPF	f, d, a	Swap Nibbles in f	1	0011	10da	ffff	ffff	None	4
TSTFSZ	f, a	Test f, Skip if 0	1 (2 or 3)	0110	011a	ffff	ffff	None	1, 2
XORWF	f, d, a	Exclusive OR WREG with f	1	0001	10da	ffff	ffff	Z, N	

TABLE 29-2: PIC18F66K80 FAMILY INSTRUCTION SET

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as an input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

SUBULNK k

 $\begin{array}{l} FSR2-k \rightarrow FSR2,\\ (TOS) \rightarrow PC \end{array}$

 $0 \leq k \leq 63$

Subtract Literal from FSR2 and Return

SUBULNK

Operands:

Operation:

Syntax:

SUB	SUBFSR Subtract Literal from FSR							
Synta	ax:	SUBFSR	f, k					
Oper	ands:	$0 \le k \le 63$	$0 \le k \le 63$					
		f ∈ [0, 1,	2]					
Oper	ation:	FSRf – k	\rightarrow FSRf					
Statu	s Affected:	None		-				
Enco	ding:	1110	1001	ffkk	2	kkkk		
Desc	ription:	The 6-bit I the conter by 'f'.	iteral 'k' is nts of the	s subtr FSR s	acte	ed from cified		
Word	ls:	1	1					
Cycle	es:	1	1					
QC	ycle Activity:							
	Q1	Q2	Q3			Q4		
	Decode	Read register 'f'	Proce	SS	۷ des	Vrite to stination		
Exan	nple:	SUBFSR 1	2, 23h					
	Before Instruc	tion						

03FFh

03DCh

=

=

FSR2

After Instruction

FSR2

5	Status	s Affected:	None								
E	Enco	ding:	1110	1001	11kk	kkkk					
C	Desc	ription:	The 6-bit li contents o executed l TOS.	iteral 'k' is f the FSR: by loading	subtract 2. A RET the PC	ed from the URN is then with the					
			The instruction takes two cycles to execute; a NOP is performed during the second cycle.								
]			This may be thought of as a special case of the SUBFSR instruction, where f = 3 (binary '11'); it operates only on FSR2.								
V	Nord	s:	1								
(Cycle	s:	2								
	QC	cle Activity:									
		Q1	Q2		Q3	Q4					
		Decode	Read register	f' Pro	ocess ata	Write to destination					
		No Operation	No	n Ope	No	No Operation					

Example: SUBULNK 23h

Before Instruction							
FSR2	=	03FFh					
PC	=	0100h					
After Instruct	ion						
FSR2	=	03DCh					
PC	=	(TOS)					

FIGURE 31-1: VOLTAGE-FREQUENCY GRAPH, REGULATOR ENABLED (INDUSTRIAL/EXTENDED)⁽¹⁾

FIGURE 31-2: VOLTAGE-FREQUENCY GRAPH, REGULATOR DISABLED (INDUSTRIAL/EXTENDED)^(1,2)

31.2 DC Characteristics: Power-Down and Supply Current PIC18F66K80 Family (Industrial/Extended) (Continued)

PIC18F66K80 Family (Industrial/Extended)		Standard (Operating						
Param No.	Device	Тур	Max	Units		Condition	S	
	Supply Current (IDD) Co	ont. ^(2,3)						
	PIC18LFXXK80	75	160	μA	-40°C			
		75	160	μA	+25°C			
		75	160	μA	+60°C	VDD = 1.8V ⁽⁴⁾ Regulator Disabled		
		76	170	μA	+85°C			
		82	180	μA	+125°C			
	PIC18LFXXK80	148	300	μA	-40°C			
		148	300	μA	+25°C) (=) (4)		
		148	300	μA	+60°C	VDD = 3.3V(+) Regulator Disabled	Fosc = 4 MHz	
		150	400	μA	+85°C			
		157	460	μA	+125°C			
	PIC18FXXK80	187	320	μA	-40°C		EC oscillator)	
		204	320	μA	+25°C) (
		212	320	μA	+60°C	VDD = 3.3V ⁽³⁾ Regulator Enabled		
		218	420	μA	+85°C			
		230	480	μA	+125°C			
	PIC18FXXK80	230	500	μA	-40°C			
		230	500	μA	+25°C) (
		230	500	μA	+60°C	$VDD = 5V^{(3)}$ Regulator Enabled		
		240	600	μA	+85°C			
		250	700	μA	+125°C			

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or Vss, and all features that add delta current are disabled (such as WDT, SOSC oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;
- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- 4: For LF devices, RETEN (CONFIG1L<0>) = 1.
- 5: For F devices, SRETEN (WDTCON<4>) = 1 and \overline{RETEN} (CONFIG1L<0>) = 0.

Param. No.	Symbol	Characteris	tic	Min	Max	Units	Conditions	
100	Тнідн	Clock High Time	100 kHz mode	4.0	—	μS		
			400 kHz mode	0.6		μS		
			MSSP module	1.5 TCY				
101	TLOW	Clock Low Time	100 kHz mode	4.7		μS		
			400 kHz mode	1.3		μS		
			MSSP module	1.5 TCY				
102	TR	SDA and SCL Rise Time	100 kHz mode	—	1000	ns		
			400 kHz mode	20 + 0.1 CB	300	ns	CB is specified to be from 10 to 400 pF	
103	TF	SDA and SCL Fall Time	100 kHz mode	—	300	ns		
			400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF	
90	TSU:STA	Start Condition Setup Time	100 kHz mode	4.7		μS	Only relevant for Repeated	
			400 kHz mode	0.6		μS	Start condition	
91	THD:STA	Start Condition Hold Time	100 kHz mode	4.0	_	μS	After this period, the first clock	
			400 kHz mode	0.6	_	μS	pulse is generated	
106	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	ns		
			400 kHz mode	0	0.9	μS		
107	TSU:DAT	Data Input Setup Time	100 kHz mode	250	—	ns	(Note 2)	
			400 kHz mode	100	—	ns		
92	Tsu:sto	Stop Condition Setup Time	100 kHz mode	4.7	—	μS		
			400 kHz mode	0.6	—	μS		
109	ΤΑΑ	Output Valid from Clock	100 kHz mode	—	3500	ns	(Note 1)	
			400 kHz mode	—	—	ns		
110	TBUF	Bus Free Time	100 kHz mode	4.7	—	μS	Time the bus must be free before	
			400 kHz mode	1.3	_	μS	a new transmission can start	
D102	Св	Bus Capacitive Loading		—	400	pF		

TABLE 31-20: I²C[™] BUS DATA REQUIREMENTS (SLAVE MODE)

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode I²C[™] bus device can be used in a Standard mode I²C bus system, but the requirement, TSU:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	MILLIMETERS			
Dimension	MIN	NOM	MAX		
Contact Pitch	0.50 BSC				
Optional Center Pad Width	W2			7.35	
Optional Center Pad Length	T2			7.35	
Contact Pad Spacing	C1		8.90		
Contact Pad Spacing	C2		8.90		
Contact Pad Width (X64)	X1			0.30	
Contact Pad Length (X64) Y				0.85	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2149A

APPENDIX B: MIGRATION TO PIC18F66K80 FAMILY

Devices in the PIC18F66K80, PIC18F4580, PIC18F4680 and 18F8680 families are similar in their functions and features. Code can be migrated from the

other families to the PIC18F66K80 without many changes. The differences between the device families are listed in Table B-1 and Table B-2. For more details on migrating to the PIC18F66K80, refer to *"PIC18FXX80 to PIC18FXXK80 Migration Guide"* (DS39982).

TABLE B-1:NOTABLE DIFFERENCES BETWEEN 28, 40 AND 44-PIN DEVICES – PIC18F66K80,
PIC18F4580 AND PIC18F4680 FAMILIES

Characteristic	PIC18F66K80 Family	PIC18F4680 Family	PIC18F4580 Family
Max Operating Frequency	64 MHz	40 MHz	40 MHz
Max Program Memory	64 Kbytes	64 Kbytes	32 Kbytes
Data Memory (bytes)	3,648	3,328	1,536
CTMU	Yes	No	No
SOSC Oscillator Options	Low-power oscillator option for SOSC	No options	No options
T1CKI Clock	T1CKI can be used as a clock without enabling the SOSC oscillator	No	No
INTOSC	Up to 16 MHz	Up to 8 MHz	Up to 8 MHz
Timers	Two 8-bit, three 16-bit	One 8-bit, three 16-bit	One 8-bit, three 16-bit
ECCP	One for all devices	40 and 44-pin devices – One 28-pin devices – None	40 and 44-pin devices – One 28-pin devices – None
CCP	Four	One	One
Data EEPROM (bytes)	1,024	1,024	256
WDT Prescale Options	22	16	16
5V Operation	18FXXK80 parts – 5V operation 18LFXXK80 parts – 3.3V operation	Yes	Yes
nanoWatt XLP	Yes	No	No
Regulator	18FXXK80 parts – Yes 18LFXXK80 parts – No	No	No
Low-Power BOR	Yes	No	No
A/D Converter	12-bit signed differential	10-bit	10-bit
A/D Channels	28-pin devices – 8 Channels 40 and 44-pin devices – 11 Channels	8 Channels for 28-pin devices/ 11 Channels for 40 and 44-pin devices	8 Channels for 28-pin devices/ 11 Channels for 40 and 44-pin devices
Internal Temp Sensor	Yes	No	No
EUSART	Тwo	One	One
Comparators	Two	28-pin devices – None 40 and 44-pin devices – Two	28-pin devices – None 40 and 44-pin devices – Two
Oscillator Options	14	Nine	Nine
Ultra Low-Power Wake-up (ULPW)	Yes	No	No
Adjustable Slew Rate for I/O	Yes	No	No
PLL	Available for all oscillator options	Available only for high-speed crystal and internal oscillator	Available only for high-speed crystal and internal oscillator
TXM Modulator	No	No	No

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent			
From	Name				
	Company				
	Address				
	City / State / ZIP / Country				
	Telephone: ()	FAX: ()			
Appli	cation (optional):				
Woul	d you like a reply?YN				
Devid	ce: PIC18F66K80 Family	Literature Number: DS39977F			
Ques	stions:				
1. What are the best features of this document?					
_					
_					
2. ⊦	2. How does this document meet your hardware and software development needs?				
_					
- 3. E	3. Do you find the organization of this document easy to follow? If not, why?				
	, , , , , , , , , , , , , , , , , , , ,				
_					
4. V	What additions to the document do you think would enhar	nce the structure and subject?			
_					
5. V	5. What deletions from the document could be made without affecting the overall usefulness?				
_					
6. ls	s there any incorrect or misleading information (what and	where)?			
_					
_					
7. ⊦	low would you improve this document?				
_					
_					