

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	ECANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf25k80-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 4-3: PMD0: PERIPHERAL MODULE DISABLE REGISTER 0

R/W-0	R/W-0 R/W-0 R/W-0 R/W-0 F				R/W-0	R/W-0	R/W-0					
CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	UART2MD	UART1MD	SSPMD					
bit 7				bit 0								
Legend:												
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'									
-n = Value at P	Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			iown					

bit 7	CCP5MD: CCP5 Module Disable bit
	 1 = The CCP5 module is disabled; all CCP5 registers are held in Reset and are not writable 0 = The CCP5 module is enabled
bit 6	CCP4MD: CCP4 Module Disable bit
	 1 = The CCP4 module is disabled; all CCP4 registers are held in Reset and are not writable 0 = The CCP4 module is enabled
bit 5	CCP3MD: CCP3 Module Disable bit
	 1 = The CCP3 module is disabled; all CCP3 registers are held in Reset and are not writable 0 = The CCP3 module is enabled
bit 4	CCP2MD: CCP2 Module Disable bit
	 1 = The CCP2 module is disabled; all CCP2 registers are held in Reset and are not writable 0 = The CCP2 module is enabled
bit 3	CCP1MD: ECCP1 Module Disable bit
	 1 = The ECCP1 module is disabled; all ECCP1 registers are held in Reset and are not writable 0 = The ECCP1 module is enabled
bit 2	UART2MD: EUSART2 Module Disable bit
	 1 = The USART2 module is disabled; all USART2 registers are held in Reset and are not writable 0 = The USART2 module is enabled
bit 1	UART1MD: EUSART1 Module Disable bit
	 1 = The USART1 module is disabled; all USART1 registers are held in Reset and are not writable 0 = The USART1 module is enabled
bit 0	SSPMD: MSSP Module Disable bit 1 = The MSSP module is disabled; all SSP registers are held in Reset and are not writable 0 = The MSSP module is enabled

6.1 Program Memory Organization

PIC18 microcontrollers implement a 21-bit Program Counter (PC) that is capable of addressing a 2-Mbyte program memory space. Accessing a location between the upper boundary of the physically implemented memory and the 2-Mbyte address will return all '0's (a NOP instruction).

The entire PIC18F66K80 family offers a range of on-chip Flash program memory sizes, from 32 Kbytes (16,384 single-word instructions) to 64 Kbytes (32,768 single-word instructions).

- PIC18F25K80, PIC18F45K80 and PIC18F65K80 32 Kbytes of Flash memory, storing up to 16,384 single-word instructions
- PIC18F26K80, PIC18F46K80 and PIC18F66K80 64 Kbytes of Flash memory, storing up to 32,768 single-word instructions

The program memory maps for individual family members are shown in Figure 6-1.

6.1.1 HARD MEMORY VECTORS

All PIC18 devices have a total of three hard-coded return vectors in their program memory space. The Reset vector address is the default value to which the Program Counter returns on all device Resets. It is located at 0000h.

PIC18 devices also have two interrupt vector addresses for handling high-priority and low-priority interrupts. The high-priority interrupt vector is located at 0008h and the low-priority interrupt vector is at 0018h. The locations of these vectors are shown, in relation to the program memory map, in Figure 6-2.

FIGURE 6-2: HARD VECTOR FOR PIC18F66K80 FAMILY DEVICES

	Reset Vector	0000h						
	High-Priority Interrupt Vector	0008h						
	Low-Priority Interrupt Vector	0018h						
	On-Chip Program Memory							
	Read '0'							
		1FFFFFh						
Legend	 (Top of Memory) represen of on-chip program memo Figure 6-1 for device-spec Shaded area represents u memory. Areas are not sh 	(Top of Memory) represents upper boundary of on-chip program memory space (see Figure 6-1 for device-specific values). Shaded area represents unimplemented memory. Areas are not shown to scale.						

10.9 Context Saving During Interrupts

During interrupts, the return PC address is saved on the stack. Additionally, the WREG, STATUS and BSR registers are saved on the Fast Return Stack. If a fast return from interrupt is not used (see **Section 6.3 "Data Memory Organization"**), the user may need to save the WREG, STATUS and BSR registers on entry to the Interrupt Service Routine (ISR). Depending on the user's application, other registers also may need to be saved.

Example 10-1 saves and restores the WREG, STATUS and BSR registers during an Interrupt Service Routine.

EXAMPLE 10-1: SAVING STATUS, WREG AND BSR REGISTERS IN RAM

MOVWF MOVFF MOVFF ;	W_TEMP STATUS, STATUS_TEMP BSR, BSR_TEMP	; W_TEMP is in virtual bank ; STATUS_TEMP located anywhere ; BSR_TMEP located anywhere
; USER	ISR CODE	
;		
MOVFF	BSR_TEMP, BSR	; Restore BSR
MOVF	W_TEMP, W	; Restore WREG
MOVFF	STATUS_TEMP, STATUS	; Restore STATUS

TABLE 10-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP
INTCON3	INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF
PIR1	PSPIP	ADIF	RC1IF	TX1IF	SSPIF	TMR1GIF	TMR2IF	TMR1IF
PIR2	OSCFIF	_	_	_	BCLIF	HLVDIF	TMR3IF	TMR3GIF
PIR3	_	—	RC2IF	TX2IF	CTMUIF	CCP2IF	CCP1IF	—
PIR4	TMR4IF	EEIF	CMP2IF	CMP1IF	_	CCP5IF	CCP4IF	CCP3IF
PIR5	IRXIF	WAKIF	ERRIF	TXB2IF	TXB1IF	TXB0IF	RXB1IF	RXB0IF
PIE1	PSPIE	ADIE	RC1IE	TX1IE	SSPIE	TMR1GIE	TMR2IE	TMR1IE
PIE2	OSCFIE	—	_	_	BCLIE	HLVDIE	TMR3IE	TMR3GIE
PIE3	_	—	RC2IE	TX2IE	CTMUIE	CCP2IE	CCP1IE	—
PIE4	TMR4IE	EEIE	CCP2IE	CMP1IE	—	CCP5IE	CCP4IE	CCP3IE
PIE5	IRXIE	WAKIE	ERRIE	TXB2IE	TXB1IE	TXB0IE	RXB1IE	RXB0IE
IPR1	PSPIP	ADIP	RC1IP	TX1IP	SSPIP	TMR1GIP	TMR2IP	TMR1IP
IPR2	OSCFIP	—	_	_	BCLIP	HLVDIP	TMR3IP	TMR3GIP
IPR3	_	—	RC2IP	TX2IP	CTMUIP	CCP2IP	CCP1IP	—
IPR4	TMR4IP	EEIP	CMP2IP	CMP1IP	_	CCP5IP	CCP4IP	CCP3IP
IPR5	IRXIP	WAKIP	ERRIP	TXB2IP	TXB1IP	TXB0IP	RXB1IP	RXB0IP
RCON	IPEN	SBOREN	CM	RI	TO	PD	POR	BOR

Legend: Shaded cells are not used by the interrupts.

13.1 Timer0 Operation

Timer0 can operate as either a timer or a counter. The mode is selected with the TOCS bit (TOCON<5>). In Timer mode (TOCS = 0), the module increments on every clock by default unless a different prescaler value is selected (see **Section 13.3 "Prescaler"**). If the TMR0 register is written to, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.

The Counter mode is selected by setting the T0CS bit (= 1). In this mode, Timer0 increments either on every rising edge or falling edge of the T0CKI pin. The incrementing edge is determined by the Timer0 Source Edge Select bit, T0SE (T0CON<4>); clearing this bit selects the rising edge. Restrictions on the external clock input are discussed below.

An external clock source can be used to drive Timer0; however, it must meet certain requirements to ensure that the external clock can be synchronized with the internal phase clock (Tosc). There is a delay between synchronization and the onset of incrementing the timer/counter.

13.2 Timer0 Reads and Writes in 16-Bit Mode

TMR0H is not the actual high byte of Timer0 in 16-bit mode. It is actually a buffered version of the real high byte of Timer0, which is not directly readable nor writable. (See Figure 13-2.) TMR0H is updated with the contents of the high byte of Timer0 during a read of TMR0L. This provides the ability to read all 16 bits of Timer0 without having to verify that the read of the high and low byte were valid, due to a rollover between successive reads of the high and low byte.

Similarly, a write to the high byte of Timer0 must also take place through the TMR0H Buffer register. The high byte is updated with the contents of TMR0H when a write occurs to TMR0L. This allows all 16 bits of Timer0 to be updated at once.

FIGURE 13-1: TIMER0 BLOCK DIAGRAM (8-BIT MODE)

FIGURE 13-2: TIMER0 BLOCK DIAGRAM (16-BIT MODE)

16.5.2 TIMER3 GATE SOURCE SELECTION

The Timer3 gate source can be selected from one of four different sources. Source selection is controlled by the T3GSS<1:0> bits (T3GCON<1:0>). The polarity for each available source is also selectable and is controlled by the T3GPOL bit (T3GCON<6>).

|--|

T3GSS<1:0>	Timer3 Gate Source
00	Timerx Gate Pin
01	TMR4 to Match PR4 (TMR4 increments to match PR4)
10	Comparator 1 Output (comparator logic high output)
11	Comparator 2 Output (comparator logic high output)

16.5.2.1 T3G Pin Gate Operation

The T3G pin is one source for Timer3 gate control. It can be used to supply an external source to the Timerx gate circuitry.

16.5.2.2 Timer4 Match Gate Operation

The TMR4 register will increment until it matches the value in the PR4 register. On the very next increment cycle, TMR4 will be reset to 00h. When this Reset occurs, a low-to-high pulse will automatically be generated and internally supplied to the Timerx gate circuitry. The pulse will remain high for one instruction cycle and will return back to a low state until the next match.

Depending on T3GPOL, Timerx increments differently when TMR4 matches PR4. When T3GPOL = 1, Timer3 increments for a single instruction cycle following a TMR4 match with PR4. When T3GPOL = 0, Timer3 increments continuously, except for the cycle following the match, when the gate signal goes from low-to-high.

16.5.2.3 Comparator 1 Output Gate Operation

The output of Comparator 1 can be internally supplied to the Timer3 gate circuitry. After setting up Comparator 1 with the CM1CON register, Timer3 will increment depending on the transitions of the CMP1OUT (CMSTAT<6>) bit.

16.5.2.4 Comparator 2 Output Gate Operation

The output of Comparator 2 can be internally supplied to the Timer3 gate circuitry. After setting up Comparator 2 with the CM2CON register, Timer3 will increment depending on the transitions of the CMP2OUT (CMSTAT<7>) bit.

16.5.3 TIMER3 GATE TOGGLE MODE

When Timer3 Gate Toggle mode is enabled, it is possible to measure the full cycle length of a Timer3 gate signal, as opposed to the duration of a single level pulse.

The Timer3 gate source is routed through a flip-flop that changes state on every incrementing edge of the signal. (For timing details, see Figure 16-3.)

The T3GVAL bit will indicate when the Toggled mode is active and the timer is counting.

Timer3 Gate Toggle mode is enabled by setting the T3GTM bit (T3GCON<5>). When the T3GTM bit is cleared, the flip-flop is cleared and held clear. This is necessary in order to control which edge is measured.

FIGURE 16-3: TIMER3 GATE TOGGLE MODE

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0	
bit 7		•		•			bit 0	
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkı	nown	
bit 7-2	ITRIM<5:0>:	Current Source	e Trim bits					
	011111 = Maximum positive change (+62% typ.) from nominal current							
	011110							
	000001 = Minimum positive change (+2% typ.) from nominal current 000000 = Nominal current output specified by IRNG<1:0>							
	111111 = Minimum negative change (-2% typ.) from nominal current							
	•							
	•							
	100010	vinum pogativ	o chango (62)	% two) from no	minal current			
100001 = Maximum negative change (-02% typ.) from nominal current								
bit 1-0	IRNG<1:0>: (Current Source	Range Select	bits				
	11 = 100 x Ba	ase Current						
	10 = 10 x Bas	se Current						
	01 = Base Cu	urrent level (0.5	5 μA nominal)					

REGISTER 18-3: CTMUICON: CTMU CURRENT CONTROL REGISTER

00 =Current source is disabled

EXAMPLE 18-3: CAPACITANCE CALIBRATION ROUTINE

```
#include "pl8cxxx.h"
#define COUNT 25
                                          //@ 8MHz INTFRC = 62.5 us.
#define ETIME COUNT*2.5
                                          //time in uS
#define DELAY for(i=0;i<COUNT;i++)</pre>
#define ADSCALE 1023
                                         //for unsigned conversion 10 sig bits
#define ADREF 3.3
                                         //Vdd connected to A/D Vr+
#define RCAL .027
                                         //R value is 4200000 (4.2M)
                                          //scaled so that result is in
                                          //1/100th of uA
int main(void)
{
    int i;
   int j = 0;
                                          //index for loop
   unsigned int Vread = 0;
   float CTMUISrc, CTMUCap, Vavg, VTot, Vcal;
//assume CTMU and A/D have been setup correctly
//see Example 25-1 for CTMU & A/D setup
setup();
CTMUCONHbits.CTMUEN = 1;
                                         //Enable the CTMU
    for(j=0;j<10;j++)</pre>
    {
        CTMUCONHbits.IDISSEN = 1;
                                         //drain charge on the circuit
        DELAY;
                                         //wait 125us
        CTMUCONHbits.IDISSEN = 0;
                                         //end drain of circuit
        CTMUCONLbits.EDG1STAT = 1;
                                         //Begin charging the circuit
                                         //using CTMU current source
        DELAY;
                                          //wait for 125us
        CTMUCONLbits.EDG1STAT = 0;
                                         //Stop charging circuit
        PIR1bits.ADIF = 0;
                                         //make sure A/D Int not set
        ADCON0bits.GO=1;
                                         //and begin A/D conv.
        while(!PIR1bits.ADIF);
                                         //Wait for A/D convert complete
        Vread = ADRES;
                                         //Get the value from the A/D
        PIR1bits.ADIF = 0;
                                         //Clear A/D Interrupt Flag
        VTot += Vread;
                                         //Add the reading to the total
    }
   Vavg = (float)(VTot/10.000);
                                         //Average of 10 readings
   Vcal = (float)(Vavg/ADSCALE*ADREF);
                                          //CTMUISrc is in 1/100ths of uA
    CTMUISrc = Vcal/RCAL;
    CTMUCap = (CTMUISrc*ETIME/Vcal)/100;
}
```

20.4.6 PROGRAMMABLE DEAD-BAND DELAY MODE

In half-bridge applications, where all power switches are modulated at the PWM frequency, the power switches normally require more time to turn off than to turn on. If both the upper and lower power switches are switched at the same time (one turned on and the other turned off), both switches may be on for a short period until one switch completely turns off. During this brief interval, a very high current (shoot-through current) will flow through both power switches, shorting the bridge supply. To avoid this potentially destructive shoot-through current from flowing during switching, turning on either of the power switches is normally delayed to allow the other switch to completely turn off.

In Half-Bridge mode, a digitally programmable dead-band delay is available to avoid shoot-through current from destroying the bridge power switches. The delay occurs at the signal transition from the non-active state to the active state. For an illustration, see Figure 20-14. The lower seven bits of the associated ECCP1DEL register (Register 20-4) set the delay period in terms of microcontroller instruction cycles (TcY or 4 Tosc).

FIGURE 20-15: EXAMPLE OF HALF-BRIDGE APPLICATIONS

REGISTER 21-2: SSPCON1: MSSP CONTROL REGISTER 1 (SPI MODE)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
WCOL	SSPOV ⁽¹⁾	SSPEN ⁽²⁾	CKP	SSPM3 ⁽³⁾	SSPM2 ⁽³⁾	SSPM1 ⁽³⁾	SSPM0 ⁽³⁾		
bit 7							bit 0		
Legend:									
R = Reada	able bit	W = Writable b	oit	U = Unimplem	nented bit, read	l as '0'			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 7	WCOL: Write	Collision Detec	t bit writton while	it is still transm	itting the provid	ous word (musi	t be cleared in		
	software) 0 = No collisio	on	whiten while						
bit 6	SSPOV: Rece	eive Overflow In	dicator bit ⁽¹⁾						
	 SPI Slave mode: 1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. The user must read the SSPBUF, even if only transmitting data, to avoid setting overflow (must be cleared in software). 0 = No overflow 								
bit 5	SSPEN: Mast	SSPEN: Master Synchronous Serial Port Enable bit ⁽²⁾							
	1 = Enables tł 0 = Disables t	1 = Enables the serial port and configures SCK, SDO, SDI and \overline{SS} as serial port pins 0 = Disables the serial port and configures these pins as I/O port pins							
bit 4	CKP: Clock P	olarity Select bi	t						
	1 = Idle state 0 = Idle state	 1 = Idle state for clock is a high level 0 = Idle state for clock is a low level 							
bit 3-0	SSPM<3:0>:	Master Synchro	nous Serial F	Port Mode Selec	t bits ⁽³⁾				
	1010 = SPI Master mode: clock = Fosc/8 0101 = SPI Slave mode: clock = SCK pin; <u>SS</u> pin control disabled; <u>SS</u> can be used as I/O pin 0100 = SPI Slave mode: clock = SCK pin; <u>SS</u> pin control enabled 0011 = SPI Master mode: clock = TMR2 output/2 0010 = SPI Master mode: clock = Fosc/64 0001 = SPI Master mode: clock = Fosc/16 0000 = SPI Master mode: clock = Fosc/4								
Note 1:	In Master mode, t writing to the SSP	he overflow bit BUF register.	is not set sind	ce each new rec	eption (and tra	nsmission) is ir	nitiated by		

- 2: When enabled, these pins must be properly configured as inputs or outputs.
- **3:** Bit combinations not specifically listed here are either reserved or implemented in I²C mode only.

21.3.6 MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 1, Figure 21-2) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "Line Activity Monitor" mode.

The clock polarity is selected by appropriately programming the CKP bit (SSPCON1<4>). This then, would give waveforms for SPI communication as

shown in Figure 21-3, Figure 21-5 and Figure 21-6, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user-programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum data rate (at 64 MHz) of 16 Mbps.

Figure 21-3 shows the waveforms for Master mode. When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.

22.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is one of two serial I/O modules. (Generically, the EUSART is also known as a Serial Communications Interface or SCI.)

The EUSART can be configured as a full-duplex, asynchronous system that can communicate with peripheral devices, such as CRT terminals and personal computers. It can also be configured as a half-duplex synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs, etc.

The Enhanced USARTx modules implement additional features, including automatic baud rate detection and calibration, automatic wake-up on Sync Break reception and 12-bit Break character transmit. These make it ideally suited for use in Local Interconnect Network bus (LIN/J2602 bus) systems.

All members of the PIC18F66K80 family are equipped with two independent EUSART modules, referred to as EUSART1 and EUSART2. They can be configured in the following modes:

- Asynchronous (full duplex) with:
 - Auto-wake-up on character reception
 - Auto-baud calibration
- 12-bit Break character transmission
- Synchronous Master (half duplex) with selectable clock polarity
- Synchronous Slave (half duplex) with selectable clock polarity

The pins of EUSART1 and EUSART2 are multiplexed with the functions with the following ports, depending on the device pin count. See Table 22-1.

Pin		EUSART1		EUSART2
Count	Port	Pins	Port	Pins
28-pin	PORTC	RC6/TX1/CK1 and RC7/RX1/DT1	PORTB	RB6/PGC/TX2/CK2/KBI2 and RB7/PGD/T3G/RX2/DT2/KBI3
40/44-pin	PORTC	RC6/TX1/CK1 and RC7/RX1/DT1	PORTD	RD6/TX2/CK2/P1C/PSP6 and RD7/RX2/DT2/P1D/PSP7
64-pin	PORTG	RG3/TX1/CK1 and RG0/RX1/DT1	PORTE	RE7/TX2/CK2 and RE6/RX2/DT2

 TABLE 22-1:
 CONFIGURING EUSARTx PINS⁽¹⁾

Note 1: The EUSARTx control will automatically reconfigure the pin from input to output as needed.

In order to configure the pins as an EUSARTx:

- For EUSART1:
 - SPEN (RCSTA1<7>) must be set (= 1)
 - TRISx<x> must be set (= 1)
 - For Asynchronous and Synchronous Master modes, TRISx<x> must be cleared (= 0)
 - For Synchronous Slave mode, TRISx<x> must be set (= 1)

- For EUSART2:
 - SPEN (RCSTA2<7>) must be set (= 1)
 - TRISx<x> must be set (= 1)
 - For Asynchronous and Synchronous Master modes, TRISx<x> must be cleared (= 0)
 - For Synchronous Slave mode, TRISx<x> must be set (= 1)

					SYNC	= 0, BRGH	I = 0, BRG	16 = 1				
BAUD	Fosc = 64.000 MHz			Fosc = 40.000 MHz		Fosc = 20.000 MHz			Fosc	Fosc = 10.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)									
0.3	0.300	0.00	13332	0.300	0.00	8332	0.300	0.02	4165	0.300	0.02	2082
1.2	1.200	0.00	3332	1.200	0.02	2082	1.200	-0.03	1041	1.200	-0.03	520
2.4	2.400	0.00	1666	2.402	0.06	1040	2.399	-0.03	520	2.404	0.16	259
9.6	9.592	-0.08	416	9.615	0.16	259	9.615	0.16	129	9.615	0.16	64
19.2	19.417	1.13	207	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31
57.6	59.701	3.65	68	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10
115.2	121.212	5.22	34	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4

TABLE 22-4: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

		SYNC = 0, BRGH = 0, BRG16 = 1										
BAUD	Fosc = 8.000 MHz		MHz	Fosc = 4.000 MHz			Fosc = 2.000 MHz			Fosc = 1.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	0.300	-0.04	1665	0.300	0.04	832	0.300	-0.16	415	0.300	-0.16	207
1.2	1.201	-0.16	415	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51
2.4	2.403	-0.16	207	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25
9.6	9.615	-0.16	51	9.615	0.16	25	9.615	-0.16	12	_	_	_
19.2	19.230	-0.16	25	19.231	0.16	12	_	_	_	_	_	_
57.6	55.555	3.55	8	62.500	8.51	3	_	_	_	_	_	_
115.2	—	_	_	125.000	8.51	1	_	_	—	_	_	_

				SYNC = 0	, BRGH =	= 1, BRG16	5 = 1 or SY	NC = 1,	BRG16 = 1			
BAUD	Foso	= 64.000	MHz	Fosc	= 40.000) MHz	Fosc	= 20.000) MHz	Fosc = 10.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)									
0.3	0.300	0.00	53332	0.300	0.00	33332	0.300	0.00	16665	0.300	0.00	8332
1.2	1.200	0.00	13332	1.200	0.00	8332	1.200	0.02	4165	1.200	0.02	2082
2.4	2.400	0.00	6666	2.400	0.02	4165	2.400	0.02	2082	2.402	0.06	1040
9.6	9.598	-0.02	1666	9.606	0.06	1040	9.596	-0.03	520	9.615	0.16	259
19.2	19.208	0.04	832	19.193	-0.03	520	19.231	0.16	259	19.231	0.16	129
57.6	57.348	-0.44	278	57.803	0.35	172	57.471	-0.22	86	58.140	0.94	42
115.2	115.108	-0.08	138	114.943	-0.22	86	116.279	0.94	42	113.636	-1.36	21

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1										
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 2.000 MHz			Fosc = 1.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	0.300	-0.01	6665	0.300	0.01	3332	0.300	-0.04	1665	0.300	-0.04	832
1.2	1.200	-0.04	1665	1.200	0.04	832	1.201	-0.16	415	1.201	-0.16	207
2.4	2.400	-0.04	832	2.404	0.16	415	2.403	-0.16	207	2.403	-0.16	103
9.6	9.615	-0.16	207	9.615	0.16	103	9.615	-0.16	51	9.615	-0.16	25
19.2	19.230	-0.16	103	19.231	0.16	51	19.230	-0.16	25	19.230	-0.16	12
57.6	57.142	0.79	34	58.824	2.12	16	55.555	3.55	8	—	_	_
115.2	117.647	-2.12	16	111.111	-3.55	8	_	—	—	_	—	—

R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	R/W-x	R/W-x	R/W-x
TRIGSEL1	TRIGSEL0	VCFG1	VCFG0	VNCFG	CHSN2	CHSN1	CHSN0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7-6 bit 5-4	TRIGSEL<1:0 11 = Selects t 10 = Selects t 01 = Selects t 00 = Selects t VCFG<1:0>: . 11 = Internal 10 = Internal 01 = External 00 = AVDD	D>: Special Trig the special trigg the special trigg the special trigg A/D VREF+ Cor VREF+ (4.1V) VREF+ (2.0V) VREF+	gger Select bits ger from the Co ger from the Ti ger from the C ger from the Eo nfiguration bits	S CP2 mer1 TMU CCP1			
bit 3	VNCFG: A/D 1 = External 0 = AVss	VREF- Configui VREF	ation bit				
bit 2-0	CHSN<2:0>: 111 = Channe 110 = Channe 101 = Channe 011 = Channe 011 = Channe 010 = Channe 001 = Channe	Analog Negativ el 07 (AN6) el 06 (AN5) el 05 (AN4) el 04 (AN3) el 03 (AN2) el 03 (AN2) el 02 (AN1) el 01 (AN0) el 00 (AVss)	ve Channel Se	lect bits			

REGISTER 23-2: ADCON1: A/D CONTROL REGISTER 1

23.8 Use of the Special Event Triggers

A/D conversion can be started by the Special Event Trigger of any of these modules:

- CCP2 Requires CCP2M<3:0> bits (CCP2CON<3:0>) set at '1011'(†)
- ECCP1
- CTMU Requires the setting of the CTTRIG bit (CTMUCONH<0>)
- Timer1
- To start an A/D conversion:
- The A/D module must be enabled (ADON = 1)
- · The appropriate analog input channel selected
- The minimum acquisition period set one of these ways:
 - Timing provided by the user
 - Selection made of an appropriate TACQ time

With these conditions met, the trigger sets the GO/DONE bit and the A/D acquisition starts.

If the A/D module is not enabled (ADON = 0), the module ignores the Special Event Trigger.

Note: With an ECCP1 or CCP2 trigger, Timer1 or Timer3 is cleared. The timers reset to automatically repeat the A/D acquisition period with minimal software overhead (moving ADRESH:ADRESL to the desired location). If the A/D module is not enabled, the Special Event Trigger is ignored by the module, but the timer's counter resets.

23.9 Operation in Power-Managed Modes

The selection of the automatic acquisition time and A/D conversion clock is determined, in part, by the clock source and frequency while in a power-managed mode.

If the A/D is expected to operate while the device is in a power-managed mode, the ACQT<2:0> and ADCS<2:0> bits in ADCON2 should be updated in accordance with the power-managed mode clock that will be used.

After the power-managed mode is entered (either of the power-managed Run modes), an A/D acquisition or conversion may be started. Once an acquisition or conversion is started, the device should continue to be clocked by the same power-managed mode clock source until the conversion has been completed. If desired, the device may be placed into the corresponding power-managed Idle mode during the conversion.

If the power-managed mode clock frequency is less than 1 MHz, the A/D RC clock source should be selected.

Operation in Sleep mode requires that the A/D RC clock be selected. If bits, ACQT<2:0>, are set to '000' and a conversion is started, the conversion will be delayed one instruction cycle to allow execution of the SLEEP instruction and entry into Sleep mode. The IDLEN and SCS<1:0> bits in the OSCCON register must have already been cleared prior to starting the conversion.

27.2 CAN Module Registers

Note: Not all CAN registers are available in the Access Bank.

There are many control and data registers associated with the CAN module. For convenience, their descriptions have been grouped into the following sections:

- Control and Status Registers
- Dedicated Transmit Buffer Registers
- Dedicated Receive Buffer Registers
- Programmable TX/RX and Auto RTR Buffers
- Baud Rate Control Registers
- I/O Control Register
- Interrupt Status and Control Registers

Detailed descriptions of each register and their usage are described in the following sections.

27.2.1 CAN CONTROL AND STATUS REGISTERS

The registers described in this section control the overall operation of the CAN module and show its operational status.

REGISTER 27-9: TXBnEIDL: TRANSMIT BUFFER 'n' EXTENDED IDENTIFIER REGISTERS, I OW BYTE $[0 \le n \le 2]$

			≥ ∠]				
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 EID<7:0>: Extended Identifier bits (not used when transmitting standard identifier message)

REGISTER 27-10: TXBnDm: TRANSMIT BUFFER 'n' DATA FIELD BYTE 'm' REGISTERS $[0 \le n \le 2, 0 \le m \le 7]$

| R/W-x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TXBnDm7 | TXBnDm6 | TXBnDm5 | TXBnDm4 | TXBnDm3 | TXBnDm2 | TXBnDm1 | TXBnDm0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 TXBnDm<7:0>: Transmit Buffer n Data Field Byte m bits (where 0 ≤ n < 3 and 0 ≤ m < 8)</th> Each transmit buffer has an array of registers. For example, Transmit Buffer 0 has 7 registers: TXB0D0 to TXB0D7.

REGISTER 27-21: RXERRCNT: RECEIVE ERROR COUNT REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
REC7	REC6	REC5	REC4	REC3	REC2	REC1	REC0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 REC<7:0>: Receive Error Counter bits

This register contains the receive error value as defined by the CAN specifications. When RXERRCNT > 127, the module will go into an error-passive state. RXERRCNT does not have the ability to put the module in "bus-off" state.

EXAMPLE 27-5: READING A CAN MESSAGE

```
; Need to read a pending message from RXBO buffer.
; To receive any message, filter, mask and RXM1:RXM0 bits in RXB0CON registers must be
; programmed correctly.
; Make sure that there is a message pending in RXB0.
                                   ; Does RXB0 contain a message?
BTFSS RXBOCON, RXFUL
BRA
      NoMessage
                                    ; No. Handle this situation...
; We have verified that a message is pending in RXBO buffer.
; If this buffer can receive both Standard or Extended Identifier messages,
; identify type of message received.
BTFSS RXB0SIDL, EXID
                                     ; Is this Extended Identifier?
BRA
       StandardMessage
                                     ; No. This is Standard Identifier message.
                                     ; Yes. This is Extended Identifier message.
; Read all 29-bits of Extended Identifier message.
; Now read all data bytes
MOVFF RXB0DO, MY_DATA_BYTE1
; Once entire message is read, mark the RXBO that it is read and no longer FULL.
      RXB0CON, RXFUL
                                    ; This will allow CAN Module to load new messages
BCF
                                     ; into this buffer.
. . .
```

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
300008h	CONFIG5L		—			CP3	CP2	CP1	CP0
300009h	CONFIG5H	CPD	CPB	-	—	—	—	—	—
30000Ah	CONFIG6L	_	—	_	—	WRT3	WRT2	WRT1	WRT0
30000Bh	CONFIG6H	WRTD	WRTB	WRTC	—	—	—	—	—
30000Ch	CONFIG7L	_	—	-	—	EBTR3	EBTR2	EBTR1	EBTR0
30000Dh	CONFIG7H		EBTRB		_	_	_	_	_

TABLE 28-4: SUMMARY OF CODE PROTECTION REGISTERS

Legend: Shaded cells are unimplemented.

28.6.1 PROGRAM MEMORY CODE PROTECTION

The program memory may be read to, or written from, any location using the table read and table write instructions. The Device ID may be read with table reads. The Configuration registers may be read and written with the table read and table write instructions.

In normal execution mode, the CPx bits have no direct effect. CPx bits inhibit external reads and writes. A block of user memory may be protected from table writes if the WRTx Configuration bit is '0'.

The EBTRx bits control table reads. For a block of user memory with the EBTRx bit set to '0', a table read instruction that executes from within that block is allowed to read. A table read instruction that executes from a location outside of that block is not

allowed to read and will result in reading '0's. Figure 28-7 throughFigure 28-9 illustrate table write and table read protection.

Note: Code protection bits may only be written to a '0' from a '1' state. It is not possible to write a '1' to a bit in the '0' state. Code protection bits are only set to '1' by a full chip erase or block erase function. The full chip erase and block erase functions can only be initiated via ICSP or an external programmer. Refer to the device programming specification for more information.

Register Values	Program Memory	Configuration Bit Settings
		000000h WRTB, EBTRB = 11 0007FFh
		000800h
TBLPTR = 0008FFh		WRT0, EBTR0 = 01
PC = 003FFEh	TBLWT*	003FFFh 004000h
		WRT1, EBTR1 = 11 007FFFh 008000h
PC = 00BFFEh	TBLWT*	WRT2, EBTR2 = 11
		00BFFFh 00C000h
		WRT3, EBTR3 = 11
		00FFFFh
Results: All table writes ar	e disabled to Blockn whenever WR	RTx = 0.

FIGURE 28-7: TABLE WRITE (WRTx) DISALLOWED

COMF	Complement f		CPF	CPFSEQ		Compare f with W, Skip if f = W				
Syntax:	COMF f {,d {,a}}			Synt	ax:	CPFSEQ f {,a}				
Operands:	$0 \leq f \leq 255$			Oper	Operands:		$0 \leq f \leq 255$			
	d ∈ [0,1]						a ∈ [0,1]			
	a ∈ [0,1]			Oper	ation:	(f) - (W),				
Operation:	$f \to \text{dest}$					(unsigned of	(vv) comparison)			
Status Affected:	N, Z			Statu	s Affected:	None	, p ,			
Encoding:	0001	11da ff:	ff ffff	Enco	dina:	0110	001a f	fff	ffff	
Description:	The content complement stored in W stored back	ts of register 'f nted. If 'd' is '0' /. If 'd' is '1', th < in register 'f'	f' are ', the result is e result is (default).	Desc	Description:		Compares the contents of data memory location 'f' to the contents of W by performing an unsigned subtraction.			
	lf 'a' is '0', tl If 'a' is '1', tl GPR bank.	he Access Bai he BSR is use	nk is selected. Ind to select the				If T = W, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction.			
	If 'a' is '0' and set is enabl in Indexed I	nd the extended led, this instruct Literal Offset A	ed instruction ction operates Addressing				If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank.			
	Section 29 Bit-Oriente Literal Offs	.2.3 "Byte-Or ed Instruction set Mode" for	iented and is in Indexed details.				If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See			
Words:	1					Section 29	.2.3 "Byte-0	Driente	ed and	
Cycles:	1					Bit-Oriente	ed Instructio	ons in	Indexed	
Q Cycle Activity:						Literal Off	set Mode" to	or deta	IIS.	
Q1	Q2	Q3	Q4	Word	IS:	1				
Decode	Read register 'f'	Process Data	Write to destination	Cycli	es:	Note: 3 cycles if skip and followed by a 2-word instruction.				
Example:	COME			QC	ycle Activity:					
	COMF	REG, 0, 0			Q1	Q2	Q3		Q4	
Before Instruc	tion = 13h				Decode	Read	Process		No	
After Instructio	on			lfek	in [.]	register T	Data	op	peration	
REG	= 13h			11 51	ιρ. Q1	02	Q3		Q4	
vv	= EGII				No	No	No		No	
					operation	operation	operation	op	peration	
				lf sk	If skip and followed by 2-word instruction:					
					Q1	Q2	Q3	- <u> </u>	Q4	
					operation	operation	operation	or	peration	
					No	No	No		No	
					operation	operation	operation	op	peration	
				Exar	nple:	HERE NEQUAL	CPFSEQ R: :	EG, 0		
					Before Instruc	EQUAL	:			

PC Address W REG	= = =	HERE ? ?	
After Instruction			
If REG	=	W;	
PC	=	Address	(EQUAL)
If REG	≠	W;	
PC	=	Address	(NEQUAL)

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			INCHES			
Dimension	Dimension Limits		NOM	MAX			
Number of Pins	Ν	28					
Pitch	е	.100 BSC					
Top to Seating Plane	Α	-	-	.200			
Molded Package Thickness	A2	.120	.135	.150			
Base to Seating Plane	A1	.015	-	-			
Shoulder to Shoulder Width	E	.290	.310	.335			
Molded Package Width	E1	.240	.285	.295			
Overall Length	D	1.345	1.365	1.400			
Tip to Seating Plane	L	.110	.130	.150			
Lead Thickness	С	.008	.010	.015			
Upper Lead Width	b1	.040	.050	.070			
Lower Lead Width	b	.014	.018	.022			
Overall Row Spacing §	eB	_	-	.430			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B