

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Dectano	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	ECANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf25k80t-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Num	Pin Type	Buffer Type	Description		
RD6/P1C/PSP6	4					
RD6		I/O	ST/ CMOS	Digital I/O.		
P1C		0	CMOS	Enhanced PWM1 Output C.		
PSP6		I/O	ST/ CMOS	Parallel Slave Port data.		
RD7/P1D/PSP7	5					
RD7		I/O	ST/ CMOS	Digital I/O.		
P1D		0	CMOS	Enhanced PWM1 Output D.		
PSP7		I/O	ST/ CMOS	Parallel Slave Port data.		
Legend: I ² C™ = I ² C ST = Schr I = Input	nitt Trigge	-		CMOS = CMOS compatible input or output OS levels Analog = Analog input O = Output		

TABLE 1-6: PIC18F6XK80 PINOUT I/O DESCRIPTIONS (CONTINUED))
---	----

I = Input P = Power

NOTES:

8.3 Reading the Data EEPROM Memory

To read a data memory location, the user must write the address to the EEADRH:EEADR register pair, clear the EEPGD control bit (EECON1<7>) and then set control bit, RD (EECON1<0>). The data is available after one instruction cycle, in the EEDATA register. It can be read after one NOP instruction. EEDATA will hold this value until another read operation or until it is written to by the user (during a write operation).

The basic process is shown in Example 8-1.

8.4 Writing to the Data EEPROM Memory

To write an EEPROM data location, the address must first be written to the EEADRH:EEADR register pair and the data written to the EEDATA register. The sequence in Example 8-2 must be followed to initiate the write cycle.

The write will not begin if this sequence is not exactly followed (write 55h to EECON2, write 0AAh to EECON2, then set WR bit) for each byte. It is strongly recommended that interrupts be disabled during this code segment.

Additionally, the WREN bit in EECON1 must be set to enable writes. This mechanism prevents accidental writes to data EEPROM due to unexpected code execution (i.e., runaway programs). The WREN bit should be kept clear at all times, except when updating the EEPROM. The WREN bit is not cleared by hardware. After a write sequence has been initiated, EECON1, EEADRH:EEADR and EEDATA cannot be modified. The WR bit will be inhibited from being set unless the WREN bit is set. The WREN bit must be set on a previous instruction. Both WR and WREN cannot be set with the same instruction.

At the completion of the write cycle, the WR bit is cleared in hardware and the EEPROM Interrupt Flag bit (EEIF) is set. The user may either enable this interrupt or poll this bit; EEIF must be cleared by software.

8.5 Write Verify

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

Note:	Self-write execution to Flash and
	EEPROM memory cannot be done while
	running in LP Oscillator (low-power)
	mode. Executing a self-write will put the
	device into High-Power mode.

11.1.4 ANALOG AND DIGITAL PORTS

Many of the ports multiplex analog and digital functionality, providing a lot of flexibility for hardware designers. PIC18F66K80 family devices can make any analog pin analog or digital, depending on an application's needs. The ports' analog/digital functionality is controlled by the registers: ANCON0 and ANCON1.

Setting these registers makes the corresponding pins analog and clearing the registers makes the ports digital. For details on these registers, see Section 23.0 "12-Bit Analog-to-Digital Converter (A/D) Module"

11.1.5 PORT SLEW RATE

The output slew rate of each port is programmable to select either the standard transition rate, or a reduced transition rate of ten percent of the standard transition time, to minimize EMI. The reduced transition time is the default slew rate for all ports.

REGISTER 11-4: SLRCON: SLEW RATE CONTROL REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	SLRG ⁽¹⁾	SLRF ⁽¹⁾	SLRE ⁽²⁾	SLRD ⁽²⁾	SLRC ⁽²⁾	SLRB	SLRA
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6	SLRG: PORTG Slew Rate Control bit ⁽¹⁾
	 1 = All output pins on PORTG slew at 0.1 the standard rate 0 = All output pins on PORTG slew at standard rate
bit 5	SLRF: PORTF Slew Rate Control bit ⁽¹⁾
	 1 = All output pins on PORTF slew at 0.1 the standard rate 0 = RAll output pins on PORTF slew at standard rate
bit 4	SLRE: PORTE Slew Rate Control bit ⁽²⁾
	 1 = All output pins on PORTE slew at 0.1 the standard rate 0 = All output pins on PORTE slew at standard rate
bit 3	SLRD: PORTD Slew Rate Control bit ⁽²⁾
	 1 = All output pins on PORTD slew at 0.1 the standard rate 0 = All output pins on PORTD slew at standard rate
bit 2	SLRC: PORTC Slew Rate Control bit ⁽²⁾
	 1 = All output pins on PORTC slew at 0.1 the standard rate 0 = All output pins on PORTC slew at standard rate
bit 1	SLRB: PORTB Slew Rate Control bit
	1 = All output pins on PORTB slew at 0.1 the standard rate0 = All output pins on PORTB slew at standard rate
bit 0	SLRA: PORTA Slew Rate Control bit
	 1 = All output pins on PORTA slew at 0.1 the standard rate 0 = All output pins on PORTA slew at standard rate
Noto 1:	These hits are unimplemented and read back as 60° on 28 pin and $40/44$

- Note 1: These bits are unimplemented and read back as '0' on 28-pin and 40/44-pin devices.
 - **2:** These bits are unimplemented and read back as '0' on 28-pin devices.

Pin Name	Function	TRIS Setting	I/O	I/O Type	Description		
RB0/AN10/C1INA	RB0	0	0	DIG	LATB<0> data output.		
FLT0/INT0		1	Ι	ST	PORTB<0> data input; weak pull-up when RBPU bit is cleared.		
			ANA	A/D Input Channel 10 and Comparator C1+ input. Default input configuration on POR.			
	C1INA ⁽¹⁾	1	Ι	ANA	Comparator 1 Input A.		
	FLT0	х	Ι	ST	Enhanced PWM Fault input for ECCPx.		
	INT0	1	Ι	ST	External Interrupt 0 input.		
RB1/AN8/C1INB/	RB1	0	0	DIG	LATB<1> data output.		
P1B/CTDIN/INT1		1	Ι	ST	PORTB<1> data input; weak pull-up when RBPU bit is cleared.		
	AN8	1	I	ANA	A/D Input Channel 8 and Comparator C2+ input. Default input configuration on POR; not affected by analog output.		
	C1INB ⁽¹⁾	1	Ι	ANA	A Comparator 1 Input B.		
	P1B ⁽¹⁾	0	0	DIG	ECCP1 PWM Output B. May be configured for tri-state during Enhanced PWM shutdown events.		
	CTDIN	1	Ι	ST	CTMU pulse delay input.		
	INT1	1	Ι	ST	External Interrupt 1 input.		
RB2/CANTX/C1OUT/	RB2	0	0	DIG	LATB<2> data output.		
P1C/CTED1/INT2		1	Ι	ST	PORTB<2> data input; weak pull-up when RBPU bit is cleared.		
	CANTX ⁽²⁾	0	0	DIG	CAN bus TX.		
	C10UT ⁽¹⁾	0	0	DIG	Comparator 1 output; takes priority over port data.		
	P1C ⁽¹⁾	0	0	DIG	ECCP1 PWM Output C. May be configured for tri-state during Enhanced PWM.		
	CTED1	х	Ι	ST	CTMU Edge 1 input.		
	INT2	1	Ι	ST	External Interrupt 2.		
RB3/CANRX/	RB3	0	0	DIG	LATB<3> data output.		
C2OUT/P1D/ CTED2/INT3		1	Ι	ST	PORTB<3> data input; weak pull-up when RBPU bit is cleared.		
CTED2/INTS	CANRX ⁽²⁾	1	Ι	ST	CAN bus RX.		
	C2OUT ⁽¹⁾	х	-	ST	CTMU Edge 2 input.		
	P1D ⁽¹⁾	0	0	DIG	ECCP1 PWM Output D. May be configured for tri-state during Enhanced PWM.		
	CTED2	х	Ι	ST	CTMU Edge 2 input.		
	INT3	1	Ι	ST	External Interrupt 3 input.		

TABLE 11-3: PORTB FUNCTIONS

Legend: O = Output; I = Input; ANA = Analog Signal; DIG = CMOS Output; ST = Schmitt Trigger Buffer Input; x = Don't care (TRIS bit does not affect port direction or is overridden for this option)

Note 1: This pin assignment is only available for 28-pin devices (PIC18F2XK80).

2: This is the default pin assignment for CANRX and CANTX when the CANMX Configuration bit is set.

3: This is the default pin assignment for TOCKI when the TOCKMX Configuration bit is set.

4: This is the default pin assignment for T3CKI for 28, 40 and 44-pin devices. This is the alternate pin assignment for T3CKI for 64-pin devices when T3CKMX is cleared.

12.5 Carrier Source Polarity Select

The signal provided from any selected input source for the carrier high and carrier low signals can be inverted. Inverting the signal for the carrier high source is enabled by setting the MDCHPOL bit of the MDCARH register. Inverting the signal for the carrier low source is enabled by setting the MDCLPOL bit of the MDCARL register.

12.6 Carrier Source Pin Disable

Some peripherals assert control over their corresponding output pin when they are enabled. For example, when the CCP1 module is enabled, the output of CCP1 is connected to the CCP1 pin.

This default connection to a pin can be disabled by setting the MDCHODIS bit in the MDCARH register for the carrier high source and the MDCLODIS bit in the MDCARL register for the carrier low source.

12.7 Programmable Modulator Data

The MDBIT of the MDCON register can be selected as the source for the modulator signal. This gives the user the ability to program the value used for modulation.

12.8 Modulator Source Pin Disable

The modulator source default connection to a pin can be disabled by setting the MDSODIS bit in the MDSRC register.

12.9 Modulated Output Polarity

The modulated output signal provided on the MDOUT pin can also be inverted. Inverting the modulated output signal is enabled by setting the MDOPOL bit of the MDCON register.

12.10 Slew Rate Control

When modulated data streams of 20 MHz or greater are required, the slew rate limitation on the output port pin can be disabled. The slew rate limitation can be removed by clearing the MDSLR bit in the MDCON register.

12.11 Operation In Sleep Mode

The DSM module is not affected by Sleep mode. The DSM can still operate during Sleep if the Carrier and Modulator input sources are also still operable during Sleep.

12.12 Effects of a Reset

Upon any device Reset, the Data Signal Modulator module is disabled. The user's firmware is responsible for initializing the module before enabling the output. The registers are reset to their default values.

17.0 TIMER4 MODULES

The Timer4 timer modules have the following features:

- Eight-bit Timer register (TMR4)
- Eight-bit Period register (PR4)
- Readable and writable (all registers)
- Software programmable prescaler (1:1, 1:4, 1:16)
- Software programmable postscaler (1:1 to 1:16)
- · Interrupt on TMR4 match of PR4

The Timer4 modules have a control register shown in Register 17-1. Timer4 can be shut off by clearing control bit, TMR4ON (T4CON<2>), to minimize power consumption. The prescaler and postscaler selection of Timer4 also are controlled by this register. Figure 17-1 is a simplified block diagram of the Timer4 modules.

17.1 Timer4 Operation

Timer4 can be used as the PWM time base for the PWM mode of the ECCP modules. The TMR4 registers are readable and writable, and are cleared on any device Reset. The input clock (Fosc/4) has a prescale option of 1:1, 1:4 or 1:16, selected by control bits, T4CKPS<1:0> (T4CON<1:0>). The match output of

TMR4 goes through a four-bit postscaler (that gives a 1:1 to 1:16 inclusive scaling) to generate a TMR4 interrupt, latched in the flag bit, TMR4IF. Table 17-1 gives each module's flag bit.

The interrupt can be enabled or disabled by setting or clearing the Timer4 Interrupt Enable bit (TMR4IE), shown in Table 17-1.

The prescaler and postscaler counters are cleared when any of the following occurs:

- · A write to the TMR4 register
- · A write to the T4CON register
- Any device Reset Power-on Reset (POR), MCLR Reset, Watchdog Timer Reset (WDTR) or Brown-out Reset (BOR)

A TMR4 is not cleared when a T4CON is written.

Note: The CCP and ECCP modules use Timers, 1 through 4, for some modes. The assignment of a particular timer to a CCP/ECCP module is determined by the Timer to CCP enable bits in the CCPTMRS register. For more details, see Register 20-2 and Register 19-2.

REGISTER 17-1: T4CON: TIMER4 CONTROL REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR4ON	T4CKPS1	T4CKPS0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'				
bit 6-3	T4OUTPS<3:0>: Timer4 Output Postscale Select bits				
	0000 = 1:1 Postscale				
	0001 = 1:2 Postscale				
	•				
	•				
	•				
	1111 = 1:16 Postscale				
bit 2	TMR4ON: Timer4 On bit				
	1 = Timer4 is on				
	0 = Timer4 is off				
bit 1-0	T4CKPS<1:0>: Timer4 Clock Prescale Select bits				
	00 = Prescaler is 1				
	01 = Prescaler is 4				
	1x = Prescaler is 16				

21.3.6 MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 1, Figure 21-2) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "Line Activity Monitor" mode.

The clock polarity is selected by appropriately programming the CKP bit (SSPCON1<4>). This then, would give waveforms for SPI communication as

shown in Figure 21-3, Figure 21-5 and Figure 21-6, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user-programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum data rate (at 64 MHz) of 16 Mbps.

Figure 21-3 shows the waveforms for Master mode. When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.

22.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is one of two serial I/O modules. (Generically, the EUSART is also known as a Serial Communications Interface or SCI.)

The EUSART can be configured as a full-duplex, asynchronous system that can communicate with peripheral devices, such as CRT terminals and personal computers. It can also be configured as a half-duplex synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs, etc.

The Enhanced USARTx modules implement additional features, including automatic baud rate detection and calibration, automatic wake-up on Sync Break reception and 12-bit Break character transmit. These make it ideally suited for use in Local Interconnect Network bus (LIN/J2602 bus) systems.

All members of the PIC18F66K80 family are equipped with two independent EUSART modules, referred to as EUSART1 and EUSART2. They can be configured in the following modes:

- Asynchronous (full duplex) with:
 - Auto-wake-up on character reception
 - Auto-baud calibration
- 12-bit Break character transmission
- Synchronous Master (half duplex) with selectable clock polarity
- Synchronous Slave (half duplex) with selectable clock polarity

The pins of EUSART1 and EUSART2 are multiplexed with the functions with the following ports, depending on the device pin count. See Table 22-1.

Pin		EUSART1	EUSART2		
Count	Port Pins		Port	Pins	
28-pin	PORTC	RC6/TX1/CK1 and RC7/RX1/DT1	PORTB	RB6/PGC/TX2/CK2/KBI2 and RB7/PGD/T3G/RX2/DT2/KBI3	
40/44-pin	PORTC	RC6/TX1/CK1 and RC7/RX1/DT1	PORTD	RD6/TX2/CK2/P1C/PSP6 and RD7/RX2/DT2/P1D/PSP7	
64-pin	PORTG	RG3/TX1/CK1 and RG0/RX1/DT1	PORTE	RE7/TX2/CK2 and RE6/RX2/DT2	

 TABLE 22-1:
 CONFIGURING EUSARTx PINS⁽¹⁾

Note 1: The EUSARTx control will automatically reconfigure the pin from input to output as needed.

In order to configure the pins as an EUSARTx:

- For EUSART1:
 - SPEN (RCSTA1<7>) must be set (= 1)
 - TRISx<x> must be set (= 1)
 - For Asynchronous and Synchronous Master modes, TRISx<x> must be cleared (= 0)
 - For Synchronous Slave mode, TRISx<x> must be set (= 1)

- For EUSART2:
 - SPEN (RCSTA2<7>) must be set (= 1)
 - TRISx<x> must be set (= 1)
 - For Asynchronous and Synchronous Master modes, TRISx<x> must be cleared (= 0)
 - For Synchronous Slave mode, TRISx<x> must be set (= 1)

22.3.4.2 Special Considerations Using the WUE Bit

The timing of WUE and RCxIF events may cause some confusion when it comes to determining the validity of received data. As noted, setting the WUE bit places the EUSARTx in an Idle mode. The wake-up event causes a receive interrupt by setting the RCxIF bit. The WUE bit is cleared after this when a rising edge is seen on RXx/DTx. The interrupt condition is then cleared by reading the RCREGx register. Ordinarily, the data in RCREGx will be dummy data and should be discarded.

The fact that the WUE bit has been cleared (or is still set) and the RCxIF flag is set should not be used as an indicator of the integrity of the data in RCREGx. Users should consider implementing a parallel method in firmware to verify received data integrity.

To assure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process. If a receive operation is not occurring, the WUE bit may then be set just prior to entering the Sleep mode.

FIGURE 22-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING NORMAL OPERATION

OSC1	승규는 다 다 다	을 있는 것을 있을 것을 했다.	pununun.	(NA NA	지금 다른 다른 다음	지나 다른다 다	김 지가 지갑 지갑 지	그 다른다는 다 3	તો સાથે સાથે	지나 다 다 다	지 않으니?
) – 33 sei 6 <u>8</u>	year	;		· · · ·		÷			- Januar (n. 1937)	Kinaned -
9603 B8 ⁹³	ş	******	2							ç	•
	5	2	,		: 2 : 5	3			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · ·	
ex/CEX Ener	3	,	· · · · · · · · · · · · · · · · · · ·	- 41111	THATTAR:::::	iina an taona an taon			MAA	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
1000 100	2		, ,	() (+	1 - S 1 - S		د) () چند و در	
900d9		;	;		••••••••••		Alexand	and allows	an an an th	konsen{	·
	1		*	:		1	a Maria	and configure		Er and the second s	

FIGURE 22-9: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

0803 (www.ia	puhuhuh.	puhihuny		·····	nhhạnh	hhh	· · · · · · · · · · · · · · · · · · ·	2
- vvus 5894 j	945 848 848 	40.00 mmm, 					<u>.</u>	, process 283 1	
XXXII CASA Ş		; ; -	; ; ;			, ;			
eddir (, , , , , , , , , , , , , , , , , , ,			· ····································	: to used tand	· · · · · · · · · · · · · · · · · · ·	
	84.8	89 Conton	d Especielaci 🗍	Stange Sou	36 1	0336070 693	1.49-0966-1986	01740293333	

2. The SUBARD consus in the while the WUH to is set.

24.6 Comparator Interrupts

The comparator interrupt flag is set whenever any of the following occurs:

- · Low-to-high transition of the comparator output
- High-to-low transition of the comparator output
- Any change in the comparator output

The comparator interrupt selection is done by the EVPOL<1:0> bits in the CMxCON register (CMxCON<4:3>).

In order to provide maximum flexibility, the output of the comparator may be inverted using the CPOL bit in the CMxCON register (CMxCON<5>). This is functionally identical to reversing the inverting and non-inverting inputs of the comparator for a particular mode.

An interrupt is generated on the low-to-high or high-tolow transition of the comparator output. This mode of interrupt generation is dependent on EVPOL<1:0> in the CMxCON register. When EVPOL<1:0> = 01 or 10, the interrupt is generated on a low-to-high or high-tolow transition of the comparator output. Once the interrupt is generated, it is required to clear the interrupt flag by software. When EVPOL<1:0> = 11, the comparator interrupt flag is set whenever there is a change in the output value of either comparator. Software will need to maintain information about the status of the output bits, as read from CMSTAT<7:6>, to determine the actual change that occurred.

The CMPxIF<2:0> (PIR4<5:4) bits are the Comparator Interrupt Flags. The CMPxIF bits must be reset by clearing them. Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated. Table 24-2 shows the interrupt generation with respect to comparator input voltages and EVPOL bit settings.

Both the CMPxIE bits (PIE4<5:4>) and the PEIE bit (INTCON<6>) must be set to enable the interrupt. In addition, the GIE bit (INTCON<7>) must also be set. If any of these bits are clear, the interrupt is not enabled, though the CMPxIF bits will still be set if an interrupt condition occurs.

A simplified diagram of the interrupt section is shown in Figure 24-3.

Note: CMPxIF will not be set when EVPOL<1:0> = 00.

CPOL	EVPOL<1:0>	Comparator Input Change	CxOUT Transition	Interrupt Generated
	0.0	VIN+ > VIN-	Low-to-High	No
	00	VIN+ < VIN-	High-to-Low	No
	0.1	VIN+ > VIN-	Low-to-High	Yes
0	01	Vin+ < Vin-	High-to-Low	No
0	1.0	VIN+ > VIN-	Low-to-High	No
	10	VIN+ < VIN-	High-to-Low	Yes
	11	VIN+ > VIN-	Low-to-High	Yes
	11	VIN+ < VIN-	High-to-Low	Yes
	0.0	VIN+ > VIN-	High-to-Low	No
	00	Vin+ < Vin-	Low-to-High	No
	0.1	VIN+ > VIN-	High-to-Low	No
1	01	Vin+ < Vin-	Low-to-High	Yes
1	1.0	VIN+ > VIN-	High-to-Low	Yes
	10	VIN+ < VIN-	Low-to-High	No
	11	VIN+ > VIN-	High-to-Low	Yes
	11	VIN+ < VIN-	Low-to-High	Yes

TABLE 24-2: COMPARATOR INTERRUPT GENERATION

REGISTER 27-24:BnSIDH: TX/RX BUFFER 'n' STANDARD IDENTIFIER REGISTERS,
HIGH BYTE IN RECEIVE MODE $[0 \le n \le 5, TXnEN (BSEL0<n>) = 0]^{(1)}$

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 7	·			· · ·			bit 0
Legend:							
Legend: R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	

bit 7-0 **SID<10:3>:** Standard Identifier bits (if EXIDE (BnSIDL<3>) = 0) Extended Identifier bits, EID<28:21> (if EXIDE = 1).

Note 1: These registers are available in Mode 1 and 2 only.

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SID10 | SID9 | SID8 | SID7 | SID6 | SID5 | SID4 | SID3 |
| bit 7 | • | | | • | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **SID<10:3>:** Standard Identifier bits (if EXIDE (BnSIDL<3>) = 0) Extended Identifier bits, EID<28:21> (if EXIDE = 1).

Note 1: These registers are available in Mode 1 and 2 only.

NOTES:

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
300000h	CONFIG1L	_	XINST	_	SOSCSEL1	SOSCSEL0	INTOSCSEL		RETEN	-1-1 11-1
300001h	CONFIG1H	IESO	FCMEN	_	PLLCFG	FOSC3	FOSC2	FOSC1	FOSC0	00-0 1000
300002h	CONFIG2L	_	BORPWR1	BORWPR0	BORV1	BORV0	BOREN1	BOREN0	PWRTEN	-111 1111
300003h	CONFIG2H	_	WDTPS4	WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDTEN1	WDTEN0	-111 1111
300005h	CONFIG3H	MCLRE	_	_	_	MSSPMSK	T3CKMX ^(1,3)	T0CKMX ⁽¹⁾	CANMX	1 lqql
300006h	CONFIG4L	DEBUG	-	-	BBSIZ0	_	_	_	STVREN	111
300008h	CONFIG5L	_	_	_	_	CP3	CP2	CP1	CP0	1111
300009h	CONFIG5H	CPD	CPB		-	_	_	-		11
30000Ah	CONFIG6L					WRT3	WRT2	WRT1	WRT0	1111
30000Bh	CONFIG6H	WRTD	WRTB	WRTC	_	_	_	_	_	111
30000Ch	CONFIG7L					EBTR3	EBTR2	EBTR1	EBTR0	1111
30000Dh	CONFIG7H		EBTRB							-1
3FFFFEh	DEVID1 ⁽²⁾	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	XXXX XXXX
3FFFFFh	DEVID2 ⁽²⁾	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	XXXX XXXX

TABLE 28-1: CONFIGURATION BITS AND DEVICE IDs

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition. Shaded cells are unimplemented, read as '0'.

Note 1: Implemented only on the 64-pin devices (PIC18F6XK80).

2: See Register 28-13 for DEVID1 values. DEVID registers are read-only and cannot be programmed by the user.

3: Maintain as '0' on 28-pin, 40-pin and 44-pin devices.

моу	'LW	Move Lite	ral to W						
Synta	ax:	MOVLW	MOVLW k						
Operands:		$0 \le k \le 25$	$0 \leq k \leq 255$						
Operation:		$k\toW$	$k \rightarrow W$						
Statu	is Affected:	None							
Enco	oding:	0000	1110	0 kkkk kkkk					
Description:		The eight-	The eight-bit literal 'k' is loaded into W.						
Words:		1	1						
Cycle	es:	1	1						
QC	ycle Activity:								
	Q1	Q2	Q3	6		Q4			
	Decode	Read literal 'k'	Proce Data		W	/rite to W			
Exan		MOVLW	5Ah						
	After Instruction	n							

= 5Ah

W

MOVWF	Move W to	f			
Syntax:	MOVWF	f {,a}			
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in [0,1] \end{array}$				
Operation:	$(W)\tof$				
Status Affected:	None				
Encoding:	0110	111a	fff	f	ffff
Description:	Move data Location 'f' 256-byte ba	can be a	•		
	If 'a' is '0', t If 'a' is '1', t GPR bank.				
	If 'a' is '0' a set is enab in Indexed mode wher Section 29 Bit-Oriente Literal Offs	led, this i Literal Of never f ≤ .2.3 "By ed Instru	nstruct ffset A 95 (5F te-Orie ctions	tion ddre h). S ente s in	operates essing See ed and Indexed
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3			Q4
Decode	Read	Proce			Write
	register 'f'	Data	à	reç	gister 'f'
Example:	MOVWF	REG, 0			
Before Instruc W REG After Instructio	= 4Fh = FFh on				
W REG	= 4Fh = 4Fh				

31.6.2 TIMING CONDITIONS

The temperature and voltages specified in Table 31-5 apply to all timing specifications unless otherwise noted. Figure 31-3 specifies the load conditions for the timing specifications.

TABLE 31-5: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Conditions (unless otherwise stated)
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial
AC CHARACTERISTICS	$-40^{\circ}C \le TA \le +125^{\circ}C$ for extended
	Operating voltage VDD range as described in Section 31.1 and Section 31.3 .

FIGURE 31-3: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units				
Dimensio	n Limits	MIN	NOM	MAX	
Number of Pins	N	64			
Pitch	е		0.50 BSC		
Overall Height	A	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3		0.20 REF		
Overall Width	E		9.00 BSC		
Exposed Pad Width	E2	7.05	7.15	7.50	
Overall Length	D		9.00 BSC		
Exposed Pad Length	D2	7.05	7.15	7.50	
Contact Width	b	0.18	0.25	0.30	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-149B Sheet 2 of 2

Error States452
Form
Stuff Bit
Error Modes State (diagram)453
Error Recognition Mode439
Filter-Mask Truth (table)444
Functional Modes439
Mode 0 (Legacy Mode)439
Mode 1 (Enhanced Legacy Mode)439
Mode 2 (Enhanced FIFO Mode)
Information Processing Time (IPT)449
Lengthening a Bit Period
Listen Only Mode
Loopback Mode
Message Acceptance Filters and Masks
Message Acceptance Mask and Filter Operation 445
Message Reception
Enhanced FIFO Mode
Priority
Time-Stamping
Normal Mode
Oscillator Tolerance
Overview
Phase Buffer Segments
Programming Time Segments
Propagation Segment
Sample Point
Shortening a Bit Period
Synchronization
Hard
Resynchronization
Rules
Synchronization Segment
Time Quanta
Values for ICODE (table)
Effect on Standard PIC18 Instructions
Effects of Power-Managed Modes on Various Clock Sources
63
Electrical Characteristics
Enhanced Capture/Compare/PWM (ECCP)
Capture Mode. See Capture.
Compare Mode. See Compare.
ECCP Mode and Timer Resources
Enhanced PWM Mode271
Auto-Restart
Auto-Shutdown278
Direction Change in Full-Bridge Output Mode 277
Full-Bridge Application
Full-Bridge Mode275
Half-Bridge Application274
Half-Bridge Application Examples281
Half-Bridge Mode274
Output Relationships (Active-High and Active-Low)
272
Output Relationships Diagram273
Programmable Dead-Band Delay
Shoot-Through Current
Start-up Considerations
Outputs and Configuration
Enhanced Capture/Compare/PWM (ECCP) and Timer1/2/3/4
Associated Registers
Enhanced Universal Synchronous Asynchronous Receiver
Transmitter (EUSART). See EUSART.
Equations

16 x 16 Signed Multiplication Algorithm 14	46
16 x 16 Unsigned Multiplication Algorithm 14	
16MHz Clock from 4x PLL Jitter	
A/D Acquisition Time	
A/D Minimum Charging Time	
Calculating the Minimum Required Acquisition Time 36	
Jitter and Total Frequency Error 44	
Resultant Frequency Error 44	47
Errata	. 9
Error Recognition Mode	38
EUSART	
Asynchronous Mode	13
12-Bit Break Transmit and Receive	
Associated Registers, Receive	
Associated Registers, Transmit	45
Auto-Wake-up on Sync Break 34	48
Receiver	46
Setting up 9-Bit Mode with Address Detect 34	46
Transmitter	
Baud Rate Generator	
Operation in Power-Managed Mode	27
Baud Rate Generator (BRG)	
Associated Registers	
Auto-Baud Rate Detect	41
Baud Rate Error, Calculating	38
Baud Rates, Asynchronous Modes	39
High Baud Rate Select (BRGH Bit) 33	
Sampling	
Synchronous Master Mode	
Associated Registers, Receive	
Associated Registers, Transmit	
Reception	
Transmission 3	51
Synchronous Slave Mode	55
Associated Registers, Receive	56
Associated Registers, Transmit	55
Reception	
Transmission	
Extended Instruction Set	55
	~~
ADDFSR	
ADDULNK	
CALLW	
MOVSF	27
MOVSS	28
PUSHL	28
SUBFSR	29
SUBULNK	
External Oscillator Modes	20
	50
Clock Input (EC Modes)	
HS	58
F	
-	
Fail-Safe Clock Monitor 457, 4	
Exiting Operation4	
Interrupts in Power-Managed Modes4	78
POR or Wake from Sleep 4	
WDT During Oscillator Failure	77
Fail-Safe Clock Monitor (FSCM)	57
Fast Register Stack	
1 ast register older	50

DAW	502
DCFSNZ	503
DECF	
DECFSZ	503
Extended Instructions	
Considerations when Enabling	530
Syntax	525
Use with MPLAB IDE Tools	
General Format	
GOTO	
INCF	
INCFSZ	
INFSNZ	
IORLW	
IORWF	
LFSR	
MOVF	
MOVFF	
MOVLB	
MOVEW	
MUVWF	
MULWF	
NEGF NOP	
Opcode Field Descriptions	
POP	
PUSH	
RCALL	
RESET	
RETFIE	
RETLW	
RETURN	
RLCF	
RLNCF	
RRCF	
RRNCF	
SETF	
SETF (Indexed Literal Offset Mode)	531
SLEEP	
Standard Instructions	
SUBFWB	518
SUBLW	
SUBWF	
SUBWFB	
SWAPF	
TBLRD	
TBLWT	
TSTFSZ	
XORLW	
XORWF	524
INTCON Register	
RBIF Bit	177
Inter-Integrated Circuit. See I ² C.	
Internal Oscillator Block	
INTIO Modes	
INTOSC Frequency Drift	
INTOSC Output Frequency	
INTPLL Modes	00
Internal RC Oscillator Use with WDT	170
Internal Voltage Regulator Specifications	
Internet Address	
Interrupt Sources	
A/D Conversion Complete	

Capture Complete (CCP)	. 258
Capture Complete (ECCP)	. 269
Compare Complete (CCP)	
Compare Complete (ECCP)	
ECAN Module	. 453
Interrupt-on-Change (RB7:RB4)	. 177
TMR0 Overflow	. 207
TMR1 Overflow	. 215
TMR2 to PR2 Match (PWM)	. 262
TMR3 Overflow	
TMRx Overflow	. 232
Interrupts	. 147
Associated Registers	. 169
During, Context Saving	
INTx Pin	. 168
PORTB, Interrupt-on-Change	. 168
TMR0	. 168
Interrupts, Flag Bits	
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit) INTOSC. See Internal Oscillator Block.	. 177
IORLW	506
IORWF	

L

LFSR	507
Listen Only Mode	438
Loopback Mode	438

Μ

Master Clear Reset (MCLR)	81
Master Synchronous Serial Port (MSSP). See MSSP.	
Memory Organization	101
Data Memory	108
Program Memory	101
Memory Programming Requirements	. 558
Microchip Internet Web Site	
Migration to PIC18F66K80	. 602
MOVF	. 507
MOVFF	. 508
MOVLB	. 508
MOVLW	509
MOVSF	. 527
MOVSS	. 528
MOVWF	
MPLAB ASM30 Assembler, Linker, Librarian	534
MPLAB Integrated Development Environment Software	
MPLAB PM3 Device Programmer	
MPLAB REAL ICE In-Circuit Emulator System	535
MPLINK Object Linker/MPLIB Object Librarian	534
MSSP	
ACK Pulse	, 304
I ² C Mode. See I ² C Mode.	
Module Overview	
SPI Master/Slave Connection	291
MULLW	510
MULWF	510
Ν	
NEGF	511
NOP	
Normal Operation Mode	
Notable Differences Between PIC18F66K80 and PIC18F	- 50
recable billerences betweent to tor outdo and FICTOR	-000

TRISC Register
Associated Registers
LATD Register
PORTD Register
TRISD Register
PORTE 100
Associated Registers
LATE Register
PORTE Register
RE0/AN5/RD Pin192
RE1/AN6/C1OUT/WR Pin192
RE2/AN7/C2OUT/CS Pin192
TRISE Register 187
PORTF
Associated Registers 189
LATF Register189
PORTF Register189
TRISF Register
PORTG
Associated Registers 191
LATG Register
PORTG Register
TRISG Register
Power-Managed Modes
and EUSART Operation
and PWM Operation
and SPI Operation
Clock Transitions and Status Indicators
Entering
by Interrupt76 by Reset76
UV RESEL (D
by WDT Time-out76
by WDT Time-out76 Without an Oscillator Start-up Delay76
by WDT Time-out76 Without an Oscillator Start-up Delay76 Idle Modes70
by WDT Time-out76 Without an Oscillator Start-up Delay76 Idle Modes70 PRI_IDLE71
by WDT Time-out

Hard Memory Vectors 10	
Instructions 10)7
Two-Word 10)7
Interrupt Vector 10	
Look-up Tables 10	
Memory Maps 10	
Hard Vectors10	
Reset Vector 10	
Program Verification and Code Protection	
Associated Registers	
Programming, Device Instructions	33
PSP.See Parallel Slave Port.	
Pulse-Width Modulation. See PWM (CCP Module).	
PUSH	
PUSH and POP Instructions	
PUSHL	28
PWM (CCP Module)	
Associated Registers	
Duty Cycle	
Example Frequencies/Resolutions	
Period	
TMR2 to PR2 Match	
PWM (ECCP Module)	2
Effects of a Reset	25
Operation in Power-Managed Modes	
Operation with Fail-Safe Clock Monitor	
Pulse Steering Mode	
Steering Synchronization	
PWM Mode. See Enhanced Capture/Compare/PWM 27	
Q	
Q Clock	63
D	
R	
RAM. See Data Memory.	
RAM. See Data Memory. RC_IDLE Mode7	
RAM. See Data Memory. RC_IDLE Mode	67
RAM. See Data Memory. RC_IDLE Mode	67
RAM. See Data Memory. RC_IDLE Mode	67 3
RAM. See Data Memory. RC_IDLE Mode	87 13 87
RAM. See Data Memory. RC_IDLE Mode	87 13 87 18
RAM. See Data Memory. RC_IDLE Mode	67 13 87 18
RAM. See Data Memory. RC_IDLE Mode	67 13 87 18 55 61
RAM. See Data Memory. RC_IDLE Mode	67 13 87 18 55 61
RAM. See Data Memory. RC_IDLE Mode	67 13 87 18 55 61
RAM. See Data Memory. RC_IDLE Mode	57 13 37 18 55 51 10 21
RAM. See Data Memory. RC_IDLE Mode	57 13 37 18 55 10 21 58
RAM. See Data Memory. RC_IDLE Mode	57 13 37 18 55 10 21 58 59
RAM. See Data Memory. RC_IDLE Mode	57 13 37 18 55 51 10 21 58 59 50
RAM. See Data Memory. RC_IDLE Mode	57 13 37 18 55 10 21 58 59 50 =
RAM. See Data Memory. RC_IDLE Mode	37 37 37 37 37 37 37 37
RAM. See Data Memory. RC_IDLE Mode	37 37 37 37 37 37 37 37
RAM. See Data Memory. RC_IDLE Mode	37 37 37 37 38 55 310 21 38 390 $= 32$ M22 0
RAM. See Data Memory. RC_IDLE Mode	37 37 13 37 18 55 10 12 38 39 30 = 32 M32 0) = 32 30 = 32 M32 0) = 32 33 33 33 34 35 31 0 10 35 35 35 31 32 33 33 35 31 32 33 33 34
RAM. See Data Memory. RC_IDLE Mode	37 37 13 37 18 55 10 12 12 12 12 12 12 12 12
RAM. See Data Memory. RC_IDLE Mode	37 37 13 37 18 55 10 21 38 39 30 $=$ 32 M 32 $0)$ $=$ 33 33
RAM. See Data Memory. RC_IDLE Mode	37 37 13 37 18 55 10 10 21 38 39 30 $=$ 22 M 20 $)$ $=$ 33 33 34
RAM. See Data Memory. RC_IDLE Mode	37 37 37 18 53 10 10 839 30 $= 32$ $M20$ $= 333436$
RAM. See Data Memory. RC_IDLE Mode	37 3 8 5 5 10<
RAM. See Data Memory. RC_IDLE Mode	37 3 78 55 10
RAM. See Data Memory. RC_IDLE Mode	37 37 85 10 1 85 90 = 2 33 34 36 7 14 4 37 37 35 10 1 35 90 = 2 33 34 36 7 3 14 4