

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	ECANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf25k80t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Number							
Pin Name	QFN	SSOP/ SPDIP /SOIC	Pin Type	Buffer Type	Description			
RC7/CANRX/RX1/DT1/ CCP4	15	18						
RC7			I/O	ST/ CMOS	Digital I/O.			
CANRX			I	ST	CAN bus RX.			
RX1			I	ST	EUSART asynchronous receive.			
DT1			I/O	ST	EUSART synchronous data. (See related TX2/CK2.)			
CCP4			I/O	ST CMOS	Capture 4 input/Compare 4 output/PWM4 output.			
Vss	5	8	Р					
Vss					Ground reference for logic and I/O pins.			
Vss	16	19						
Vss					Ground reference for logic and I/O pins.			
VDDCORE/VCAP	3	6	Р					
VDDCORE					External filter capacitor connection.			
VCAP					External filter capacitor connection			
VDD	17	20	Р					
Vdd					Positive supply for logic and I/O pins.			
Legend: CMOS = CMOS compatible input or output $I^2C^{TM} = I^2C/SMBus$ input buffer								

TABLE 1-4: PIC18F2XK80 I/O DESCRIPTIONS (CONTINUED)

ST = Schmitt Trigger input with CMOS levels

Analog = Analog input

0

= Output

I = Input

P = Power

© 2010-2012 Microchip Technology Inc.

NOTES:

4.4.3 RC_IDLE MODE

In RC_IDLE mode, the CPU is disabled but the peripherals continue to be clocked from the internal oscillator block using the INTOSC multiplexer. This mode provides controllable power conservation during Idle periods.

From RC_RUN, this mode is entered by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, first set IDLEN, then set the SCS1 bit and execute SLEEP. To maintain software compatibility with future devices, it is recommended that SCS0 also be cleared, though its value is ignored. The INTOSC multiplexer may be used to select a higher clock frequency by modifying the IRCFx bits before executing the SLEEP instruction. When the clock source is switched to the INTOSC multiplexer, the primary oscillator is shut down and the OSTS bit is cleared.

If the IRCFx bits are set to any non-zero value, or the INTSRC/MFIOSEL bit is set, the INTOSC output is enabled. The HFIOFS/MFIOFS bits become set, after the INTOSC output becomes stable, after an interval of TIOBST (Parameter 38, Table 31-11). For information on the HFIOFS/MFIOFS bits, see Table 4-3.

Clocks to the peripherals continue while the INTOSC source stabilizes. The HFIOFS/MFIOFS bits will remain set if the IRCFx bits were previously at a non-zero value or if INTSRC was set before the SLEEP instruction was executed and the INTOSC source was already stable. If the IRCFx bits and INTSRC are all clear, the INTOSC output will not be enabled, the HFIOFS/MFIOFS bits will remain clear and there will be no indication of the current clock source.

When a wake event occurs, the peripherals continue to be clocked from the INTOSC multiplexer. After a delay of TCSD (Parameter 38, Table 31-11) following the wake event, the CPU begins executing code clocked by the INTOSC multiplexer. The IDLEN and SCSx bits are not affected by the wake-up. The INTOSC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

4.5 Selective Peripheral Module Control

Idle mode allows users to substantially reduce power consumption by stopping the CPU clock. Even so, peripheral modules still remain clocked, and thus, consume power. There may be cases where the application needs what this mode does not provide: the allocation of power resources to the CPU processing with minimal power consumption from the peripherals.

PIC18F66K80 family devices address this requirement by allowing peripheral modules to be selectively disabled, reducing or eliminating their power consumption. This can be done with two control bits:

- Peripheral Enable bit, generically named XXXEN Located in the respective module's main control register
- Peripheral Module Disable (PMD) bit, generically named, XXXMD – Located in one of the PMDx Control registers (PMD0, PMD1 or PMD2)

Disabling a module by clearing its XXXEN bit disables the module's functionality, but leaves its registers available to be read and written to. This reduces power consumption, but not by as much as the second approach.

Most peripheral modules have an enable bit.

In contrast, setting the PMD bit for a module disables all clock sources to that module, reducing its power consumption to an absolute minimum. In this state, the control and status registers associated with the peripheral are also disabled, so writes to those registers have no effect and read values are invalid. Many peripheral modules have a corresponding PMD bit.

There are three PMD registers in PIC18F66K80 family devices: PMD0, PMD1 and PMD2. These registers have bits associated with each module for disabling or enabling a particular peripheral.

Register	A	pplicable Devic	es	Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt
B2D1	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B2D0	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B2DLC	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	-xxx xxxx	-uuu uuuu	-uuu uuuu
B2EIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B2EIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B2SIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx x-xx	uuuu u-uu	uuuu u-uu
B2SIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B2CON	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 0000	0000 0000	uuuu uuuu
CANCON_RO8	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	1000 0000	1000 0000	uuuu uuuu
B1D7	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B1D6	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B1D5	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B1D4	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B1D3	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B1D2	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B1D1	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B1D0	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B1DLC	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	-xxx xxxx	-uuu uuuu	-uuu uuuu
B1EIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B1EIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B1SIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx x-xx	uuuu u-uu	uuuu u-uu
B1SIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B1CON	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 0000	0000 0000	uuuu uuuu
CANCON_RO9	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	1000 0000	1000 0000	uuuu uuuu
CANSTAT_RO	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	1000 0000	1000 0000	uuuu uuuu
B0D7	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B0D6	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B0D5	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B0D4	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B0D3	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B0D2	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	นนนน นนนน	uuuu uuuu
B0D1	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	սսսս սսսս	uuuu uuuu
B0D0	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	นนนน นนนน	uuuu uuuu
BODLC	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	-xxx xxxx	-uuu uuuu	-uuu uuuu
BOEIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu

TABLE 5-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged; x = unknown; - = unimplemented bit, read as '0'; q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 5-3 for Reset value for specific conditions.

5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read as '0'.

NOTES:

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP
INTCON3	INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF
ODCON	SSPOD	CCP5OD	CCP4OD	CCP3OD	CCP2OD	CCP10D	U2OD	U10D
ANCON1	_	ANSEL14	ANSEL13	ANSEL12	ANSEL11	ANSEL10	ANSEL9	ANSEL8

TABLE 11-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Legend: Shaded cells are not used by PORTB.

16.5.2 TIMER3 GATE SOURCE SELECTION

The Timer3 gate source can be selected from one of four different sources. Source selection is controlled by the T3GSS<1:0> bits (T3GCON<1:0>). The polarity for each available source is also selectable and is controlled by the T3GPOL bit (T3GCON<6>).

|--|

T3GSS<1:0>	Timer3 Gate Source
00	Timerx Gate Pin
01	TMR4 to Match PR4 (TMR4 increments to match PR4)
10	Comparator 1 Output (comparator logic high output)
11	Comparator 2 Output (comparator logic high output)

16.5.2.1 T3G Pin Gate Operation

The T3G pin is one source for Timer3 gate control. It can be used to supply an external source to the Timerx gate circuitry.

16.5.2.2 Timer4 Match Gate Operation

The TMR4 register will increment until it matches the value in the PR4 register. On the very next increment cycle, TMR4 will be reset to 00h. When this Reset occurs, a low-to-high pulse will automatically be generated and internally supplied to the Timerx gate circuitry. The pulse will remain high for one instruction cycle and will return back to a low state until the next match.

Depending on T3GPOL, Timerx increments differently when TMR4 matches PR4. When T3GPOL = 1, Timer3 increments for a single instruction cycle following a TMR4 match with PR4. When T3GPOL = 0, Timer3 increments continuously, except for the cycle following the match, when the gate signal goes from low-to-high.

16.5.2.3 Comparator 1 Output Gate Operation

The output of Comparator 1 can be internally supplied to the Timer3 gate circuitry. After setting up Comparator 1 with the CM1CON register, Timer3 will increment depending on the transitions of the CMP1OUT (CMSTAT<6>) bit.

16.5.2.4 Comparator 2 Output Gate Operation

The output of Comparator 2 can be internally supplied to the Timer3 gate circuitry. After setting up Comparator 2 with the CM2CON register, Timer3 will increment depending on the transitions of the CMP2OUT (CMSTAT<7>) bit.

16.5.3 TIMER3 GATE TOGGLE MODE

When Timer3 Gate Toggle mode is enabled, it is possible to measure the full cycle length of a Timer3 gate signal, as opposed to the duration of a single level pulse.

The Timer3 gate source is routed through a flip-flop that changes state on every incrementing edge of the signal. (For timing details, see Figure 16-3.)

The T3GVAL bit will indicate when the Toggled mode is active and the timer is counting.

Timer3 Gate Toggle mode is enabled by setting the T3GTM bit (T3GCON<5>). When the T3GTM bit is cleared, the flip-flop is cleared and held clear. This is necessary in order to control which edge is measured.

FIGURE 16-3: TIMER3 GATE TOGGLE MODE

16.5.5 TIMER3 GATE VALUE STATUS

When Timer3 gate value status is utilized, it is possible to read the most current level of the gate control value. The value is stored in the T3GVAL bit (T3GCON<2>). The T3GVAL bit is valid even when the Timer3 gate is not enabled (TMR3GE bit is cleared).

16.5.6 TIMER3 GATE EVENT INTERRUPT

When the Timer3 gate event interrupt is enabled, it is possible to generate an interrupt upon the completion of a gate event. When the falling edge of T3GVAL occurs, the TMR3GIF flag bit in the PIR2 register will be set. If the TMR3GIE bit in the PIE2 register is set, then an interrupt will be recognized.

The TMR3GIF flag bit operates even when the Timer3 gate is not enabled (TMR3GE bit is cleared).

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF
RCON	IPEN	SBOREN	CM	RI	TO	PD	POR	BOR
PIR3			RC2IF	TX2IF	CTMUIF	CCP2IF	CCP1IF	
PIE3	_	_	RC2IE	TX2IE	CTMUIE	CCP2IE	CCP1IE	
IPR3	—	—	RC2IP	TX2IP	CTMUIP	CCP2IP	CCP1IP	_
PIR4	TMR4IF	EEIF	CMP2IF	CMP1IF	—	CCP5IF	CCP4IF	CCP3IF
PIE4	TMR4IE	EEIE	CMP2IE	CMP1IE	—	CCP5IE	CCP4IE	CCP3IE
IPR4	TMR4IP	EEIP	CMP2IP	CMP1IP	_	CCP5IP	CCP4IP	CCP3IP
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0
TMR1L	Timer1 Reg	ister Low Byt	е					
TMR1H	Timer1 Reg	ister High By	te					
TMR3L	Timer3 Reg	ister Low Byt	е					
TMR3H	Timer3 Reg	ister High By	te					
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	SOSCEN	T1SYNC	RD16	TMR10N
T3CON	TMR3CS1	TMR3CS0	T3CKPS1	T3CKPS0	SOSCEN	T3SYNC	RD16	TMR3ON
CCPR2L	Capture/Co	mpare/PWM	Register 2 L	ow Byte				
CCPR2H	Capture/Co	mpare/PWM	Register 2 H	ligh Byte				
CCPR3L	Capture/Co	mpare/PWM	Register 3 L	ow Byte				
CCPR3H	Capture/Co	mpare/PWM	Register 3 H	ligh Byte				
CCPR4L	Capture/Co	mpare/PWM	Register 4 L	ow Byte				
CCPR4H	Capture/Co	mpare/PWM	Register 4 H	ligh Byte				
CCPR5L	Capture/Compare/PWM Register 5 Low Byte							
CCPR5H	Capture/Compare/PWM Register 5 High Byte							
CCP2CON	—		DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0
CCP3CON	—	—	DC3B1	DC3B0	CCP3M3	CCP3M2	CCP3M1	CCP3M0
CCP4CON	—	—	DC4B1	DC4B0	CCP4M3	CCP4M2	CCP4M1	CCP4M0
CCP5CON	_	—	DC5B1	DC5B0	CCP5M3	CCP5M2	CCP5M1	CCP5M0
CCPTMRS	_	_	_	C5TSEL	C4TSEL	C3TSEL	C2TSEL	C1TSEL
PMD0	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	UART2MD	UART1MD	SSPMD

TABLE 19-3:	REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, TIMER1/3
-------------	---

Legend: — = unimplemented, read as '0'. Shaded cells are not used by Capture/Compare or Timer1/3.

19.4.2 PWM DUTY CYCLE

The PWM duty cycle is specified, to use CCP4 as an example, by writing to the CCPR4L register and to the CCP4CON<5:4> bits. Up to 10-bit resolution is available. The CCPR4L contains the eight MSbs and the CCP4CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR4L:CCP4CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

EQUATION 19-2:

PWM Duty Cycle = (CCPR4L:CCP4CON<5:4>) • Tosc • (TMR2 Prescale Value)

CCPR4L and CCP4CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR4H until after a match between PR2 and TMR2 occurs (that is, the period is complete). In PWM mode, CCPR4H is a read-only register.

The CCPR4H register and a two-bit internal latch are used to double-buffer the PWM duty cycle. This double-buffering is essential for glitchless PWM operation.

When the CCPR4H and two-bit latch match TMR2, concatenated with an internal two-bit Q clock or two bits of the TMR2 prescaler, the CCP4 pin is cleared.

The maximum PWM resolution (bits) for a given PWM frequency is given by the equation:

EQUATION 19-3:

PWM Resolution (max) =
$$\frac{\log(\frac{FOSC}{FPWM})}{\log(2)}$$
 bits

Note: If the PWM duty cycle value is longer than the PWM period, the CCP4 pin will not be cleared.

TABLE 19-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz

PWM Frequency	2.44 kHz	9.77 kHz	39.06 kHz	156.25 kHz	312.50 kHz	416.67 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	FFh	FFh	FFh	3Fh	1Fh	17h
Maximum Resolution (bits)	10	10	10	8	7	6.58

19.4.3 SETUP FOR PWM OPERATION

To configure the CCP module for PWM operation, using CCP4 as an example:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR4L register and CCP4CON<5:4> bits.
- 3. Make the CCP4 pin an output by clearing the appropriate TRIS bit.
- 4. Set the TMR2 prescale value, then enable Timer2 by writing to T2CON.
- 5. Configure the CCP4 module for PWM operation.

REGISTER	21-5: SSP	CON2: MSSP	CONTROL	REGISTER 2	(I ⁻ C'™ MAST	ER MODE)		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
GCEN	ACKSTAT	ACKDT ⁽¹⁾	ACKEN ⁽²⁾	RCEN ⁽²⁾	PEN ⁽²⁾	RSEN ⁽²⁾	SEN ⁽²⁾	
bit 7							bit	
l egend:								
R = Readabl	e hit	W = Writable	hit	II = Unimplen	nented hit rea	d as '0'		
-n = Value at	POR	'1' = Bit is set		$0^{\circ} = \text{Bit is clear}$	ared	x = Bit is unkn	own	
bit 7	GCEN: Gene	eral Call Enable	bit					
	Unused in M	aster mode.						
bit 6	ACKSTAT: A	knowledge Sta	itus bit (Maste	r Transmit mod	e only)			
	1 = Acknowle	edge was not re	ceived from sla	ave				
	0 = Acknowle	edge was receiv	ed from slave					
bit 5	ACKDT: Ack	nowledge Data	bit (Master Re	ceive mode onl	y) ⁽¹⁾			
	1 = Not Ackr	nowledged						
L:1 4		eagea maydadaa Saay	anaa Enabla k	.:(2)				
DIT 4	1 = Initiates			SDA and $S($	¹ nine and	transmite ACk	(DT data bi	
	automat	ically cleared by	hardware	SDA and St	SE pills and	transmits ACM		
	0 = Acknow	ledge sequence	is Idle					
bit 3	RCEN: Rece	eive Enable bit (I	Master Receiv	e mode only) ⁽²⁾				
	1 = Enables	Receive mode f	or I ² C™					
	0 = Receive	is Idle	(2)					
bit 2	PEN: Stop C	ondition Enable	bit ⁽²⁾		e			
	1 = Initiates	Stop condition o	n SDA and SC	L pins; automa	tically cleared	by hardware		
hit 1	RSEN: Repe	ated Start Cond	ition Enable b	it(2)				
bit i	1 = Initiates Repeated Start condition on SDA and SCL pins: automatically cleared by hardware							
	0 = Repeate	ed Start condition	n Idle					
bit 0	SEN: Start Condition Enable bit ⁽²⁾							
	1 = Initiates 3 0 = Start con	Start condition o dition Idle	n SDA and SC	CL pins; automa	tically cleared	by hardware		
Note 1: Th	ne value that wi	II be transmitted	when the user	· initiates an Acl	knowledge seq	uence at the en	d of a receive	

2: If the I²C module is active, these bits may not be set (no spooling) and the SSPBUF may not be written to (or writes to the SSPBUF are disabled).

REGISTER 27-16: RXBnSIDL: RECEIVE BUFFER 'n' STANDARD IDENTIFIER REGISTERS, LOW BYTE [0 \leq n \leq 1]

R-x	R-x	R-x	R-x	R-x	U-0	R-x	R-x
SID2	SID1	SID0	SRR	EXID	—	EID17	EID16
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	SID<2:0>: Standard Identifier bits (if EXID = 0)
	Extended Identifier bits, EID<20:18> (if EXID = 1).
bit 4	SRR: Substitute Remote Request bit
bit 3	EXID: Extended Identifier bit
	1 = Received message is an extended data frame, SID<10:0> are EID<28:18>0 = Received message is a standard data frame
bit 2	Unimplemented: Read as '0'
bit 1-0	EID<17:16>: Extended Identifier bits

REGISTER 27-17: RXBnEIDH: RECEIVE BUFFER 'n' EXTENDED IDENTIFIER REGISTERS, HIGH BYTE [0 \leq n \leq 1]

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 EID<15:8>: Extended Identifier bits

REGISTER 27-18: RXBnEIDL: RECEIVE BUFFER 'n' EXTENDED IDENTIFIER REGISTERS, LOW BYTE [0 \leq n \leq 1]

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 EID<7:0>: Extended Identifier bits

REGISTER 27-23: BnCON: TX/RX BUFFER 'n' CONTROL REGISTERS IN TRANSMIT MODE $[0 \le n \le 5, TXnEN (BSEL0<n>) = 1]^{(1)}$

R/W-0) R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0		
TXBIF(3) TXABT(3)	TXI ARB ⁽³⁾	TXFRR ⁽³⁾	TXRFQ ^(2,4)	RTREN	TXPRI1 ⁽⁵⁾	TXPRI0 ⁽⁵⁾		
bit 7			.,						
							2.00		
Legend:									
R = Reada	able bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 7	TXBIF: Trans	smit Buffer Inter	rupt Flag bit ⁽³	3)					
	1 = A messa	ge was success	fully transmit	ted					
	0 = No mess	age was transm	nitted						
bit 6	TXABT: Trar	smission Abort	ed Status bit ^{(s}	5)					
	1 = Message was aborted								
bit 5			u t Arbitration S	tatus hit(3)					
DIU	ILLARD: ITALISTIISSION LOST ADDITATION STATUS DITY								
	1 = Message lost arbitration while being sent0 = Message did not lose arbitration while being sent								
bit 4	TXERR: Tra	nsmission Error	Detected Sta	tus bit ⁽³⁾					
	1 = A bus eri	ror occurred wh	ile the messa	ge was being s	ent				
	0 = A bus eri	or did not occu	while the me	essage was bei	ng sent				
bit 3	TXREQ: Trai	nsmit Request S	Status bit ^(2,4)						
	1 = Requests	s sending a mes	sage; clears	the TXABT, TX	LARB and TXE	ERR bits			
hit 2	0 - Automati	cally cleared wi	Transmission		ully serit				
DIL Z	1 = When au	emote transmis	sion request	is received TX	REO will be au	itomatically set			
	0 = When a i	remote transmis	sion request	is received, TX	REQ will be un	affected			
bit 1-0	TXPRI<1:0>	: Transmit Prior	ity bits ⁽⁵⁾						
	11 = Priority	Level 3 (highes	t priority)						
	10 = Priority	Level 2							
	01 = Priority	Level 1 Level 0 (lowest	priority)						
	00 – i nonty		priority)						
Note 1:	These registers a	re available in M	lode 1 and 2	only.					
2:	Clearing this bit in	software while	the bit is set	will request a m	essage abort.				
3:	This bit is automa	tically cleared w	hen IXREQ	is set.					

4: While TXREQ is set or a transmission is in progress, Transmit Buffer registers remain read-only.

5: These bits set the order in which the Transmit Buffer register will be transferred. They do not alter the CAN message identifier.

27.7.3 ENHANCED FIFO MODE

When configured for Mode 2, two of the dedicated receive buffers in combination with one or more programmable transmit/receive buffers, are used to create a maximum of an 8 buffers deep FIFO buffer. In this mode, there is no direct correlation between filters and receive buffer registers. Any filter that has been enabled can generate an acceptance. When a message has been accepted, it is stored in the next available receive buffer register and an internal Write Pointer is incremented. The FIFO can be a maximum of 8 buffers deep. The entire FIFO must consist of contiguous receive buffers. The FIFO head begins at RXB0 buffer and its tail spans toward B5. The maximum length of the FIFO is limited by the presence or absence of the first transmit buffer starting from B0. If a buffer is configured as a transmit buffer, the FIFO length is reduced accordingly. For instance, if B3 is configured as a transmit buffer, the actual FIFO will consist of RXB0, RXB1, B0, B1 and B2, a total of 5 buffers. If B0 is configured as a transmit buffer, the FIFO length will be 2. If none of the programmable buffers are configured as a transmit buffer, the FIFO will be 8 buffers deep. A system that requires more transmit buffers should try to locate transmit buffers at the very end of B0-B5 buffers to maximize available FIFO length.

When a message is received in FIFO mode, the interrupt flag code bits (EICODE<4:0>) in the CANSTAT register will have a value of '10000', indicating the FIFO has received a message. FIFO Pointer bits, FP<3:0> in the CANCON register, point to the buffer that contains data not yet read. The FIFO Pointer bits, in this sense, serve as the FIFO Read Pointer. The user should use the FP bits and read corresponding buffer data. When receive data is no longer needed, the RXFUL bit in the current buffer must be cleared, causing FP<3:0> to be updated by the module.

To determine whether FIFO is empty or not, the user may use the FP<3:0> bits to access the RXFUL bit in the current buffer. If RXFUL is cleared, the FIFO is considered to be empty. If it is set, the FIFO may contain one or more messages. In Mode 2, the module also provides a bit called FIFO High Water Mark (FIFOWM) in the ECANCON register. This bit can be used to cause an interrupt whenever the FIFO contains only one or four empty buffers. The FIFO high water mark interrupt can serve as an early warning to a full FIFO condition.

27.7.4 TIME-STAMPING

The CAN module can be programmed to generate a time-stamp for every message that is received. When enabled, the module generates a capture signal for CCP1, which in turn captures the value of either Timer1 or Timer3. This value can be used as the message time-stamp.

To use the time-stamp capability, the CANCAP bit (CIOCON<4>) must be set. This replaces the capture input for CCP1 with the signal generated from the CAN module. In addition, CCP1CON<3:0> must be set to '0011' to enable the CCP Special Event Trigger for CAN events.

27.8 Message Acceptance Filters and Masks

The message acceptance filters and masks are used to determine if a message in the Message Assembly Buffer should be loaded into any of the receive buffers. Once a valid message has been received into the MAB, the identifier fields of the message are compared to the filter values. If there is a match, that message will be loaded into the appropriate receive buffer. The filter masks are used to determine which bits in the identifier are examined with the filters. A truth table is shown below in Table 27-1 that indicates how each bit in the identifier is compared to the masks and filters to determine if a message should be loaded into a receive buffer. The mask essentially determines which bits to apply the acceptance filters to. If any mask bit is set to a zero, then that bit will automatically be accepted regardless of the filter bit.

TABLE 27-1:	FILTER/MASK TRUTH TABLE
-------------	-------------------------

Mask bit n	Filter bit n	Message Identifier bit n001	Accept or Reject bit n
0	х	х	Accept
1	0	0	Accept
1	0	1	Reject
1	1	0	Reject
1	1	1	Accept

Legend: x = don't care

In Mode 0, acceptance filters, RXF0 and RXF1, and filter mask, RXM0, are associated with RXB0. Filters, RXF2, RXF3, RXF4 and RXF5, and mask, RXM1, are associated with RXB1.

27.9 Baud Rate Setting

All nodes on a given CAN bus must have the same nominal bit rate. The CAN protocol uses Non-Returnto-Zero (NRZ) coding which does not encode a clock within the data stream. Therefore, the receive clock must be recovered by the receiving nodes and synchronized to the transmitter's clock.

As oscillators and transmission time may vary from node to node, the receiver must have some type of Phase Lock Loop (PLL) synchronized to data transmission edges to synchronize and maintain the receiver clock. Since the data is NRZ coded, it is necessary to include bit stuffing to ensure that an edge occurs at least every six bit times to maintain the Digital Phase Lock Loop (DPLL) synchronization.

The bit timing of the PIC18F66K80 family is implemented using a DPLL that is configured to synchronize to the incoming data and provides the nominal timing for the transmitted data. The DPLL breaks each bit time into multiple segments made up of minimal periods of time called the *Time Quanta* (TQ).

Bus timing functions executed within the bit time frame, such as synchronization to the local oscillator, network transmission delay compensation and sample point positioning, are defined by the programmable bit timing logic of the DPLL.

All devices on the CAN bus must use the same bit rate. However, all devices are not required to have the same master oscillator clock frequency. For the different clock frequencies of the individual devices, the bit rate has to be adjusted by appropriately setting the baud rate prescaler and number of time quanta in each segment.

The "Nominal Bit Rate" is the number of bits transmitted per second, assuming an ideal transmitter with an ideal oscillator, in the absence of resynchronization. The nominal bit rate is defined to be a maximum of 1 Mb/s.

The "Nominal Bit Time" is defined as:

EQUATION 27-1: NOMINAL BIT TIME

TBIT = 1/Nominal Bit Rate

FIGURE 27-4: BIT TIME PARTITIONING

The Nominal Bit Time can be thought of as being divided into separate, non-overlapping time segments. These segments (Figure 27-4) include:

- Synchronization Segment (Sync_Seg)
- Propagation Time Segment (Prop_Seg)
- Phase Buffer Segment 1 (Phase_Seg1)
- Phase Buffer Segment 2 (Phase_Seg2)

The time segments (and thus, the Nominal Bit Time) are, in turn, made up of integer units of time called Time Quanta or TQ (see Figure 27-4). By definition, the Nominal Bit Time is programmable from a minimum of 8 TQ to a maximum of 25 TQ. Also by definition, the minimum Nominal Bit Time is 1 μ s, corresponding to a maximum 1 Mb/s rate. The actual duration is given by the following relationship:

EQUATION 27-2: NOMINAL BIT TIME DURATION

Nominal Bit Time = TQ * (Sync_Seg + Prop_Seg +	
Phase_Seg1 + Phase_Seg2)	

The Time Quantum is a fixed unit derived from the oscillator period. It is also defined by the programmable baud rate prescaler, with integer values from 1 to 64, in addition to a fixed divide-by-two for clock generation. Mathematically, this is:

EQUATION 27-3: TIME QUANTUM

TQ (
$$\mu$$
s) = (2 * (BRP + 1))/Fosc (MHz)
or
TQ (μ s) = (2 * (BRP + 1)) * Tosc (μ s)

where FOSC is the clock frequency, TOSC is the corresponding oscillator period and BRP is an integer (0 through 63) represented by the binary values of BRGCON1<5:0>. The equation above refers to the effective clock frequency used by the microcontroller. If, for example, a 10 MHz crystal in HS mode is used, then FOSC = 10 MHz and TOSC = 100 ns. If the same 10 MHz crystal is used in HS-PLL mode, then the effective frequency is FOSC = 40 MHz and TOSC = 25 ns.

TABLE 29-1: OPCODE FIELD DESCRIPTIONS

a RAM access bit: a = 0: RAM location in Access RAM (BSR register is ignored) a = 1: RAM bank is specified by BSR register bbb Bit address within an 8-bit file register (0 to 7). BSR Bank Select Register. Used to select the current RAM bank. C, DC, Z, OV, N ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative. d Destination select bit: d = 0: store result in WREG d = 1: store result in WREG register or the specified register file location. f 8-bit register file address (00h to FFh), or 2-bit FSR designator (0h to 3h). f_a 12-bit register file address (00h to FFh). This is the source address. f_d 12-bit register file address (00h to FFFh). This is the destination address. GIIE Global Interrupt Enable bit. k Literal filed, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value). label Label name. mm The mode of the TBLPTR register for the table read and table write instructions. ** Post-Increment register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such a
bbb Bit address within an 8-bit file register (0 to 7). BSR Bank Select Register. Used to select the current RAM bank. C, DC, Z, OV, N ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative. d Destination select bit: d = 0: store result in WREG d = 1: store result in file register f dest Destination: either the WREG register or the specified register file location. f 8-bit register file address (00h to FFh), or 2-bit FSR designator (0h to 3h). f g f_a 12-bit register file address (00h to FFFh). This is the source address. f_d 12-bit register file address (00h to FFFh). This is the destination address. GIE Global Interrupt Enable bit. k Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value). labe1 Label name. mm The mode of the TBLPTR register for the table read and table write instructions. only used with table read and table write instructions. ** No Change to register (such as TBLPTR with table reads and writes) *+ Post-Increment register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-D
BSR Bank Select Register. Used to select the current RAM bank. C, DC, Z, OV, N ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative. d Destination select bit: d = 0: store result in WREG d = 1: store result in WREG d = 1: store result in file register of the specified register file location. f 8-bit register file address (00h to FFh), or 2-bit FSR designator (0h to 3h). f_g 12-bit register file address (00h to FFh). This is the source address. GIE Global Interrupt Enable bit. k Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value). label Label name. mm The mode of the TBLPTR register for the table read and table write instructions. Only used with table read and table write instructions. ** No Change to register (such as TBLPTR with table reads and writes) *- Post-Increment register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-address (2's complement number) f
C, DC, Z, OV, N ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative. d Destination select bit: d = 0: store result in WREG d = 1: store result in file register f dest Destination: either the WREG register or the specified register file location. £ 8-bit register file address (00h to FFh), or 2-bit FSR designator (0h to 3h). f_g 12-bit register file address (00h to FFFh). This is the source address. f_d 12-bit register file address (00h to FFFh). This is the destination address. GIE Global Interrupt Enable bit. k Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value). labe1 Label name. mm The mode of the TBLPTR register for the table read and table write instructions. Only used with table read and table write instructions: * No Change to register (such as TBLPTR with table reads and writes) *- Post-Increment register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-Increment register (such as TBLPTR with table reads and writes) *- Post-Increment register (such as TBLPTR with table reads and writes) *- Pre-Increment register (such as TBLPTR with table reads and writes) n The relati
d Destination select bit: d = 0: store result in WREG d = 1: store result in file register f dest Destination: either the WREG register or the specified register file location. f 8-bit register file address (00h to FFh), or 2-bit FSR designator (0h to 3h). f_a 12-bit register file address (00h to FFFh). This is the source address. f_d 12-bit register file address (00h to FFFh). This is the destination address. GIE Global Interrupt Enable bit. k Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value). labe1 Label name. mm The mode of the TBLPTR register for the table read and table write instructions. Only used with table read and table write instructions: * No Change to register (such as TBLPTR with table reads and writes) *- Post-Increment register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Procement register (such as TBLPTR with table reads and writes) *- Procement register (such as TBLPTR with table read
dest Destination: either the WREG register or the specified register file location. f 8-bit register file address (00h to FFh), or 2-bit FSR designator (0h to 3h). f _s 12-bit register file address (000h to FFh). This is the source address. f_d 12-bit register file address (000h to FFFh). This is the destination address. GIE Global Interrupt Enable bit. k Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value). label Label name. mm The mode of the TBLPTR register for the table read and table write instructions. only used with table read and table write instructions: * ** No Change to register (such as TBLPTR with table reads and writes) *- Post-Increment register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) n The relative address (2's complement number) for relative branch instructions or the direct address for Call/Branch and Return instruct
f 8-bit register file address (00h to FFh), or 2-bit FSR designator (0h to 3h). f_s 12-bit register file address (000h to FFFh). This is the source address. f_d 12-bit register file address (000h to FFFh). This is the destination address. GIE Global Interrupt Enable bit. k Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value). labe1 Label name. mm The mode of the TBLPTR register for the table read and table write instructions. Only used with table read and table write instructions: * No Change to register (such as TBLPTR with table reads and writes) *- Post-Increment register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) ** Pre-Increment register (such as TBLPTR with table reads and writes) ** Post-Increment register (such as TBLPTR with table reads and writes) ** Pre-Increment register (such as TBLPTR with table reads and writes) ** Pre-Increment register (such as TBLPTR with table reads and writes) ** Pre-Increment register (such as TBLPTR with table reads and writes) n The relative address (2's complement number) for relative branch instructions or the direct address for Call/Branch and Return instructions. <
£s 12-bit register file address (000h to FFFh). This is the source address. fd 12-bit register file address (000h to FFFh). This is the destination address. GIE Global Interrupt Enable bit. k Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value). labe1 Label name. mm The mode of the TBLPTR register for the table read and table write instructions. Only used with table read and table write instructions: * No Change to register (such as TBLPTR with table reads and writes) *+ Post-Increment register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) ** Pre-Increment register (such as TBLPTR with table reads and writes) ** Pre-Increment register (such as TBLPTR with table reads and writes) ** Pre-Increment register (such as TBLPTR with table reads and writes) ** Pre-Increment register (such as TBLPTR with table reads and writes) ** Pre-Increment register (such as TBLPTR with table reads and writes) ** Pre-Increment register (such as TBLPTR with table reads and writes) * Pre-Increment register (such as TBLPTR with table reads and writes) PC Program Counter. PCL
f_d 12-bit register file address (000h to FFFh). This is the destination address. GIE Global Interrupt Enable bit. k Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value). labe1 Label name. mm The mode of the TBLPTR register for the table read and table write instructions. Only used with table read and table write instructions: * No Change to register (such as TBLPTR with table reads and writes) *+ Post-Increment register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) ** Pre-Increment register (such as TBLPTR with table reads and writes) ** Pre-Increment register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) n The relative address (2's complement number) for relative branch instructions or the direct address for Call/Branch and Return instructions. PC Program Counter. PCL Program Counter Low Byte. PCH Program Counter Low Byte. PCH Program Counter High Byte Latch. PCLATH Program Counter High Byte Latch.
GIE Global Interrupt Enable bit. k Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value). labe1 Label name. mm The mode of the TBLPTR register for the table read and table write instructions. Only used with table read and table write instructions: * No Change to register (such as TBLPTR with table reads and writes) *+ Post-Increment register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) +* Pre-Increment register (such as TBLPTR with table reads and writes) n The relative address (2's complement number) for relative branch instructions or the direct address for Call/Branch and Return instructions. PC Program Counter. PCL Program Counter Low Byte. PCH Program Counter High Byte. PCLATH Program Counter High Byte Latch. PCLATH Program Counter High Byte Latch. PD Power-Down bit.
k Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value). labe1 Label name. mm The mode of the TBLPTR register for the table read and table write instructions. Only used with table read and table write instructions: * No Change to register (such as TBLPTR with table reads and writes) *+ Post-Increment register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) *- Pre-Increment register (such as TBLPTR with table reads and writes) *- Pre-Increment register (such as TBLPTR with table reads and writes) n The relative address (2's complement number) for relative branch instructions or the direct address for Call/Branch and Return instructions. PC Program Counter. PCL Program Counter Low Byte. PCH Program Counter High Byte. PCLATH Program Counter High Byte. PCLATU Program Counter High Byte Latch. PD Power-Down bit.
labe1Label name.mmThe mode of the TBLPTR register for the table read and table write instructions. Only used with table read and table write instructions: * * No Change to register (such as TBLPTR with table reads and writes) *+ *- Post-Increment register (such as TBLPTR with table reads and writes) *- ** Post-Decrement register (such as TBLPTR with table reads and writes) ** ** Pre-Increment register (such as TBLPTR with table reads and writes) n The relative address (2's complement number) for relative branch instructions or the direct address for Call/Branch and Return instructions.PCProgram Counter. PCLPCLProgram Counter Low Byte.PCHProgram Counter High Byte.PCLATTHProgram Counter High Byte Latch.PCLATTUProgram Counter Upper Byte Latch.PDPower-Down bit.
mm The mode of the TBLPTR register for the table read and table write instructions. Only used with table read and table write instructions: * No Change to register (such as TBLPTR with table reads and writes) *+ Post-Increment register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) +* Pre-Increment register (such as TBLPTR with table reads and writes) n The relative address (2's complement number) for relative branch instructions or the direct address for Call/Branch and Return instructions. PC Program Counter. PCL Program Counter Low Byte. PCH Program Counter High Byte. PCLATH Program Counter High Byte Latch. PCLATU Program Counter Upper Byte Latch. PD Power-Down bit.
* No Change to register (such as TBLPTR with table reads and writes) *+ Post-Increment register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) +* Pre-Increment register (such as TBLPTR with table reads and writes) n The relative address (2's complement number) for relative branch instructions or the direct address for Call/Branch and Return instructions. PC Program Counter. PCL Program Counter Low Byte. PCH Program Counter High Byte. PCLATH Program Counter High Byte Latch. PCLATU Program Counter Upper Byte Latch. PD Power-Down bit.
*+ Post-Increment register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) +* Pre-Increment register (such as TBLPTR with table reads and writes) n The relative address (2's complement number) for relative branch instructions or the direct address for Call/Branch and Return instructions. PC Program Counter. PCL Program Counter Low Byte. PCH Program Counter High Byte. PCLATH Program Counter High Byte Latch. PCLATU Program Counter Upper Byte Latch. PD Power-Down bit.
- Post-Decrement register (such as TBLPTR with table reads and writes) + Pre-Increment register (such as TBLPTR with table reads and writes) n The relative address (2's complement number) for relative branch instructions or the direct address for Call/Branch and Return instructions. PC Program Counter. PCL Program Counter Low Byte. PCH Program Counter High Byte. PCLATH Program Counter High Byte Latch. PCLATU Program Counter Upper Byte Latch. PD Power-Down bit.
+* Pre-Increment register (such as TBLPTR with table reads and writes) n The relative address (2's complement number) for relative branch instructions or the direct address for Call/Branch and Return instructions. PC Program Counter. PCL Program Counter Low Byte. PCH Program Counter High Byte. PCLATH Program Counter High Byte Latch. PCLATU Program Counter Upper Byte Latch. PD Power-Down bit.
n The relative address (2's complement number) for relative branch instructions or the direct address for Call/Branch and Return instructions. PC Program Counter. PCL Program Counter Low Byte. PCH Program Counter High Byte. PCLATH Program Counter High Byte Latch. PCLATU Program Counter Upper Byte Latch. PD Power-Down bit.
PC Program Counter. PCL Program Counter Low Byte. PCH Program Counter High Byte. PCLATH Program Counter High Byte Latch. PCLATU Program Counter Upper Byte Latch. PD Power-Down bit.
PCL Program Counter Low Byte. PCH Program Counter High Byte. PCLATH Program Counter High Byte Latch. PCLATU Program Counter Upper Byte Latch. PD Power-Down bit.
PCH Program Counter High Byte. PCLATH Program Counter High Byte Latch. PCLATU Program Counter Upper Byte Latch. PD Power-Down bit.
PCLATH Program Counter High Byte Latch. PCLATU Program Counter Upper Byte Latch. PD Power-Down bit.
PCLATU Program Counter Upper Byte Latch. PD Power-Down bit.
PD Power-Down bit.
PRODH Product of Multiply High Byte.
PRODL Product of Multiply Low Byte.
s Fast Call/Return mode select bit: s = 0: do not update into/from shadow registers s = 1: certain registers loaded into/from shadow registers (Fast mode)
TBLPTR 21-bit Table Pointer (points to a Program Memory location).
TABLAT 8-bit Table Latch.
TO Time-out bit.
TOS Top-of-Stack.
u Unused or Unchanged.
WDT Watchdog Timer.
WREG Working register (accumulator).
x Don't care ('0' or '1'). The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
z _s 7-bit offset value for Indirect Addressing of register files (source).
Zd 7-bit offset value for Indirect Addressing of register files (destination).
{ } Optional argument.
[text] Indicates an Indexed Address.
(text) The contents of text.
[expr] <n> Specifies bit n of the register indicated by the pointer expr.</n>
\rightarrow Assigned to.
< > Register bit field.
∈ In the set of.
italics User-defined term (font is Courier New).

Mnem	onic,	Description	Cycles	16-E	Bit Inst	ruction	Word	Status	Notos
Opera	ands	Description	Cycles	MSb			LSb	Affected	Noles
LITERAL	OPERA	TIONS							
ADDLW	k	Add Literal and WREG	1	0000	1111	kkkk	kkkk	C, DC, Z, OV, N	
ANDLW	k	AND Literal with WREG	1	0000	1011	kkkk	kkkk	Z, N	
IORLW	k	Inclusive OR Literal with WREG	1	0000	1001	kkkk	kkkk	Z, N	
LFSR	f, k	Move literal (12-bit) 2nd word	2	1110	1110	00ff	kkkk	None	
		to FSR(f) 1st word		1111	0000	kkkk	kkkk		
MOVLB	k	Move Literal to BSR<3:0>	1	0000	0001	0000	kkkk	None	
MOVLW	k	Move Literal to WREG	1	0000	1110	kkkk	kkkk	None	
MULLW	k	Multiply Literal with WREG	1	0000	1101	kkkk	kkkk	None	
RETLW	k	Return with Literal in WREG	2	0000	1100	kkkk	kkkk	None	
SUBLW	k	Subtract WREG from Literal	1	0000	1000	kkkk	kkkk	C, DC, Z, OV, N	
XORLW	k	Exclusive OR Literal with WREG	1	0000	1010	kkkk	kkkk	Z, N	
DATA ME	MORY +	PROGRAM MEMORY OPERAT	IONS						
TBLRD*		Table Read	2	0000	0000	0000	1000	None	
TBLRD*+		Table Read with Post-Increment		0000	0000	0000	1001	None	
TBLRD*-		Table Read with Post-Decrement		0000	0000	0000	1010	None	
TBLRD+*		Table Read with Pre-Increment		0000	0000	0000	1011	None	
TBLWT*		Table Write	2	0000	0000	0000	1100	None	
TBLWT*+		Table Write with Post-Increment		0000	0000	0000	1101	None	
TBLWT*-		Table Write with Post-Decrement		0000	0000	0000	1110	None	
TBLWT+*		Table Write with Pre-Increment		0000	0000	0000	1111	None	

TABLE 29-2: PIC18F66K80 FAMILY INSTRUCTION SET (CONTINUED)

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as an input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

TBLWT	Table Write						
Syntax:	TBLWT (*	*; *+; *-; +'	*)				
Operands:	None						
Operation:	if TBLWT*, (TABLAT) \rightarrow Holding Register; TBLPTR – No Change if TBLWT*+, (TABLAT) \rightarrow Holding Register; (TBLPTR) + 1 \rightarrow TBLPTR if TBLWT*-, (TABLAT) \rightarrow Holding Register; (TBLPTR) – 1 \rightarrow TBLPTR if TBLWT+*, (TBLPTR) + 1 \rightarrow TBLPTR; (TABLAT) \rightarrow Holding Register						
Status Affected:	None						
Encoding:	0000	0000	0000	11nn nn=0 * =1 *+ =2 *- =3 +*			
Description:	TBLPTR to determine which of the 8 holding registers the TABLAT is written to. The holding registers are used to program the contents of Program Memory (P.M.). (Refer to Section 6.0 "Memory Organization" for additional details on programming Flash memory.)						
	each byte in the program memory. TBLPTR has a 2-Mbyte address range. The LSb of the TBLPTR selects which byte of the program memory location to access.						
	TBLPTR[0] = 0: Least Significant Byte of Program Memory Word						
	TBLPTR[0] = 1: Most Significant Byte of Program Memory Word						
	The TBLWT instruction can modify the value of TBLPTR as follows: • no change • post-increment • post-decrement • pre-increment						
Words:	1						
Cycles:	2						
Q Cycle Activity:							
	Q1	Q2	Q3	Q4			
	Decode	No	No	No			
	No	No	No	No			
	operation	operation	operation	operation			
		(Read		(Write to			

TÀBLAT)

Holding Register)

_ ΤВ d)

TBLWT	Table Write (C	ontin	ued)	
Example 1:	TBLWT *+;			
Before Instru	iction			
TABLAT		=	55h	
TBLPTR		=	00A356h	
HOLDI	NG REGISTER			
(00A35	6h)	=	FFh	
After Instructions (table write completion)				
TABLAT	Г	=	55h	
TBLPT	2	=	00A357h	
HOLDI	NG REGISTER			
(00A356h)		=	55h	
Example 2:	TBLWT +*;			

TABLAT TBLPTR HOLDING REGISTER (01389Ah) HOLDING REGISTER (01389Bh)

TABLAT TBLPTR HOLDING REGISTER (01389Ah) HOLDING REGISTER (01389Bh)

After Instruction (table write completion)

34h

FFh

FFh

34h 01389Bh

FFh

34h

01389Ah

=

= =

=

=

= =

=

Before Instruction

DS39977F-page 522

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		64	
Pitch	е	0.50 BSC		
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	E	9.00 BSC		
Exposed Pad Width	E2	7.05	7.15	7.50
Overall Length	D	9.00 BSC		
Exposed Pad Length	D2	7.05	7.15	7.50
Contact Width	b	0.18	0.25	0.30
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-149B Sheet 2 of 2

Error States452
Form
Stuff Bit 452
Error Modes State (diagram)453
Error Recognition Mode439
Filter-Mask Truth (table)
Functional Modes439
Mode 0 (Legacy Mode)439
Mode 1 (Enhanced Legacy Mode)
Mode 2 (Enhanced FIFO Mode)
Information Processing Time (IPT)
Lengthening a Bit Period
Listen Only Mode
Mossage Acceptance Filters and Masks 421,444
Message Acceptance Mask and Filter Operation 445
Message Reception 443
Enhanced EIEO Mode 444
Priority 443
Time-Stamping 444
Normal Mode 438
Oscillator Tolerance 451
Overview
Phase Buffer Segments
Programmable TX/RX and Auto-RTR Buffers
Programming Time Segments
Propagation Segment
Sample Point
Shortening a Bit Period451
Synchronization450
Hard450
Resynchronization450
Rules450
Synchronization Segment 449
Time Quanta 449
Values for ICODE (table)
Effect on Standard PIC18 Instructions
Effects of Power-Managed Modes on Various Clock Sources
63 Flastricel Characteristics
Electrical Characteristics
Ennanced Capture/Compare/PWWI (ECCP)
Capture Mode. See Capture.
ECCP Mode and Timer Pescurees 268
ECCF Mode and Timer Resources
Auto-Restart 280
Auto-Shutdown 278
Direction Change in Full-Bridge Output Mode 277
Full-Bridge Application 275
Full-Bridge Mode 275
Half-Bridge Application 274
Half-Bridge Application Examples
Half-Bridge Mode
Output Relationships (Active-High and Active-Low)
272
Output Relationships Diagram
Programmable Dead-Band Delay
Shoot-Through Current
Start-up Considerations278
Outputs and Configuration 268
Enhanced Capture/Compare/PWM (ECCP) and Timer1/2/3/4
Associated Registers
Enhanced Universal Synchronous Asynchronous Receiver
Transmitter (EUSART). See EUSART.
Faultions

16 x 16 Signed Multiplication Algorithm 14	46
16 x 16 Unsigned Multiplication Algorithm	46
16MHz Clock from 4x PL Litter 44	47
A/D Acquisition Time	67
A/D Minimum Charging Time	67
A/D Minimum Charging Time	07
Calculating the Minimum Required Acquisition Time 30	67
Jitter and Total Frequency Error 44	47
Resultant Frequency Error 44	47
Errata	. 9
Error Recognition Mode	38
FUSART	
Asynchropous Mode	13
12 Bit Brook Tronomit and Bossiva	40 50
12-Dit Diedk Hallstill allu Receive	17
Associated Registers, Receive	47
Associated Registers, Transmit	45
Auto-Wake-up on Sync Break 34	48
Receiver	46
Setting up 9-Bit Mode with Address Detect 34	46
Transmitter 34	43
Baud Rate Generator	
Operation in Power Managed Mode	27
Devid Data Canasister (DDC)	27
Baud Rate Generator (BRG)	31
Associated Registers	38
Auto-Baud Rate Detect	41
Baud Rate Error, Calculating	38
Baud Rates, Asynchronous Modes	39
High Baud Rate Select (BRGH Bit)	37
Sampling 3	37
Synchronous Master Mode	51
Synchronous Master Mode	
Associated Registers, Receive	54
Associated Registers, Transmit	52
Reception	53
Transmission 3	51
Synchronous Slave Mode	55
Associated Registers, Receive	56
Associated Registers, Transmit	55
Recention 3	56
Transmission	55
Extended Instruction Cot	55
	~~
ADDFSR	20
ADDULNK	26
CALLW	27
MOVSF	27
MOVSS	28
PUSHL	28
SUBESR 52	29
SUBLINK 5'	20
External Oscillator Modes	20
Cleak Input (FC Madae)	50
	59
нъ	58
F	
•	
Fail-Sate Clock Monitor 457, 4	77
Exiting Operation4	77
Interrupts in Power-Managed Modes4	78
POR or Wake from Sleep	78
WDT During Oscillator Failure 4	77
Fail-Safe Clock Monitor (ESCM)	57
Fast Register Stack	05
1 ast register older	50