

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	ECANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf26k80-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.0 RESET

The PIC18F66K80 family devices differentiate between various kinds of Reset:

- a) Power-on Reset (POR)
- b) MCLR Reset during Normal Operation
- c) MCLR Reset during Power-Managed modes
- d) Watchdog Timer (WDT) Reset (during execution)
- e) Configuration Mismatch (CM) Reset
- f) Programmable Brown-out Reset (BOR)
- g) RESET Instruction
- h) Stack Full Reset
- i) Stack Underflow Reset

This section discusses Resets generated by MCLR, POR and BOR, and covers the operation of the various start-up timers. Stack Reset events are covered in **Section 6.1.3.4 "Stack Full and Underflow Resets**". WDT Resets are covered in **Section 28.2 "Watchdog Timer (WDT)**".

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 5-1.

5.1 RCON Register

Device Reset events are tracked through the RCON register (Register 5-1). The lower five bits of the register indicate that a specific Reset event has occurred. In most cases, these bits can only be cleared by the event and must be set by the application after the event. The state of these flag bits, taken together, can be read to indicate the type of Reset that just occurred. This is described in more detail in **Section 5.7** "**Reset State of Registers**".

The RCON register also has control bits for setting interrupt priority (IPEN) and software control of the BOR (SBOREN). Interrupt priority is discussed in Section 10.0 "Interrupts". BOR is covered in Section 5.4 "Brown-out Reset (BOR)".

FIGURE 5-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

Register	A	pplicable Device	es	Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt
B4D5	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B4D4	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B4D3	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B4D2	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B4D1	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B4D0	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B4DLC	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	-xxx xxxx	-uuu uuuu	-uuu uuuu
B4EIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B4EIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B4SIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx x-xx	uuuu u-uu	uuuu u-uu
B4SIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B4CON	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 0000	0000 0000	uuuu uuuu
CANCON_RO6	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	1000 0000	1000 0000	uuuu uuuu
CANSTAT_RO6	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	1000 0000	1000 0000	uuuu uuuu
B3D7	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B3D6	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B3D5	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B3D4	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B3D3	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B3D2	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B3D1	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B3D0	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B3DLC	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	-xxx xxxx	-uuu uuuu	-uuu uuuu
B3EIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B3EIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B3SIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx x-xx	uuuu u-uu	uuuu u-uu
B3SIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B3CON	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 0000	0000 0000	uuuu uuuu
CANCON_RO7	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	1000 0000	1000 0000	uuuu uuuu
B2D7	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B2D6	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B2D5	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B2D4	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B2D3	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B2D2	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu

TABLE 5-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged; x = unknown; - = unimplemented bit, read as '0'; q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 5-3 for Reset value for specific conditions.

5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read as '0'.

Register	A	pplicable Device	es	Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt
B0EIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B0SIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx x-xx	uuuu u-uu	uuuu u-uu
B0SIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
B0CON	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 0000	0000 0000	uuuu uuuu
TXBIE	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0 00	u uu	u uu
BIE0	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 0000	0000 0000	uuuu uuuu
BSEL0	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 00	0000 00	uuuu uu
MSEL3	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 0000	0000 0000	uuuu uuuu
MSEL2	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 0000	0000 0000	uuuu uuuu
MSEL1	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 0101	0000 0101	uuuu uuuu
MSEL0	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0101 0000	0101 0000	uuuu uuuu
RXFBCON7	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 0000	0000 0000	uuuu uuuu
RXFBCON6	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 0000	0000 0000	uuuu uuuu
RXFBCON5	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 0000	0000 0000	uuuu uuuu
RXFBCON4	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 0000	0000 0000	uuuu uuuu
RXFBCON3	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 0000	0000 0000	uuuu uuuu
RXFBCON2	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0001 0001	0001 0001	uuuu uuuu
RXFBCON1	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0001 0001	0001 0001	uuuu uuuu
RXFBCON0	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 0000	0000 0000	uuuu uuuu
SDFLC	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0 0000	0 0000	u uuuu
RXF15EIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXF15EIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXF15SIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxx- x-xx	uuu- u-uu	uuu- u-uu
RXF15SIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXF14EIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXF14EIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXF14SIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxx- x-xx	uuu- u-uu	uuu- u-uu
RXF14SIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXF13EIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXF13EIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXF13SIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxx- x-xx	uuu- u-uu	uuu- u-uu
RXF13SIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXF12EIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXF12EIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXF12SIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxx- x-xx	uuu- u-uu	uuu- u-uu

TABLE 5-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged; x = unknown; - = unimplemented bit, read as '0'; q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 5-3 for Reset value for specific conditions.

5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read as '0'.

Addr.	File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR on page	
FFFh	TOSU	— — Top-of-Stack Upper Byte (TOS<20:16>)									
FFEh	TOSH	Top-of-Stack High Byte (TOS<15:8>)									
FFDh	TOSL	Top-of-Stack	Low Byte (TO	S<7:0>)						88	
FFCh	STKPTR	STKFUL STKUNF – SP4 SP3 SP2 SP1 SP0								88	
FFBh	PCLATU	_	—	Bit 21	Holding Regi	ster for PC<20):16>	•	•	88	
FFAh	PCLATH	Holding Regi	Holding Register for PC<15:8>								
FF9h	PCL	PC Low Byte	PC Low Byte (PC<7:0>)								
FF8h	TBLPTRU	_	_	Bit 21	Program Mer	nory Table Poi	inter Upper By	/te (TBLPTR<	20:16>)	88	
FF7h	TBLPTRH	Program Mer	nory Table Poi	nter High Byte	(TBLPTR<15	:8>)				88	
FF6h	TBLPTRL	Program Mer	nory Table Poi	nter Low Byte	(TBLPTR<7:0	>)				88	
FF5h	TABLAT	Program Mer	nory Table Lat	ch						88	
FF4h	PRODH	Product Regi	ster High Byte							88	
FF3h	PRODL	Product Regi	ster Low Byte							88	
FF2h	INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	88	
FF1h	INTCON2	RBPU	INTEDGO	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP	88	
FF0h	INTCON3	INT2IP	INT1IP	INT3IF	INT2IF	INT1IF	INT3IF	INT2IF	INT1IF	88	
FEFh	INDF0	Uses content	s of FSR0 to a	address data m	nemory – value	e of FSR0 not of	changed (not a	a physical regi	ister)	88	
FEEh	POSTINC0	Uses content	s of FSR0 to a	ddress data m	nemory – value	of FSR0 post	-incremented	(not a physica	l register)	88	
FEDh	POSTDEC0	Uses content	s of FSR0 to a	ddress data m	nemory – value	e of FSR0 post	-decremented	(not a physic	al register)	88	
FECh	PRFINC0	Uses content	Uses contents of FSP0 to address data memory – value of FSP0 pre-incremented (not a physical register)								
FFBh	PLUSWO	Uses content	Loss contants of FSP0 to address data memory - value of FSP0 are incremented (not a physical register)								
	1 200110	value of FSR	0 offset by W		ieniory value		incremented (not a physical	registery	00	
FEAh	FSR0H	—	— — — Indirect Data Memory Address Pointer 0 High Byte								
FE9h	FSR0L	Indirect Data Memory Address Pointer 0 Low Byte								88	
FE8h	WREG	Working Register								88	
FE7h	INDF1	Uses content	Uses contents of FSR1 to address data memory – value of FSR1 not changed (not a physical register)								
FE6h	POSTINC1	Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register)								88	
FE5h	POSTDEC1	Uses content	Uses contents of FSR1 to address data memory – value of FSR1 post-decremented (not a physical register)							88	
FE4h	PREINC1	Uses content	s of FSR1 to a	address data m	nemory – value	of FSR1 pre-	incremented (not a physical	register)	88	
FE3h	PLUSW1	Uses content value of FSR	s of FSR1 to a 1 offset by W	address data m	nemory – value	of FSR1 pre-	incremented (not a physical	register) –	88	
FE2h	FSR1H	_	_	_	_	Indirect Data	Memory Addr	ess Pointer 1	High Byte	88	
FE1h	FSR1L	Indirect Data Memory Address Pointer 1 Low Byte								88	
FE0h	BSR	_	— — — Bank Select Register								
FDFh	INDF2	Uses content	Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register)							88	
FDEh	POSTINC2	Uses content	Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register)							89	
FDDh	POSTDEC2	Uses content	s of FSR2 to a	ddress data m	nemory – value	of FSR2 post	-decremented	(not a physic	al register)	89	
FDCh	PREINC2	Uses content	s of FSR2 to a	ddress data m	nemory – value	of FSR2 pre-	incremented (not a physical	register)	89	
FDBh	PLUSW2	Uses content value of FSR	s of FSR2 to a 2 offset by W	address data m	nemory – value	of FSR2 pre-	incremented (not a physical	register) –	89	
FDAh	FSR2H	_	_	_	_	Indirect Data	Memory Addr	ess Pointer 2	High Byte	89	
FD9h	FSR2L	Indirect Data	Memory Addr	ess Pointer 2 L	ow Byte		-			89	
FD8h	STATUS	_	_	_	N	OV	Z	DC	С	89	
FD7h	TMR0H	Timer0 Regis	ter High Byte							89	
FD6h	TMR0L	Timer0 Reais	ter Low Byte							89	
FD5h	TOCON	TMROON T08BIT TOCS T0SE PSA T0PS2 T0PS1 T0PS0							89		
FD4h	Unimplemented								_		
FD3h	OSCCON	IDLEN	IRCF2	IRCF1	IRCF0	OSTS	HFIOFS	SCS1	SCS0	89	
FD2h	OSCCON2	_	SOSCRUN	_	SOSCDRV	SOSCGO	_	MFIOFS	MFIOSEL	89	
FD1h	WDTCON	REGSLP	—	ULPLVL	SRETEN	—	ULPEN	ULPSINK	SWDTEN	89	
FD0h	RCON	IPEN	SBOREN	CM	RI	TO	PD	POR	BOR	89	
L											

TABLE 6-2:	PIC18F66K80 FAMILY REGISTER FILE SUMMARY

IADL	.C 0-2. F	IC IOF OON		T REGIS		SUIVIIVIAN		INUED)		
Addr.	File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR on page
ED6h	B5D0	B5D07	B5D06	B5D05	B5D04	B5D03	B5D02	B5D01	B5D00	95
ED5h	B5DLC	_	TXRTR	_	_	DLC3	DLC2	DLC1	DLC0	95
ED4h	B5EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	95
ED3h	B5EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	95
ED2h	B5SIDL	SID2	SID1	SID0	SRR	EXID		EID17	EID16	95
ED1h	B5SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	95
ED0h	B5CON	TXBIF	TXABT	TXLARB	TXERR	TXREQ		TXPRI1	TXPRI0	95
ECFh	CANCON RO5	CANCON R	05			11			1	95
ECEh	 CANSTAT RO5	CANSTAT R	05							96
ECDh	 B4D7	 B4D77	B4D76	B4D75	B4D74	B4D73	B4D72	B4D71	B4D70	96
ECCh	B4D6	B4D67	B4D66	B4D65	B4D64	B4D63	B4D62	B4D61	B4D60	96
ECBh	B4D5	B4D57	B4D56	B4D55	B4D54	B4D53	B4D52	B4D51	B4D50	96
ECAh	B4D4	B4D47	B4D46	B4D45	B4D44	B4D43	B4D42	B4D41	B4D40	96
EC9h	B4D3	B4D37	B4D36	B4D35	B4D34	B4D33	B4D32	B4D31	B4D30	96
EC8h	B4D2	B4D27	B4D26	B4D25	B4D24	B4D23	B4D22	B4D21	B4D20	96
EC7h	B4D1	B4D17	B4D16	B4D15	B4D14	B4D13	B4D12	B4D11	B4D10	96
EC6h	B4D0	B4D07	B4D06	B4D05	B4D04	B4D03	B4D02	B4D01	B4D00	96
EC5h	B4DLC	_	TXRTR	_	_	DLC3	DLC2	DLC1	DLC0	96
EC4h	B4EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	96
EC3h	B4EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	96
FC2h	B4SIDI	SID2	SID1	SID0	SRR	FXID		FID17	FID16	96
FC1h	B4SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	96
EC0h	B4CON	TXBIE	TXABT	TXI ARB	TXERR	TXREQ	_	TXPRI1	TXPRI0	96
FBFh	CANCON RO6									96
FBFh	CANSTAT RO6	CANSTAT R								
FBDh	B3D7	B3D77	B3D76	B3D75	B3D73	B3D73	B3D72	B3D71	B3D70	96
FBCh	B3D6	B3D67	B3D66	B3D65	B3D63	B3D63	B3D62	B3D61	B3D60	96
FBBh	B3D5	B3D57	B3D56	B3D55	B3D53	B3D53	B3D52	B3D51	B3D50	96
FBAh	B3D4	B3D47	B3D46	B3D45	B3D43	B3D43	B3D42	B3D41	B3D40	96
FB9h	B3D3	B3D37	B3D36	B3D35	B3D33	B3D33	B3D32	B3D31	B3D30	96
FB8h	B3D2	B3D27	B3D26	B3D25	B3D23	B3D23	B3D22	B3D21	B3D20	96
EB7h	B3D1	B3D17	B3D16	B3D15	B3D13	B3D13	B3D12	B3D11	B3D10	96
EB6h	B3D0	B3D07	B3D06	B3D05	B3D03	B3D03	B3D02	B3D01	B3D00	96
EB5h	B3DLC	_	TXRTR	_	_	DI C3	DI C2	DI C1	DI C0	96
FB4h	B3FIDI	FID7	FID6	FID5	FID4	FID3	FID2	FID1	FID0	96
EB3h	B3EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	96
EB2h	B3SIDL	SID2	SID1	SID0	SRR	EXID		EID17	EID16	96
EB1h	B3SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	96
EB0h	B3CON	TXBIE	TXABT	TXI ARB	TXERR	TXREQ	_	TXPRI1	TXPRI0	96
FAFh	CANCON RO7	CANCON R	07	1712 112	17 El al C	a				96
FAFh	CANSTAT RO7	CANSTAT R	07							96
FADh	B2D7	B2D77	B2D76	B2D75	B2D72	B2D73	B2D72	B2D71	B2D70	96
FACh	B2D6	B2D67	B2D66	B2D65	B2D62	B2D63	B2D62	B2D61	B2D60	96
FABh	B2D5	B2D57	B2D56	B2D55	B2D52	B2D53	B2D52	B2D51	B2D50	97
FAAh	B2D4	B2D47	B2D46	B2D45	B2D02 B2D42	B2D43	B2D42	B2D01	B2D40	97
E/041	B2D3	B2D37	B2D36	B2D35	B2D32	B2D33	B2D32	B2D41 B2D31	B2D40	97
FARh	B2D2	B2D27	B2D26	B2D05	B2D22	B2D23	B2D92	B2D21	B2D20	97
EA7h	B2D1	B2D17	B2D16	B2D15	B2D12	B2D23	B2D12	B2D21	B2D10	97
EA6h	B2D0	B2D07	B2D06	B2D05	B2D02	B2D03	B2D02	B2D01	B2D00	97
EA5h	B2DLC		TXRTR			DL C3	DI C2	DL C1	DLCO	97
EA/h	B2EIDI	EID7	FIDE	EID5	EID4	FID3	EID2	FID1	FIDO	97
			2000	2100		2103				31

TABLES		
IADLE 0-2:	PICTOFOOROU FAMILT REGISTER FILE SUMMART	CONTINUED)

EXAMPLE 7-3: WRITING TO FLASH PROGRAM MEMORY

	MOVLW MOVWF	SIZE_OF_BLOCK COUNTER	; :	number of bytes in erase block
	MOVLW	BUFFER_ADDR_HIGH	;]	point to buffer
	MOVWF	FSROH		
	MOVLW	BUFFER_ADDR_LOW		
	MOVIN	FSRUL CODE ADDE HDDER		Load TRIDTR with the base
	MOVWF	TBLPTRU	; ;	address of the memory block
	MOVLW	CODE_ADDR_HIGH		-
	MOVWF	TBLPTRH		
	MOVLW	CODE_ADDR_LOW		
READ BLOCK	MOVWE	TREPTRE		
	TBLRD*+	-	;	read into TABLAT, and inc
	MOVF	TABLAT, W	;	get data
	MOVWF	POSTINC0	;	store data
	DECFSZ	COUNTER DEND BLOCK	; ;	done?
MODIFY WORD	BRA	READ_BLOCK	'	repear
1.001110010	MOVLW	DATA_ADDR_HIGH	; ;	point to buffer
	MOVWF	FSROH		
	MOVLW	DATA_ADDR_LOW		
	MOVWF MOVI W	FSRUL		undata buffar word
	MOVEW	POSTINCO	'	update buller word
	MOVLW	NEW_DATA_HIGH		
	MOVWF	INDF0		
ERASE_BLOCK				
	MOVLW	CODE_ADDR_UPPER	;	load TBLPTR with the base
	MOVWF	CODE ADDR HIGH	, ,	address of the memory brock
	MOVWF	TBLPTRH		
	MOVLW	CODE_ADDR_LOW		
	MOVWF	TBLPTRL		
	BSF	EECON1, EEPGD	;]	point to Flash program memory
	BSF	EECON1, WREN	;	enable write to memory
	BSF	EECON1, FREE	;	enable Row Erase operation
	BCF	INTCON, GIE	; (disable interrupts
D	MOVLW	55h		
Required	MOVIE	EECON2 Olab	;	write 55h
Sequence	MOVUW	EECON2	; ;	write 0AAh
	BSF	EECON1, WR	;	start erase (CPU stall)
	BSF	INTCON, GIE	;	re-enable interrupts
	TBLRD*-		; ;	dummy read decrement
	MOVLW	BUFFER_ADDR_HIGH	'	point to builer
	MOVLW	BUFFER_ADDR_LOW		
	MOVWF	FSROL		
WRITE_BUFFER_B	ACK			
	MOVLW	SIZE_OF_BLOCK	; :	number of bytes in holding register
WRITE BYTE TO	HREGS	COUNTER		
	MOVFF	POSTINC0, WREG	;	get low byte of buffer data
	MOVWF	TABLAT	;	present data to table latch
	TBLWT+*	•	;	write data, perform a short write
	DECEC	COUNTED	;	to internal TBLWT holding register.
	DECFSZ BRA	COUNTER MEITE BYTE TO HEFGE	<i>i</i> .	TOOP UNTIL DULLERS ARE FULL

Pin Name	Function	TRIS Setting	I/O	I/О Туре	Description			
RB0/AN10/C1INA	RB0	0	0	DIG	LATB<0> data output.			
FLT0/INT0		1	I	ST	PORTB<0> data input; weak pull-up when RBPU bit is cleared.			
	AN10	1	I	ANA	A/D Input Channel 10 and Comparator C1+ input. Default input configuration on POR.			
	C1INA ⁽¹⁾	1	Ι	ANA	Comparator 1 Input A.			
	FLT0	x	I	ST	Enhanced PWM Fault input for ECCPx.			
	INT0	1	Ι	ST	External Interrupt 0 input.			
RB1/AN8/C1INB/	RB1	0	0	DIG	LATB<1> data output.			
P1B/CTDIN/INT1		1	Ι	ST	PORTB<1> data input; weak pull-up when RBPU bit is cleared.			
	AN8	1	I	ANA	A/D Input Channel 8 and Comparator C2+ input. Default input configuration on POR; not affected by analog output.			
	C1INB ⁽¹⁾	1	Ι	ANA	Comparator 1 Input B.			
	P1B ⁽¹⁾	0	0	DIG	ECCP1 PWM Output B. May be configured for tri-state during Enhanced PWM shutdown events.			
	CTDIN	1	Ι	ST	CTMU pulse delay input.			
	INT1	1	Ι	ST	External Interrupt 1 input.			
RB2/CANTX/C1OUT/	RB2	0	0	DIG	LATB<2> data output.			
P1C/CTED1/INT2		1	Ι	ST	PORTB<2> data input; weak pull-up when RBPU bit is cleared.			
	CANTX ⁽²⁾	0	0	DIG	CAN bus TX.			
	C10UT ⁽¹⁾	0	0	DIG	Comparator 1 output; takes priority over port data.			
	P1C ⁽¹⁾	0	0	DIG	ECCP1 PWM Output C. May be configured for tri-state during Enhanced PWM.			
	CTED1	x	Ι	ST	CTMU Edge 1 input.			
	INT2	1	I	ST	External Interrupt 2.			
RB3/CANRX/	RB3	0	0	DIG	LATB<3> data output.			
C2OUT/P1D/		1	Ι	ST	PORTB<3> data input; weak pull-up when RBPU bit is cleared.			
CTEDZ/INTS	CANRX ⁽²⁾	1	I	ST	CAN bus RX.			
	C2OUT ⁽¹⁾	x	Ι	ST	CTMU Edge 2 input.			
	P1D ⁽¹⁾	0	0	DIG	ECCP1 PWM Output D. May be configured for tri-state during Enhanced PWM.			
	CTED2	x	Ι	ST	CTMU Edge 2 input.			
	INT3	1	Ι	ST	External Interrupt 3 input.			

TABLE 11-3: PORTB FUNCTIONS

Legend: O = Output; I = Input; ANA = Analog Signal; DIG = CMOS Output; ST = Schmitt Trigger Buffer Input; x = Don't care (TRIS bit does not affect port direction or is overridden for this option)

Note 1: This pin assignment is only available for 28-pin devices (PIC18F2XK80).

2: This is the default pin assignment for CANRX and CANTX when the CANMX Configuration bit is set.

3: This is the default pin assignment for TOCKI when the TOCKMX Configuration bit is set.

4: This is the default pin assignment for T3CKI for 28, 40 and 44-pin devices. This is the alternate pin assignment for T3CKI for 64-pin devices when T3CKMX is cleared.

Pin Name	Function	TRIS Setting	I/O	I/О Туре	Description
RD0/C1INA/	RD0	0	0	DIG	LATD<0> data output.
PSP0		1	I	ST	PORTD<0> data input.
	C1INA	1	I	ANA	Comparator 1 Input A.
	PSP0	x	I/O	ST	Parallel Slave Port data.
RD1/C1INB/	RD1 ⁽¹⁾	0	0	DIG	LATD<1> data output.
PSP1		1	Ι	ST	PORTD<1> data input.
	C1INB ⁽¹⁾	1	I	ANA	Comparator 1 Input B.
	PSP1 ⁽¹⁾	x	I/O	ST	Parallel Slave Port data.
RD2/C2INA/	RD2	0	0	DIG	LATD<2> data output.
PSP2		1	I	ST	PORTD<2> data input.
	C2INA	1	I	ANA	Comparator 2 Input A.
	PSP2	x	I/O	ST	Parallel Slave Port data.
RD3/C2INB/	RD3	0	0	DIG	LATD<3> data output.
CTMUI/PSP3		1	I	ST	PORTD<3> data input.
	C2INB	1	I	ANA	Comparator 2 Input B.
	CTMUI	x	I	_	CTMU pulse generator charger for the C2INB comparator input.
	PSP3	x	I/O	ST	Parallel Slave Port data.
RD4/ECCP1/	RD4	0	0	DIG	LATD<4> data output.
P1A/PSP4		1	I	ST	PORTD<4> data input.
	ECCP1	0	0	DIG	ECCP1 compare output and ECCP1 PWM output; takes priority over port data.
		1	Ι	ST	ECCP1 capture input.
	P1A	0	0	DIG	ECCP1 Enhanced PWM output, Channel A. May be configured for tri-state during Enhanced PWM shutdown events; takes priority over port data.
	PSP4	x	I/O	ST	Parallel Slave Port data.
RD5/P1B/PSP5	RD5	0	0	DIG	LATD<5> data output.
		1	I	ST	PORTD<5> data input.
	P1B	0	0	DIG	ECCP1 Enhanced PWM output, Channel B. May be configured for tri-state during Enhanced PWM shutdown events; takes priority over port data.
	PSP5	x	I/O	ST	Parallel Slave Port data.
RD6/TX2/CK2	RD6	0	0	DIG	LATD<6> data output.
P1C/PSP6		1	I	ST	PORTD<6> data input.
	TX2 ⁽¹⁾	0	0	DIG	Asynchronous serial data output (EUSARTx module); takes priority over port data.
	CK2 ⁽¹⁾	0	0	DIG	Synchronous serial clock output (EUSARTx module); user must configure as an input.
		1	Ι	ST	Synchronous serial clock input (EUSARTx module); user must configure as an input.
	P1C	0	0	DIG	ECCP1 Enhanced PWM output, Channel C. May be configured for tri-state during Enhanced PWM.
	PSP6	х	I/O	ST	Parallel Slave Port data.

TABLE 11-7: PORTD FUNCTIONS

Legend: O = Output; I = Input; ANA = Analog Signal; DIG = CMOS Output; ST = Schmitt Trigger Buffer Input;

x = Don't care (TRIS bit does not affect port direction or is overridden for this option)

Note 1: This is the pin assignment for 40 and 44-pin devices (PIC18F4XK80).

Pin Name	Function	TRIS Setting	I/O	I/O Type	Description
RE5/CANTX	RE5 ⁽¹⁾	0	0	DIG	LATE<5> data output.
		1	Ι	ST	PORTE<5> data input.
	CANTX ^(1,2)	0	0	DIG	CAN bus TX.
RE6/RX2/DT2	RE6 ⁽¹⁾	0	0	DIG	LATE<6> data output.
		1	Ι	ST	PORTE<6> data input.
	RX2 ⁽¹⁾	1	Ι	ST	Asynchronous serial receive data input (EUSARTx module).
	DT2 ⁽¹⁾	1	0	DIG	Synchronous serial data output (EUSARTx module); takes priority over port data.
		1	I	ST	Synchronous serial data input (EUSARTx module); user must configure as an input.
RE7/TX2/CK2	RE7 ⁽¹⁾	0	0	DIG	LATE<7> data output.
		1	Ι	ST	PORTE<7> data input.
	TX2 ⁽¹⁾	0	0	DIG	Asynchronous serial data output (EUSARTx module); takes priority over port data.
	CK2 ⁽¹⁾	0	0	DIG	Synchronous serial clock output (EUSARTx module); user must configure as an input.
		1	I	ST	Synchronous serial clock input (EUSARTx module); user must configure as an input.

TABLE 11-9: PORTE FUNCTIONS (CONTINUED)

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = CMOS Output, ST = Schmitt Trigger Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option)

Note 1: These bits are unavailable for 40 and 44-pin devices (PIC18F4XK0).

2: This is the alternate pin assignment for CANRX and CANTX on 64-pin devices (PIC18F6XK80) when the CANMX Configuration bit is cleared.

TABLE 11-10:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTE	RE7 ⁽¹⁾	RE6 ⁽¹⁾	RE5 ⁽¹⁾	RE4 ⁽¹⁾	RE3	RE2	RE1	RE0
LATE	LATE7	LATE6	LATE5	LATE4	—	LATE2	LATE1	LATE0
TRISE	TRISE7	TRISE6	TRISE5	TRISE4	—	TRISE2	TRISE1	TRISE0
PADCFG1	RDPU	REPU	RFPU ⁽¹⁾	RGPU ⁽¹⁾	_	—	—	CTMUDS
ANCON0	ANSEL7	ANSEL6	ANSEL5	ANSEL4	ANSEL3	ANSEL2	ANSEL1	ANSEL0

Legend: Shaded cells are not used by PORTE.

Note 1: These bits are unimplemented on 44-pin devices, read as '0'.

14.8.4 TIMER1 GATE SINGLE PULSE MODE

When Timer1 Gate Single Pulse mode is enabled, it is possible to capture a single pulse gate event. Timer1 Gate Single Pulse mode is enabled by setting the T1GSPM bit (T1GCON<4>) and the T1GGO/T1DONE bit (T1GCON<3>). The Timer1 will be fully enabled on the next incrementing edge.

On the next trailing edge of the pulse, the T1GGO/ T1DONE bit will automatically be cleared. No other gate events will be allowed to increment Timer1 until the T1GGO/T1DONE bit is once again set in software. Clearing the T1GSPM <u>bit of the</u> T1GCON register will also clear the T1GGO/T1DONE bit. (For timing details, see Figure 14-6.)

Simultaneously enabling the Toggle and Single Pulse modes will permit both sections to work together. This allows the cycle times on the Timer1 gate source to be measured. (For timing details, see Figure 14-7.)

14.8.5 TIMER1 GATE VALUE STATUS

When the Timer1 gate value status is utilized, it is possible to read the most current level of the gate control value. The value is stored in the T1GVAL bit (T1GCON<2>). This bit is valid even when the Timer1 gate is not enabled (TMR1GE bit is cleared).

© 2010-2012 Microchip Technology Inc.

18.9 Measuring Temperature with the CTMU Module

The CTMU, along with an internal diode, can be used to measure the temperature. The A/D can be connected to the internal diode and the CTMU module can

source the current to the diode. The A/D reading will reflect the temperature. With the increase, the A/D readings will go low. This can be used for low-cost temperature measurement applications.

EXAMPLE 18-6: ROUTINE FOR TEMPERATURE MEASUREMENT USING INTERNAL DIODE

<pre>// Initialize CTMU CTMUICON = 0x03; CTMUCONHbits.CTMUEN = 1; CTMUCONLbits.EDG1STAT = 1;</pre>	
// Initialize ADC	
$ADCON0 = 0 \times E5;$ $ADCON1 = 0 \times 00;$	// Enable ADC and connect to Internal diode
$ADCON2 = 0 \times BE;$	//Right Justified
ADCON0bits.GO = 1; while(ADCON0bits.G0);	// Start conversion
Temp = ADRES;	// Read ADC results (inversely proportional to temperature)

Note: The temperature diode is not calibrated or standardized; the user must calibrate the diode to their application.

21.3.6 MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 1, Figure 21-2) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "Line Activity Monitor" mode.

The clock polarity is selected by appropriately programming the CKP bit (SSPCON1<4>). This then, would give waveforms for SPI communication as

shown in Figure 21-3, Figure 21-5 and Figure 21-6, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user-programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum data rate (at 64 MHz) of 16 Mbps.

Figure 21-3 shows the waveforms for Master mode. When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.

23.3 A/D Acquisition Requirements

For the A/D Converter to meet its specified accuracy, the Charge Holding (CHOLD) capacitor must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 23-5. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD).

The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω . After the analog input channel is selected or changed, the channel must be sampled for at least the minimum acquisition time before starting a conversion.

Note: When the conversion is started, the holding capacitor is disconnected from the input pin.

To calculate the minimum acquisition time, Equation 23-1 can be used. This equation assumes that 1/2 LSb error is used (1,024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Equation 23-3 shows the calculation of the minimum required acquisition time, TACQ. This calculation is based on the following application system assumptions:

CHOLD	=	25 pF
Rs	=	2.5 kΩ
Conversion Error	\leq	1/2 LSb
Vdd	=	$3V \rightarrow \text{Rss} = 2 \text{ k}\Omega$
Temperature	=	85°C (system max.)

EQUATION 23-1: ACQUISITION TIME

TACQ	=	Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
	=	TAMP + TC + TCOFF

EQUATION 23-2: A/D MINIMUM CHARGING TIME

 $VHOLD = (VREF - (VREF/2048)) \cdot (1 - e^{(-TC/CHOLD(RIC + RSS + RS))})$ or $TC = -(CHOLD)(RIC + RSS + RS) \ln(1/2048)$

EQUATION 23-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

TACQ	=	TAMP + TC + TCOFF
TAMP	=	0.2 μs
TCOFF	=	(Temp – 25°C)(0.02 μs/°C) (85°C – 25°C)(0.02 μs/°C) 1.2 μs
Tempera	ture co	befficient is only required for temperatures $> 25^{\circ}$ C. Below 25° C, TCOFF = 0 ms.
ТС	=	-(Chold)(Ric + Rss + Rs) $\ln(1/2048) \ \mu s$ -(25 pF) (1 k Ω + 2 k Ω + 2.5 k Ω) ln(0.0004883) μs 1.05 μs
TACQ	=	0.2 μs + 1.05 μs + 1.2 μs 2.45 μs

REGISTER 24-2: CMSTAT: COMPARATOR STATUS REGISTER

R-x	R-x	U-0	U-0	U-0	U-0	U-0	U-0
CMP2OUT	CMP10UT	—	_	—	—	—	—
bit 7	•			·		•	bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown					nown		
bit 7-6	CMP2OUT:C	MP1OUT: Com	parator x Statu	us bits			
	If CPOL (CM)	(<u>CON<5>)= 0 (</u>	non-inverted p	<u>olarity):</u>			

1 = Comparator x's VIN+ > VIN-

0 = Comparator x's VIN+ < VIN-

If CPOL = 1 (inverted polarity):

1 = Comparator x's VIN+ < VIN-

0 = Comparator x's VIN+ > VIN-

bit 4-0 Unimplemented: Read as '0'

24.5 Comparator Control and Configuration

Each comparator has up to eight possible combinations of inputs: up to four external analog inputs and one of two internal voltage references.

All of the comparators allow a selection of the signal from pin, CXINA, or the voltage from the comparator reference (CVREF) on the non-inverting channel. This is compared to either C1INB, CXINC, C2INB or the microcontroller's fixed internal reference voltage (VBG, 1.024V nominal) on the inverting channel. The comparator inputs and outputs are tied to fixed I/O pins, defined in Table 24-1. The available comparator configurations and their corresponding bit settings are shown in Figure 24-4.

Input or Output	l/O Pin ^(†)					
C1INA (VIN+)	RB0/RD0					
C1INB (VIN-)	RB1/RD1					
C1INC (VIN-)	RA1					
C2INB(VIN-)	RA5/RD3					
C10UT	RB2/RE1					
C2INA(VIN+)	RB4/RD2					
C2INB(VIN-)	RA5/RD3					
C2INC(VIN-)	RA2					
C2OUT	RB3/RE2					
	Input or Output C1INA (VIN+) C1INB (VIN-) C1INC (VIN-) C2INB(VIN-) C2INA(VIN+) C2INA(VIN+) C2INB(VIN-) C2INC(VIN-) C2OUT					

TABLE 24-1: COMPARATOR INPUTS AND OUTPUTS

† The I/O pin is dependent on package type.

24.5.1 COMPARATOR ENABLE AND INPUT SELECTION

Setting the CON bit of the CMxCON register (CMxCON<7>) enables the comparator for operation. Clearing the CON bit disables the comparator, resulting in minimum current consumption.

The CCH<1:0> bits in the CMxCON register (CMxCON<1:0>) direct either one of three analog input pins, or the Internal Reference Voltage (VBG), to the comparator, VIN-. Depending on the comparator operating mode, either an external or internal voltage reference may be used.

The analog signal present at VIN- is compared to the signal at VIN+ and the digital output of the comparator is adjusted accordingly.

The external reference is used when CREF = 0 (CMxCON<2>) and VIN+ is connected to the CxINA pin. When external voltage references are used, the comparator module can be configured to have the reference sources externally. The reference signal must be between Vss and VDD and can be applied to either pin of the comparator.

The comparator module also allows the selection of an internally generated voltage reference (CVREF) from the comparator voltage reference module. This module is described in more detail in **Section 25.0 "Comparator Voltage Reference Module**". The reference from the comparator voltage reference module is only available when CREF = 1. In this mode, the internal voltage reference is applied to the comparator's VIN+ pin.

Note:	The comparator input pin selected by
	CCH<1:0> must be configured as an input
	by setting both the corresponding TRIS bit
	and the corresponding ANSELx bit in the
	ANCONx register.

24.5.2 COMPARATOR ENABLE AND OUTPUT SELECTION

The comparator outputs are read through the CMSTAT register. The CMSTAT<6> bit reads the Comparator 1 output, CMSTAT<7> reads the Comparator 2 output. These bits are read-only.

The comparator outputs may also be directly output to the RE2 and RE1 pins by setting the COE bit (CMxCON<6>). When enabled, multiplexers in the output path of the pins switch to the output of the comparator. While in this mode, the TRISE<2:1> bits still function as the digital output enable bits for the RE2, and RE1 pins.

By default, the comparator's output is at logic high whenever the voltage on VIN+ is greater than on VIN-. The polarity of the comparator outputs can be inverted using the CPOL bit (CMxCON<5>).

The uncertainty of each of the comparators is related to the input offset voltage and the response time given in the specifications, as discussed in **Section 24.2 "Comparator Operation"**.

BTG	Bit Toggle	f		BOV		Branch if C	Overflow	
Syntax:	BTG f, b {,a	a}		Synta	ax:	BOV n		
Operands:	$0 \le f \le 255$			Oper	ands:	$-128 \le n \le 127$		
	0 ≤ b < 7 a ∈ [0,1]		Oper	Operation:		if Overflow bit is '1', (PC) + 2 + 2n \rightarrow PC		
Operation:	$(\overline{f}) \to f$			Statu	is Affected:	None		
Status Affected:	None			Enco	odina:	1110	0100 nn:	nn nnnn
Encoding:	0111	bbba ff	ff ffff	Desc	ription:	If the Overf	ow bit is '1'. tl	nen the
Description:	Bit 'b' in da inverted	Bit 'b' in data memory location 'f' is				program wi	I branch.	
	lf 'a' is '0', t lf 'a' is '1', t GPR bank.	he Access Ba he BSR is use	nk is selected. d to select the			added to the incremente instruction,	Plement num PC. Since th to fetch the the new addre	iber, '2n', is ie PC will have next ess will be
	If 'a' is '0' a	nd the extend	ed instruction			PC + 2 + 2r two-cycle ir	 I his instruction 	tion is then a
	set is enab in Indexed	led, this instru Literal Offset A	ction operates	Word	ls:	1		
	mode wher	never f ≤ 95 (5	Fh). See	Cycle	es:	1(2)		
	Section 29 Bit-Oriente Literal Offs	2.3 "Byte-Or ed Instruction set Mode" for	iented and is in Indexed details.	Q C If Ju	ycle Activity: ımp:			
Words:	1				Q1	Q2	Q3	Q4
Cvcles:	1				Decode	Read literal	Process	Write to PC
Q Cycle Activity					No	n No	Data	No
Q1	Q2	Q3	Q4		operation	operation	operation	operation
Decode	Read	Process	Write	lf No	Jump:			
	register 'f'	Data	register 'f'		Q1	Q2	Q3	Q4
					Decode	Read literal	Process	No
Example:	BTG P	ORTC, 4, ()			'n'	Data	operation
Before Instruc	ction:							
PORTC	= 0111	0101 [75h]		Exan	<u>nple:</u>	HERE	BOV Jump	
PORTC	on: = 0110	0101 [65h]			Before Instruct PC	ction = ad	dress (HERE)
					If Overflo PC	ow = 1; = ad	dress (Jumo)
					lf Overflo PC	ow = 0; = ad	dress (HERE	+ 2)

SLEEP	Enter Slee	Enter Sleep Mode						
Syntax:	SLEEP							
Operands:	None	None						
Operation:	$\begin{array}{l} 00h \rightarrow WE \\ 0 \rightarrow WDT \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \mbox{ postscaler}, \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$						
Status Affected:	TO, PD							
Encoding:	0000	0000 000	00 0011					
Description:	The Powe cleared. The is set. The postscaler	The Power-Down status bit (PD) is cleared. The Time-out status bit (TO) is set. The Watchdog Timer and its postscaler are cleared.						
	The proce with the os	The processor is put into Sleep mode with the oscillator stopped.						
Words:	1	1						
Cycles:	1	1						
Q Cycle Activity:								
Q1	Q2	Q3	Q4					
Decode	No	Process	Go to					
	operation	Dala	Sleep					
Example:	SLEEP							
Before Instruction $ \frac{TO}{PD} = ? $ $ \frac{FD}{PD} = ? $ After Instruction $ \frac{TO}{TO} = 1 \ddagger $								
PD = † If WDT causes v	0 wake-up, this t	bit is cleared.						

	Subtract f f	rom W with Bo	orrow				
Syntax:	SUBFWB	f {,d {,a}}					
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$						
Operation:	(W) - (f) - (0)	$\overline{C}) \rightarrow dest$					
Status Affected:	N, OV, C, D	C, Z					
Encoding:	0101	01da fff	f ffff				
Description:	Subtract register 'f' and Carry flag (borrow) from W (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored in register 'f' (default).						
	If 'a' is '0', th 'a' is '1', the GPR bank.	e Access Bank BSR is used to	is selected. If select the				
	If 'a' is '0' ar set is enable Indexed Lite whenever f Section 29. Bit-Orientee Literal Offs	ad the extended ad, this instruction ral Offset Addro ≤ 95 (5Fh). See 2.3 "Byte-Orie d Instructions et Mode" for de	l instruction on operates in essing mode inted and in Indexed etails.				
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	Q4				
Decode	Read register 'f'	Process Data	Write to destination				
Example 1.	CIIDEWD	BEC 1 0	uccunation				
Example 1: Before Instruct	SUBFWB	REG, 1, 0					
Example 1: Before Instruc REG	SUBFWB tion = 3	REG, 1, 0					
Example 1: Before Instruct REG W C	SUBFWB etion = 3 = 2 = 1	REG, 1, 0					
Example 1: Before Instruct REG W C After Instruction	SUBFWB tion = 3 = 2 = 1 on	REG, 1, 0					
Example 1: Before Instruct W C After Instructio REG W	SUBFWB stion = 3 = 2 = 1 on = FF = 2	REG, 1, 0					
Example 1: Before Instruct W C After Instruction REG W C	SUBFWB = 3 = 2 = 1 on = FF = 2 = 0	REG, 1, 0					
Example 1: Before Instruct W C After Instruction REG W C Z N	SUBFWB ition = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 1	REG, 1, 0	<i></i>				
Example 1: Before Instruct REG W C After Instructio REG W C Z N Example 2:	SUBFWB tion = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 1 ; SUBFWB	REG, 1, 0	ve				
Example 1: Before Instruct REG W C After Instructio REG W C Z N Example 2: Before Instruct	SUBFWB etion = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 0 = 1; SUBFWB etion	REG, 1, 0 result is negativ REG, 0, 0	ve				
Example 1: Before Instruct W C After Instruction REG W C Z N Example 2: Before Instruct REG	SUBFWB etion = 2 = 1 on = FF = 2 = 0 = 0 = 1 ; SUBFWB etion = 2	REG, 1, 0	ve				
Example 1: Before Instruct W C After Instruction REG W C Z N <u>Example 2:</u> Before Instruct REG W C	SUBFWB tion = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 1; SUBFWB tion = 2 = 1; = 2 = 1 = 1 = 2 = 1 = 0 = 0 = 1 = 0 = 0 = 1 = 2 = 1 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0	REG, 1, 0	ve				
Example 1: Before Instruct REG W C After Instruction REG W Example 2: Before Instruct REG W C After Instruction	SUBFWB tion = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 1; SUBFWB tion = 2 = 5 = 1 on	REG, 1, 0	/e				
Example 1: Before Instruct REG W C After Instruction REG W Example 2: Before Instruct REG W C After Instruction REG W	SUBFWB tion = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 0 = 1 ; SUBFWB tion = 2 = 1 on = 2 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0	REG, 1, 0	ve				
Example 1: Before Instruct REG W C After Instruction REG W C Example 2: Before Instruction REG W C After Instruction REG W C	SUBFWB tion = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 1; SUBFWB tion = 2 = 1 on = 2 = 1 on = 1 = 2 = 0 = 1; SUBFWB tion = 2 = 0 = 1 = 0 = 1 = 0 = 1 = 0 = 0 = 1 = 1 = 0 = 1 = 1 = 0 = 1 = 1 = 0 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1	REG, 1, 0	ve				
Example 1: Before Instruct REG W C After Instruction REG W Example 2: Before Instruct REG W C After Instruction REG W C After Instruction REG W C After Instruction REG W	$\begin{array}{r} \text{SUBFWB} \\ \text{stion} \\ = & 3 \\ = & 2 \\ = & 1 \\ \text{on} \\ = & \text{FF} \\ = & 2 \\ = & 0 \\ = & 0 \\ = & 0 \\ = & 0 \\ = & 1 \\ \text{SUBFWB} \\ \text{stion} \\ = & 2 \\ = & 1 \\ \text{on} \\ = & 2 \\ = & 3 \\ = & 1 \\ = & 0$	REG, 1, 0	ve				
Example 1: Before Instruct REG W C After Instruction REG W C Z N Example 2: Before Instruction REG W C After Instruction REG W C Z After Instruction REG W C Z After Instruction REG W C Z After Instruction REG W C Z After Instruction REG W C Z N N After Instruction REG W C Z N N After Instruction REG W C Z N N After Instruction N N N N N N N N N N N N N	SUBFWB stion = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 1; SUBFWB stion = 2 = 5 = 1 on = 2 = 0; SUBFWB	REG, 1, 0 result is negative REG, 0, 0	ve e				
Example 1: Before Instruct REG W C After Instruction REG W C Z N Example 2: Before Instruction REG W C After Instruction REG W C After Instruction REG W C After Instruction REG W C Before Instruction REG W C S Before Instruction REG W C S S S S S S S S S S S S S S S S S S	SUBFWB tion = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 1; SUBFWB tion = 2 = 5 = 1 on = 2 = 0 ; SUBFWB tion = 0; SUBFWB	REG, 1, 0 result is negativ REG, 0, 0	ve				
Example 1: Before Instruct REG W C After Instruction REG W C Z N Example 2: Before Instructor REG W C Z After Instructor REG W C Z N Example 3: Before Instructor REG	SUBFWB tion = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 0 = 1; SUBFWB tion = 2 = 3 = 1 on = 2 = 0; SUBFWB tion = 0; SUBFWB	REG, 1, 0 result is negativ REG, 0, 0	ve				
Example 1: Before Instruct REG W C After Instruction REG W C Example 2: Before Instructor REG W C After Instruction REG W C Example 3: Before Instructor REG W C Z N	$\begin{array}{rcrcccccccccccccccccccccccccccccccccc$	REG, 1, 0 result is negativ REG, 0, 0	e				
Example 1: Before Instruct REG W C After Instruction REG W C Example 2: Before Instruction REG W C After Instruction REG W C Z N Example 3: Before Instruction REG W C After Instruction REG W C	SUBFWB tion = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 1; SUBFWB tion = 2 = 5 = 1 on = 2 = 0; SUBFWB tion = 2 = 0; SUBFWB tion = 2 = 0; SUBFWB tion	REG, 1, 0 result is negativ REG, 0, 0 result is positiv REG, 1, 0	ve				
Example 1: Before Instruct REG W C After Instruction REG W C Z N Example 2: Before Instruction REG W C After Instruction REG W C Z N Example 3: Before Instruction REG W C After Instruction REG W C Z N Example 3: Before Instruction REG W C Z N Example 3: REG W C Z N Example 3: REG W C Z N Example 3: REG W C Z N Example 3: REG W C Z N Example 3: REG W C Z N Example 3: REG W C Z N Example 3: REG W C Z N Example 3: REG W C Z N Example 3: N Example 3: Example 3: Example 3: E	$\begin{array}{rcrr} & & & & \\ & & & & \\ \text{stion} & & & & \\ & & & & \\ & & & & \\ & & & & $	result is negative REG, 0, 0	ve e				
Example 1: Before Instruction REG W C After Instruction REG W C Example 2: Before Instruction REG W C After Instruction REG W C Z N Example 3: Before Instruction REG W C After Instruction REG W C C After Instruction REG W C C Z N	$\begin{array}{rcrr} & \text{SUBFWB} \\ \text{stion} & = & 3 \\ & = & 2 \\ & = & 1 \\ \text{on} & = & FF \\ & = & 2 \\ & = & 0 \\ & = & 0 \\ & = & 0 \\ & = & 0 \\ & = & 1 \\ \text{subFWB} \\ \text{stion} & = & 2 \\ & = & 1 \\ & = & 0 \\ & = & 0 \\ & = & 0 \\ & = & 0 \\ & = & 1 \\ & \text{subFWB} \end{array}$	REG, 1, 0	e				

31.2 DC Characteristics: Power-Down and Supply Current PIC18F66K80 Family (Industrial/Extended) (Continued)

PIC18F66 (Indus	K80 Family strial/Extended)	Standard Operating	Operatin temperat	ig Cond ture	itions (unless c -40°C ≤ TA ≤ -40°C ≤ TA ≤	otherwise stated) +85°C for industrial +125°C for extended		
Param No.	Device	Тур	Max	Units	Conditions			
	Supply Current (IDD) C	ont. ^(2,3)						
	PIC18LFXXK80	880	1600	nA	-40°C			
		880	1600	nA	+25°C			
		880	1600	nA	+60°C	VDD = 1.8V ⁽⁴⁾ Regulator Disabled		
		1	2	μA	+85°C			
		5	10	μA	+125°C			
	PIC18LFXXK80	1.6	5	μA	-40°C			
		1.6	5	μA	+25°C) (= = = 0 0) (4)		
		1.6	5	μA	+60°C	VDD = 3.3V ⁽⁴⁾ Regulator Disabled		
		2	6	μA	+85°C			
		7	12	μA	+125°C		Fosc = 31 kHz	
	PIC18FXXK80	41	130	μA	-40°C		LF-INTOSC)	
		59	130	μA	+25°C) (s =) (5)		
		64	130	μA	+60°C	Regulator Enabled		
		70	150	μA	+85°C			
		80	175	μA	+125°C			
	PIC18FXXK80	53	160	μA	-40°C			
		62	160	μA	+25°C) (== = = = (5)		
		70	160	μA	+60°C	Regulator Enabled		
		85	170	μA	+85°C			
		100	180	μA	+125°C			

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or VSS, and all features that add delta current are disabled (such as WDT, SOSC oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

- 4: For LF devices, RETEN (CONFIG1L<0>) = 1.
- 5: For F devices, SRETEN (WDTCON<4>) = 1 and RETEN (CONFIG1L<0>) = 0.

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
73	TDIV2scH, TDIV2scL	Setup Time of SDI Data Input to SCK Edge	20	—	ns	
73A	Тв2в	Last Clock Edge of Byte 1 to the 1st Clock Edge of Byte 2	1.5 Tcy + 40	-	ns	
74	TscH2diL, TscL2diL	Hold Time of SDI Data Input to SCK Edge	40	_	ns	
75	TDOR	SDO Data Output Rise Time	—	25	ns	
76	TDOF	SDO Data Output Fall Time	—	25	ns	
78	TscR	SCK Output Rise Time (Master mode)	—	25	ns	
79	TscF	SCK Output Fall Time (Master mode)	—	25	ns	
80	TscH2doV, TscL2doV	SDO Data Output Valid after SCK Edge	—	50	ns	
81	TDOV2scH, TDOV2scL	SDO Data Output Setup to SCK Edge	Тсү	-	ns	

TABLE 31-16: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)