

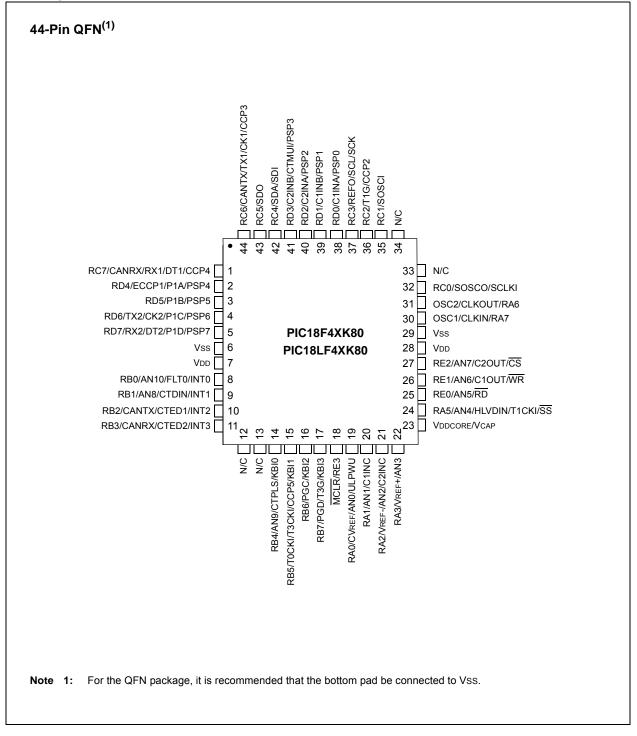
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	ECANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf26k80t-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

4.4.3 RC_IDLE MODE

In RC_IDLE mode, the CPU is disabled but the peripherals continue to be clocked from the internal oscillator block using the INTOSC multiplexer. This mode provides controllable power conservation during Idle periods.

From RC_RUN, this mode is entered by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, first set IDLEN, then set the SCS1 bit and execute SLEEP. To maintain software compatibility with future devices, it is recommended that SCS0 also be cleared, though its value is ignored. The INTOSC multiplexer may be used to select a higher clock frequency by modifying the IRCFx bits before executing the SLEEP instruction. When the clock source is switched to the INTOSC multiplexer, the primary oscillator is shut down and the OSTS bit is cleared.

If the IRCFx bits are set to any non-zero value, or the INTSRC/MFIOSEL bit is set, the INTOSC output is enabled. The HFIOFS/MFIOFS bits become set, after the INTOSC output becomes stable, after an interval of TIOBST (Parameter 38, Table 31-11). For information on the HFIOFS/MFIOFS bits, see Table 4-3.

Clocks to the peripherals continue while the INTOSC source stabilizes. The HFIOFS/MFIOFS bits will remain set if the IRCFx bits were previously at a non-zero value or if INTSRC was set before the SLEEP instruction was executed and the INTOSC source was already stable. If the IRCFx bits and INTSRC are all clear, the INTOSC output will not be enabled, the HFIOFS/MFIOFS bits will remain clear and there will be no indication of the current clock source.

When a wake event occurs, the peripherals continue to be clocked from the INTOSC multiplexer. After a delay of TCSD (Parameter 38, Table 31-11) following the wake event, the CPU begins executing code clocked by the INTOSC multiplexer. The IDLEN and SCSx bits are not affected by the wake-up. The INTOSC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

4.5 Selective Peripheral Module Control

Idle mode allows users to substantially reduce power consumption by stopping the CPU clock. Even so, peripheral modules still remain clocked, and thus, consume power. There may be cases where the application needs what this mode does not provide: the allocation of power resources to the CPU processing with minimal power consumption from the peripherals.

PIC18F66K80 family devices address this requirement by allowing peripheral modules to be selectively disabled, reducing or eliminating their power consumption. This can be done with two control bits:

- Peripheral Enable bit, generically named XXXEN Located in the respective module's main control register
- Peripheral Module Disable (PMD) bit, generically named, XXXMD – Located in one of the PMDx Control registers (PMD0, PMD1 or PMD2)

Disabling a module by clearing its XXXEN bit disables the module's functionality, but leaves its registers available to be read and written to. This reduces power consumption, but not by as much as the second approach.

Most peripheral modules have an enable bit.

In contrast, setting the PMD bit for a module disables all clock sources to that module, reducing its power consumption to an absolute minimum. In this state, the control and status registers associated with the peripheral are also disabled, so writes to those registers have no effect and read values are invalid. Many peripheral modules have a corresponding PMD bit.

There are three PMD registers in PIC18F66K80 family devices: PMD0, PMD1 and PMD2. These registers have bits associated with each module for disabling or enabling a particular peripheral.

TABLE 4-4:EXIT DELAY ON WAKE-UP BY RESET FROM SLEEP MODE OR ANY IDLE MODE
(BY CLOCK SOURCES)

Power-Managed Mode	Clock Source ⁽⁵⁾	Exit Delay	Clock Ready Status Bits
	LP, XT, HS		
	HSPLL		OSTS
	EC, RC	TCSD ⁽¹⁾	
PRI_IDLE mode	HF-INTOSC ⁽²⁾	ICSD**	HFIOFS
	MF-INTOSC ⁽²⁾		MFIOFS
	LF-INTOSC		None
SEC_IDLE mode	SOSC	TCSD ⁽¹⁾	SOSCRUN
	HF-INTOSC ⁽²⁾		HFIOFS
RC_IDLE mode	MF-INTOSC ⁽²⁾	Tcsd ⁽¹⁾	MFIOFS
	LF-INTOSC		None
	LP, XT, HS	Tost ⁽³⁾	
	HSPLL	Tost + t _{rc} (3)	OSTS
Sloop mode	EC, RC	TCSD ⁽¹⁾	
Sleep mode	HF-INTOSC ⁽²⁾		HFIOFS
	MF-INTOSC ⁽²⁾	TIOBST ⁽⁴⁾	MFIOFS
	LF-INTOSC		None

Note 1: TCSD (Parameter 38, Table 31-11) is a required delay when waking from Sleep and all Idle modes, and runs concurrently with any other required delays (see **Section 4.4 "Idle Modes"**).

2: Includes postscaler derived frequencies. On Reset, INTOSC defaults to HF-INTOSC at 8 MHz.

3: TOST is the Oscillator Start-up Timer (Parameter 32, Table 31-11). TRC is the PLL Lock-out Timer (Parameter F12, Table 31-7); it is also designated as TPLL.

4: Execution continues during TIOBST (Parameter 39, Table 31-11), the INTOSC stabilization period.

5: The clock source is dependent upon the settings of the SCSx (OSCCON<1:0>), IRCFx (OSCCON<6:4>) and FOSCx (CONFIG1H<3:0>) bits.

Register	A	Applicable Devices		Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt
TXB1SIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
TXB1CON	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 0-00	0000 0-00	uuuu u-uu
CANCON_RO3	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	1000 0000	1000 0000	uuuu uuuu
CANSTAT_RO3	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	1000 0000	1000 0000	uuuu uuuu
TXB2D7	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
TXB2D6	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
TXB2D5	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
TXB2D4	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
TXB2D3	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
TXB2D2	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
TXB2D1	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
TXB2D0	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
TXB2DLC	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
TXB2EIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
TXB2EIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
TXB2SIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxx- x-xx	uuu- u-uu	uuu- u-uu
TXB2SIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
TXB2CON	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	0000 0-00	0000 0-00	uuuu u-uu
RXM1EIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXM1EIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXM1SIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxx- 0-xx	uuu- u-uu	uuu- u-uu
RXM1SIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXM0EIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXM0EIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXM0SIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxx- 0-xx	uuu- u-uu	uuu- u-uu
RXM0SIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXF5EIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXF5EIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXF5SIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxx- x-xx	uuu- u-uu	uuu- u-uu
RXF5SIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXF4EIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXF4EIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXF4SIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxx- x-xx	uuu- u-uu	uuu- u-uu
RXF4SIDH	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXF3EIDL	PIC18F2XK80	PIC18F4XK80	PIC18F6XK80	xxxx xxxx	uuuu uuuu	uuuu uuuu

TABLE 5-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged; x = unknown; - = unimplemented bit, read as '0'; q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 5-3 for Reset value for specific conditions.

5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read as '0'.

TABLE 6-2: PIC18F66K80 FAMILY REGISTER FILE SUMMARY (CONTINUED)

Addr.	File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR on page
EA3h	B2EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	97
EA2h	B2SIDL	SID2	SID1	SID0	SRR	EXID	_	EID17	EID16	97
EA1h	B2SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	97
EA0h	B2CON	TXBIF	TXABT	TXLARB	TXERR	TXREQ	_	TXPRI1	TXPRI0	97
E9Fh	CANCON RO8	CANCON R	08	1						97
E9Eh	CANSTAT_RO8	 CANSTAT_R	08							97
E9Dh	B1D7	B1D77	B1D76	B1D75	B1D71	B1D73	B1D72	B1D71	B1D70	97
E9Ch	B1D6	B1D67	B1D66	B1D65	B1D61	B1D63	B1D62	B1D61	B1D60	97
E9Bh	B1D5	B1D57	B1D56	B1D55	B1D51	B1D53	B1D52	B1D51	B1D50	97
E9Ah	B1D4	B1D47	B1D46	B1D45	B1D41	B1D43	B1D42	B1D41	B1D40	97
E99h	B1D3	B1D37	B1D36	B1D35	B1D31	B1D33	B1D32	B1D31	B1D30	97
E98h	B1D2	B1D27	B1D26	B1D25	B1D21	B1D23	B1D22	B1D21	B1D20	97
E97h	B1D1	B1D17	B1D16	B1D15	B1D11	B1D13	B1D12	B1D11	B1D10	97
E96h	B1D0	B1D07	B1D06	B1D05	B1D01	B1D03	B1D02	B1D01	B1D00	97
E95h	B1DLC	_	TXRTR		_	DLC3	DLC2	DLC1	DLC0	97
E94h	B1EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	97
E93h	B1EIDH	EID15	EID14	EID3	EID4 EID12	EID3	EID2 EID10	EID1 EID9	EID8	97
E92h	BISIDL	SID2	SID14	SID0	SRR	EXID	LIDIO	EID9 EID17	EID16	97
					SID7					97
E91h	B1SIDH	SID10	SID9	SID8		SID6	SID5	SID4 TXPRI1	SID3	-
E90h	B1CON	TXBIF	TXABT	TXLARB	TXERR	TXREQ	RTREN		TXPRI0	97
E90h	B1CON	RXFUL	RXM1	RXRTRRO	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0	97
E8Fh	CANCON_RO9	CANCON_R								97
E8Eh	CANSTAT_RO9	CANSTAT_R	I	00075	20220	00070	20270	D 0 DT (D 0 D T 0	97
E8Dh	B0D7	B0D77	B0D76	B0D75	B0D70	B0D73	B0D72	B0D71	B0D70	97
E8Ch	B0D6	B0D67	B0D66	B0D65	B0D60	B0D63	B0D62	B0D61	B0D60	97
E8Bh	B0D5	B0D57	B0D56	B0D55	B0D50	B0D53	B0D52	B0D51	B0D50	97
E8Ah	B0D4	B0D47	B0D46	B0D45	B0D40	B0D43	B0D42	B0D41	B0D40	97
E89h	B0D3	B0D37	B0D36	B0D35	B0D30	B0D33	B0D32	B0D31	B0D30	97
E88h	B0D2	B0D27	B0D26	B0D25	B0D20	B0D23	B0D22	B0D21	B0D20	98
E87h	B0D1	B0D17	B0D16	B0D15	B0D10	B0D13	B0D12	B0D11	B0D10	98
E86h	B0D0	B0D07	B0D06	B0D05	B0D00	B0D03	B0D02	B0D01	B0D00	98
E85h	BODLC	_	RXRTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0	98
E84h	B0EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	98
E83h	B0EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	98
E82h	B0SIDL	SID2	SID1	SID0	SRR	EXID	_	EID17	EID16	98
E81h	B0SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	98
E80h	B0CON	TXBIF	TXABT	TXLARB	TXERR	TXREQ	RTREN	TXPRI1	TXPRI0	98
E80h	B0CON	RTXFUL	RXM1	RXRTRRO	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0	98
E7Fh	TXBIE	—	—	—	CAN TX Buff	er Interrupt En	nable	—	—	98
E7Eh	BIE0	CAN Buffer In	nterrupt Enabl	e						98
E7Dh	BSEL0	Mode Select	Register 0					_	_	98
E7Ch	MSEL3	CAN Mask S	elect Register	3						98
E7Bh	MSEL2	CAN Mask S	elect Register	2						98
E7Ah	MSEL1	CAN Mask S	elect Register	1						98
E79h	MSEL0	CAN Mask S	elect Register	0						98
E78h	RXFBCON7	CAN Buffer 1	5/14 Pointer F	Register						98
E77h	RXFBCON6	CAN Buffer 15/14 Pointer Register CAN Buffer 13/12 Pointer Register							98	
E76h	RXFBCON5	CAN Buller 13/12 Pointer Register							98	
E75h	RXFBCON4		/8 Pointer Reg	-						98
	RXFBCON3		7/6 Pointer Reg	-						98
E74h				, ·						

6.4.3.2 FSR Registers and POSTINC, POSTDEC, PREINC and PLUSW

In addition to the INDF operand, each FSR register pair also has four additional indirect operands. Like INDF, these are "virtual" registers that cannot be indirectly read or written to. Accessing these registers actually accesses the associated FSR register pair, but also performs a specific action on its stored value.

These operands are:

- POSTDEC Accesses the FSR value, then automatically decrements it by '1' afterwards
- POSTINC Accesses the FSR value, then automatically increments it by '1' afterwards
- PREINC Increments the FSR value by '1', then uses it in the operation
- PLUSW Adds the signed value of the W register (range of -127 to 128) to that of the FSR and uses the new value in the operation

In this context, accessing an INDF register uses the value in the FSR registers without changing them. Similarly, accessing a PLUSW register gives the FSR value, offset by the value in the W register, with neither value actually changed in the operation. Accessing the other virtual registers changes the value of the FSR registers.

Operations on the FSRs with POSTDEC, POSTINC and PREINC affect the entire register pair. Rollovers of the FSRnL register, from FFh to 00h, carry over to the FSRnH register. On the other hand, results of these operations do not change the value of any flags in the STATUS register (for example, Z, N and OV bits).

The PLUSW register can be used to implement a form of Indexed Addressing in the data memory space. By manipulating the value in the W register, users can reach addresses that are fixed offsets from pointer addresses. In some applications, this can be used to implement some powerful program control structure, such as software stacks, inside of data memory.

6.4.3.3 Operations by FSRs on FSRs

Indirect Addressing operations that target other FSRs or virtual registers represent special cases. For example, using an FSR to point to one of the virtual registers will not result in successful operations.

As a specific case, assume that the FSR0H:FSR0L registers contain FE7h, the address of INDF1. Attempts to read the value of the INDF1, using INDF0 as an operand, will return 00h. Attempts to write to INDF1, using INDF0 as the operand, will result in a NOP.

On the other hand, using the virtual registers to write to an FSR pair may not occur as planned. In these cases, the value will be written to the FSR pair, but without any incrementing or decrementing. Thus, writing to INDF2 or POSTDEC2 will write the same value to the FSR2H:FSR2L.

Since the FSRs are physical registers mapped in the SFR space, they can be manipulated through all direct operations. Users should proceed cautiously when working on these registers, however, particularly if their code uses Indirect Addressing.

Similarly, operations by Indirect Addressing are generally permitted on all other SFRs. Users should exercise the appropriate caution, so that they do not inadvertently change settings that might affect the operation of the device.

6.5 Program Memory and the Extended Instruction Set

The operation of program memory is unaffected by the use of the extended instruction set.

Enabling the extended instruction set adds five additional two-word commands to the existing PIC18 instruction set: ADDFSR, CALLW, MOVSF, MOVSS and SUBFSR. These instructions are executed as described in Section 6.2.4 "Two-Word Instructions".

7.4 Erasing Flash Program Memory

The erase blocks are 32 words or 64 bytes.

Word erase in the Flash array is not supported.

When initiating an erase sequence from the microcontroller itself, a block of 64 bytes of program memory is erased. The Most Significant 16 bits of the TBLPTR<21:6> point to the block being erased. The TBLPTR<5:0> bits are ignored.

The EECON1 register commands the erase operation. The EEPGD bit must be set to point to the Flash program memory. The WREN bit must be set to enable write operations. The FREE bit is set to select an erase operation.

For protection, the write initiate sequence for EECON2 must be used.

A long write is necessary for erasing the internal Flash. Instruction execution is halted while in a long write cycle. The long write will be terminated by the internal programming timer.

7.4.1 FLASH PROGRAM MEMORY ERASE SEQUENCE

The sequence of events for erasing a block of internal program memory location is:

- 1. Load the Table Pointer register with the address of row to be erased.
- 2. Set the EECON1 register for the erase operation:
 - · Set the EEPGD bit to point to program memory
 - Clear the CFGS bit to access program memory
 - · Set the WREN bit to enable writes
 - · Set the FREE bit to enable the erase
- 3. Disable the interrupts.
- 4. Write 55h to EECON2.
- 5. Write 0AAh to EECON2.
- Set the WR bit. This begins the row erase cycle. The CPU will stall for the duration of the erase for TIW. (See Parameter D133A.)
- 7. Re-enable interrupts.

	MOVLW MOVWF MOVLW MOVWF MOVLW MOVWF	CODE_ADDR_UPPER TBLPTRU CODE_ADDR_HIGH TBLPTRH CODE_ADDR_LOW TBLPTRL	; load TBLPTR with the base ; address of the memory block
ERASE_ROW			
	BSF	EECON1, EEPGD	; point to Flash program memory
	BCF	EECON1, CFGS	; access Flash program memory
	BSF	EECON1, WREN	; enable write to memory
	BSF	EECON1, FREE	; enable Row Erase operation
	BCF	INTCON, GIE	; disable interrupts
Required	MOVLW	55h	
Sequence	MOVWF	EECON2	; write 55h
	MOVLW	0AAh	
	MOVWF	EECON2	; write OAAh
	BSF	EECON1, WR	; start erase (CPU stall)
	BSF	INTCON, GIE	; re-enable interrupts

EXAMPLE 7-2: ERASING A FLASH PROGRAM MEMORY ROW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRXIF	WAKIF	ERRIF	TXB2IF	TXB1IF	TXB0IF	RXB1IF	RXB0IF/ FIFOFIF
bit 7	•						bit
Legend:	1.1		1.11			1	
R = Readable		W = Writable		-	nented bit, read		
-n = Value at	PUR	'1' = Bit is set	['0' = Bit is cle	ared	x = Bit is unk	nown
bit 7	IRXIF: Invalid	d Message Rec	eived Interrup	t Flag bits			
		d message occ	•	•			
		id message occ					
bit 6	WAKIF: Bus	Wake-up Activi	ity Interrupt Fla	ag bit			
		on the CAN bus ity on the CAN					
bit 5	ERRIF: Erro	r Interrupt Flag	bit (Multiple s	ources in CON	ISTAT register)		
		has occurred in		• •	ources)		
		module errors					
bit 4		nsmit Buffer 2 l					
		t Buffer 2 has c t Buffer 2 has n			•	lay be reloaded	
bit 3		nsmit Buffer 1 li	•		a message		
		t Buffer 1 has c			nessage and m	ay be reloaded	l
	0 = Transmi	t Buffer 1 has n	ot completed	transmission of	a message		
bit 2		nsmit Buffer 0 I					
		t Buffer 0 has c t Buffer 0 has n				ay be reloaded	l
bit 1	RXB1IF: Red	ceive Buffer 1 Ir	nterrupt Flag b	bit			
	$\frac{\text{Mode 0:}}{1 - CAN De}$	aaiva Duffar 1 k					
		ceive Buffer 1 h ceive Buffer 1 h		0			
	Modes 1 and						
		Receive Buffer/I			•		
		Receive Buffer/I			message		
bit 0	=	is dependent o	on the selected	I mode:			
	Mode 0: PYBOIE: Rec	ceive Buffer 0 Ir	nterrunt Elaa h	.i+			
		ceive Buffer 0 h					
		ceive Buffer 0 h		•			
	<u>Mode 1:</u> Unimplemer	nted: Read as '	0'				
	Mode 2:						
	FIFOFIF: FIF	O Full Interrup	t Flag bit				
		s reached full s			UE bit		

REGISTER 10-8: PIR5: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 5

10.4 IPR Registers

The IPR registers contain the individual priority bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are six Peripheral Interrupt Priority registers (IPR1 through IPR6). Using the priority bits requires that the Interrupt Priority Enable (IPEN) bit (RCON<7>) be set.

REGISTER 10-14: IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
PSPIP	ADIP	RC1IP	TX1IP	SSPIP	TMR1GIP	TMR2IP	TMR1IP
bit 7							bit 0
Legend: R = Readabl	lo bit	W = Writable	hit	II – Unimplon	nented bit, read	1 00 '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	
	IFOR	I - DILIS SEL			areu		101011
bit 7	PSPIP: Parall	el Slave Port F	Read/Write Inte	errupt Priority bi	t		
	1 = High prio 0 = Low prior						
bit 6		onverter Interru	pt Priority bit				
	1 = High prio 0 = Low prior	•					
bit 5	•	RTx Receive I	nterrunt Priorit	v hit			
bit o	1 = High prio			y on			
	0 = Low prior						
bit 4	TX1IP: EUSA	RTx Transmit	nterrupt Priorit	ty bit			
	1 = High prio 0 = Low prior	•					
bit 3	•	•	Serial Port In	terrupt Priority	hit		
Sit C	1 = High prio	•		ton up trinonty i			
	0 = Low prior	ity					
bit 2	TMR1GIP: Tir	mer1 Gate Inte	rrupt Priority b	it			
	1 = High prio 0 = Low prior	,					
bit 1	•	R2 to PR2 Mate	h Interrunt Pri	ority hit			
	1 = High prio		in monuper n	only bit			
	0 = Low prior	•					
bit 0	TMR1IP: TMF	R1 Overflow Inf	errupt Priority	bit			
	1 = High prio						
	0 = Low prior	цу					

Pin Name	Function	TRIS Setting	I/O	I/O Type	Description
RE5/CANTX	RE5 ⁽¹⁾	0	0	DIG	LATE<5> data output.
		1	Ι	ST	PORTE<5> data input.
	CANTX ^(1,2)	0	0	DIG	CAN bus TX.
RE6/RX2/DT2	RE6 ⁽¹⁾	0	0	DIG	LATE<6> data output.
		1	Ι	ST	PORTE<6> data input.
	RX2 ⁽¹⁾	1	Ι	ST	Asynchronous serial receive data input (EUSARTx module).
	DT2 ⁽¹⁾	1	0	DIG	Synchronous serial data output (EUSARTx module); takes priority over port data.
		1	I	ST	Synchronous serial data input (EUSARTx module); user must configure as an input.
RE7/TX2/CK2	RE7 ⁽¹⁾	0	0	DIG	LATE<7> data output.
		1	Ι	ST	PORTE<7> data input.
	TX2 ⁽¹⁾	0	0	DIG	Asynchronous serial data output (EUSARTx module); takes priority over port data.
	CK2 ⁽¹⁾	0	0	DIG	Synchronous serial clock output (EUSARTx module); user must configure as an input.
		1	Ι	ST	Synchronous serial clock input (EUSARTx module); user must config- ure as an input.

TABLE 11-9: PORTE FUNCTIONS (CONTINUED)

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = CMOS Output, ST = Schmitt Trigger Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option)

Note 1: These bits are unavailable for 40 and 44-pin devices (PIC18F4XK0).

2: This is the alternate pin assignment for CANRX and CANTX on 64-pin devices (PIC18F6XK80) when the CANMX Configuration bit is cleared.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTE	RE7 ⁽¹⁾	RE6 ⁽¹⁾	RE5 ⁽¹⁾	RE4 ⁽¹⁾	RE3	RE2	RE1	RE0
LATE	LATE7	LATE6	LATE5	LATE4	—	LATE2	LATE1	LATE0
TRISE	TRISE7	TRISE6	TRISE5	TRISE4	—	TRISE2	TRISE1	TRISE0
PADCFG1	RDPU	REPU	RFPU ⁽¹⁾	RGPU ⁽¹⁾	_		_	CTMUDS
ANCON0	ANSEL7	ANSEL6	ANSEL5	ANSEL4	ANSEL3	ANSEL2	ANSEL1	ANSEL0

Legend: Shaded cells are not used by PORTE.

Note 1: These bits are unimplemented on 44-pin devices, read as '0'.

REGISTER 11-5: PSPCON: PARALLEL SLAVE PORT CONTROL REGISTER

R-0	R-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
IBF	OBF	IBOV	PSPMODE	_	—	—	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	IBF: Input Buffer Full Status bit 1 = A word has been received and is waiting to be read by the CPU 0 = No word has been received
bit 6	OBF: Output Buffer Full Status bit
	 1 = The output buffer still holds a previously written word 0 = The output buffer has been read
bit 5	IBOV: Input Buffer Overflow Detect bit
	 1 = A write occurred when a previously input word had not been read (must be cleared in software) 0 = No overflow occurred
bit 4	PSPMODE: Parallel Slave Port Mode Select bit
	1 = Parallel Slave Port mode 0 = General Purpose I/O mode
bit 3-0	Unimplemented: Read as '0'

FIGURE 11-4: PARALLEL SLAVE PORT WRITE WAVEFORMS

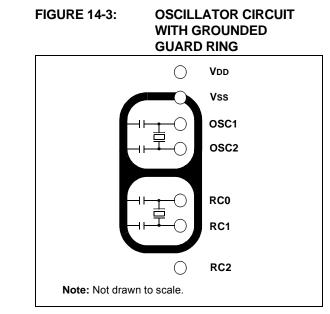
	Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
CS	
WR	
RD -	
PORTD<7:0> —	
IBF	
OBF —	
PSPIF	

For more details on selecting the optimum C1 and C2 for a given crystal, see the crystal manufacture's applications information. The optimum value depends in part on the amount of parasitic capacitance in the circuit, which is often unknown. For that reason, it is highly recommended that thorough testing and validation of the oscillator be performed after values have been selected.

14.5.1 USING SOSC AS A CLOCK SOURCE

The SOSC oscillator is also available as a clock source in power-managed modes. By setting the clock select bits, SCS<1:0> (OSCCON<1:0>), to '01', the device switches to SEC_RUN mode and both the CPU and peripherals are clocked from the SOSC oscillator. If the IDLEN bit (OSCCON<7>) is cleared and a SLEEP instruction is executed, the device enters SEC_IDLE mode. Additional details are available in **Section 4.0 "Power-Managed Modes"**.

Whenever the SOSC oscillator is providing the clock source, the SOSC System Clock Status flag, SOSCRUN (OSCCON2<6>), is set. This can be used to determine the controller's current clocking mode. It can also indicate the clock source currently being used by the Fail-Safe Clock Monitor.


If the Clock Monitor is enabled and the SOSC oscillator fails while providing the clock, polling the SOCSRUN bit will indicate whether the clock is being provided by the SOSC oscillator or another source.

14.5.2 SOSC OSCILLATOR LAYOUT CONSIDERATIONS

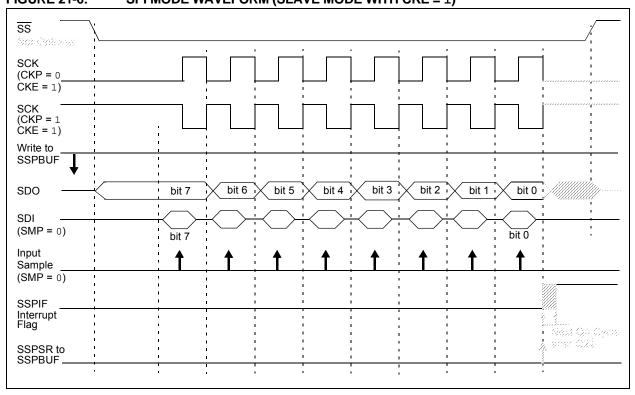
The SOSC oscillator circuit draws very little power during operation. Due to the low-power nature of the oscillator, it may also be sensitive to rapidly changing signals in close proximity. This is especially true when the oscillator is configured for extremely Low-Power mode, SOSCSEL<1:0> (CONFIG1L<4:3>) = 01.

The oscillator circuit, displayed in Figure 14-2, should be located as close as possible to the microcontroller. There should be no circuits passing within the oscillator circuit boundaries other than Vss or VDD.

If a high-speed circuit must be located near the oscillator, it may help to have a grounded guard ring around the oscillator circuit. The guard, as displayed in Figure 14-3, could be used on a single-sided PCB or in addition to a ground plane. (Examples of a high-speed circuit include the ECCP1 pin, in Output Compare or PWM mode, or the primary oscillator, using the OSC2 pin.)

In the Low Drive Level mode, SOSCSEL<1:0> = 01, it is critical that RC2 I/O pin signals be kept away from the oscillator circuit. Configuring RC2 as a digital output, and toggling it, can potentially disturb the oscillator circuit, even with a relatively good PCB layout. If possible, either leave RC2 unused or use it as an input pin with a slew rate limited signal source. If RC2 must be used as a digital output, it may be necessary to use the Higher Drive Level Oscillator mode (SOSCSEL<1:0> = 11) with many PCB layouts.

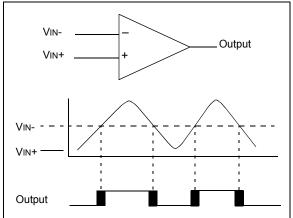
Even in the Higher Drive Level mode, careful layout procedures should still be followed when designing the oscillator circuit.


In addition to dV/dt induced noise considerations, it is important to ensure that the circuit board is clean. Even a very small amount of conductive, soldering flux residue can cause PCB leakage currents that can overwhelm the oscillator circuit.

14.6 Timer1 Interrupt

The TMR1 register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The Timer1 interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit, TMR1IF (PIR1<0>). This interrupt can be enabled or disabled by setting or clearing the Timer1 Interrupt Enable bit, TMR1IE (PIE1<0>).

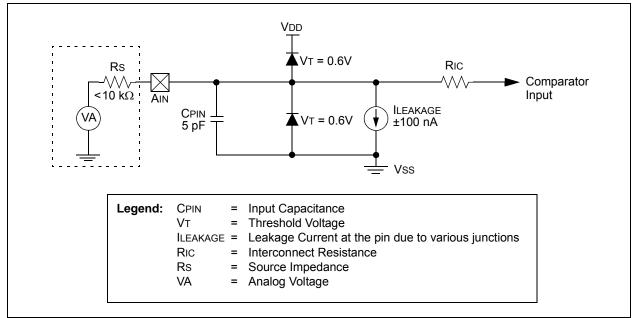
IGURE 21-5:	SPI N	IODE W	AVEFO	RM (SLA	VE MO	DE WITH	CKE =	0)			
 SS Opilonsi	(.										
80% {CKP = 0 CXE = 0}	: : : :X		, 	·	·					· ·	: : :
- VAR 20) - ROR	· ·	: : :	((() () () () () () () () () () () () () (, , , ,	; ; ; , ,		(((; ; ; ;	2 2 3	, , ,	
2508 (CRE = 1 (CRE = 5)	2 3 3							· · · · · · · · · · · · · · · · · · ·			
Verlie en Sisteration			5 2 7 7	: d	* \$****** \$ \$		5 2 7 7	: :: : :	* .5 1 1	: :	,
\$6 x 3		Kana a		N 88.8		X68.3	X 88.0				
SD: (S3:82 = 33)										Mygeeneerine E C	: : :
ingasi Serrecia	· · ·			. 4.		<i></i>		: . <i>B</i> e	: : :	49.	
(3367 = 6)				* *	, , ,		5 2 5		* : * :	: : ://///////////////////////////////	
- S-SPHF Britanupî Filag	; ; ; ;		s 2 2	: : :	< ; ; ;		5 2 2 2	: : ::		ilia A stent Co	. Produce
355 0 355 65	2 1	* :		; ,	:		i i	; ,) († Next Ox Fritter Ox	


FIGURE 21-6: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

24.2 Comparator Operation

A single comparator is shown in Figure 24-2, along with the relationship between the analog input levels and the digital output. When the analog input at VIN+ is less than the analog input, VIN-, the output of the comparator is a digital low level. When the analog input at VIN+ is greater than the analog input, VIN-, the output of the comparator is a digital high level. The shaded areas of the output of the comparator in Figure 24-2 represent the uncertainty due to input offsets and response time.

FIGURE 24-2: SINGLE COMPARATOR


24.3 Comparator Response Time

Response time is the minimum time, after selecting a new reference voltage or input source, before the comparator output has a valid level. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response to a comparator input change. Otherwise, the maximum delay of the comparators should be used (see **Section 31.0 "Electrical Characteristics"**).

24.4 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 24-3. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and VSs. The analog input, therefore, must be between VSs and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up condition may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

FIGURE 24-3: COMPARATOR ANALOG INPUT MODEL

28.3.3 OPERATION OF REGULATOR IN SLEEP

The difference in the two regulators' operation arises with Sleep mode. The ultra low-power regulator gives the device the lowest current in the Regulator Enabled mode.

The on-chip regulator can go into a lower power mode when the device goes to Sleep by setting the REGSLP bit (WDTCON<7>). This puts the regulator in a standby mode so that the device consumes much less current.

The on-chip regulator can also go into the Ultra Low-Power mode, which consumes the lowest current possible with the <u>regulator</u> enabled. This mode is controlled by the <u>RETEN</u> bit (CONFIG1L<0>) and SRETEN bit (WDTCON<4>). The various modes of regulator operation are shown in Table 28-3.

When the ultra low-power regulator is in Sleep mode, the internal reference voltages in the chip will be shut off and any interrupts referring to the internal reference will not wake up the device. If the BOR or LVD is enabled, the regulator will keep the internal references on and the lowest possible current will not be achieved.

When using the ultra low-power regulator in Sleep mode, the device will take about 250 μs to start executing code after it wakes up.

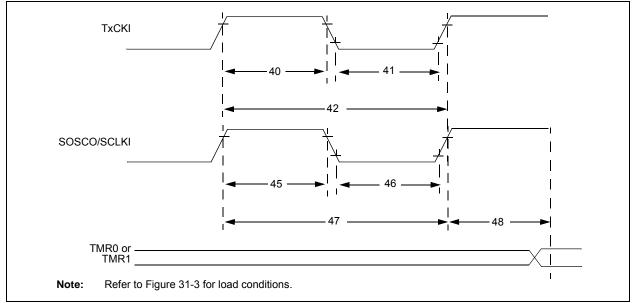
TABLE 20-5. 51			-	-
Device	Power Mode	REGSLP WDTCON<7>	SRETEN WDTCON<4>	RETEN CONFIG1L<0>
PIC18FXXK80	Normal Operation (Sleep)	0	х	1
PIC18FXXK80	Low-Power mode (Sleep)	1	х	1
PIC18FXXK80	Normal Operation (Sleep)	0	0	0
PIC18FXXK80	Low-Power mode (Sleep)	1	0	0
PIC18FXXK80	Ultra Low-Power mode (Sleep)	x	1	0
PIC18LFXXK80	Reserved ⁽²⁾	х	Don't Care	0
PIC18LFXXK80	Regulator Bypass mode (Sleep) ⁽²⁾	x	х	1

TABLE 28-3: SLEEP MODE REGULATOR SETTINGS⁽¹⁾

Note 1: x — Indicates that VIT status is invalid.

2: The ultra low-power regulator should be disabled (RETEN = 1, ULP disabled) on PIC18LFXXK80 devices to obtain the lowest possible Sleep current.

DAW	Decimal A	djust W Regis	ter	DECF	Decrement	f	
Syntax:	DAW			Syntax:	DECF f{,c	l {,a}}	
Operands:	None			Operands:	$0 \leq f \leq 255$		
Operation:	•	> 9] or [DC = 1 6 → W<3:0>;], then		$\begin{array}{l} d \in [0,1] \\ a \in [0,1] \end{array}$		
	else			Operation:	$(f) - 1 \rightarrow de$	est	
	(W<3:0>) –	→ W<3:0>		Status Affected:	C, DC, N, C	DV, Z	
	lf [W<7:4>	> 9] or [C = 1],	then	Encoding:	0000	01da ff	ff ffff
	(W<7:4>) + C = 1 else (W<7:4>) -	6 → W<7:4>; → W<7:4>		Description:	result is sto	register 'f'. If red in W. If 'd red back in re	' is '1', the
Status Affected:	С				. ,	he Access Ba	nk is selected.
Encoding: Description:	0000	0000 000 s the eight-bit			lf 'a' is '1', t GPR bank.	he BSR is use	ed to select the
Words:	resulting fro variables (e	om the earlier a each in packed es a correct pa	addition of two BCD format)		set is enabl in Indexed mode wher Section 29	ed, this instru Literal Offset lever f ≤ 95 (5 .2.3 "Byte-O l	Fh). See
Cycles:	1					set Mode" for	
Q Cycle Activity:				Words:	1		
Q1	Q2	Q3	Q4	Cycles:	1		
Decode	Read register W	Process Data	Write W	Q Cycle Activity:			.
				Q1	Q2	Q3	Q4
Example 1:	DAW			Decode	Read register 'f'	Process Data	Write to destination
Before Instruc W	= A5h						
C DC	= 0 = 0			Example:		CNT, 1, 0	1
After Instructio W C	on = 05h = 1			Before Instru CNT Z After Instruc	= 01h = 0		
DC Example 2:	= 0			CNT Z	= 00h = 1		
Before Instruc							
W C	= CEh = 0						
DC	= 0 = 0						
After Instruction							
W C	= 34h = 1						
DC	= 1 = 0						


31.1 DC Characteristics: Supply Voltage PIC18F66K80 Family (Industrial/Extended)

PIC18F66K80 Family (Industrial, Extended)							
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
D001	Vdd	Supply Voltage	1.8 1.8		3.6 5.5	V V	For LF devices For F devices
D001C	AVdd	Analog Supply Voltage	Vdd - 0.3		VDD + 0.3	V	
D001D	AVss	Analog Ground Potential	Vss – 0.3		Vss + 0.3	V	
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5	_	—	V	
D003	Vpor	VDD Start Voltage to Ensure Internal Power-on Reset Signal	—	_	0.7	V	See Section 5.3 "Power-on Reset (POR)" for details
D004	Svdd	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.05	—	_	V/ms	See Section 5.3 "Power-on Reset (POR)" for details
D005	Bvdd	Brown-out Reset Voltage (High, Medium and Low-Power mode BORV<1:0> = 11 ⁽²⁾ BORV<1:0> = 10 BORV<1:0> = 01 BORV<1:0> = 00	1.69 1.88 2.53 2.82	1.8 2.0 2.7 3.0	1.91 2.12 2.86 3.18	V V V	

Note 1: This is the limit to which VDD can be lowered in Sleep mode, or during a device Reset, without losing RAM data.

2: Device will operate normally until Brown-out Reset occurs, even though VDD may be below VDDMIN.

FIGURE 31-9: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE	TABLE 31-13: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS							
Param No.	Symbol		Characteristic		Min	Max	Units	Conditions
40	Тт0Н	T0CKI High F	ulse Width	No prescaler	0.5 Tcy + 20	—	ns	
				With prescaler	10	—	ns	
41	T⊤0L	T0CKI Low Pulse Width		No prescaler	0.5 Tcy + 20	—	ns	
			N		10	_	ns	-
42	T⊤0P	T0CKI Period		No prescaler	Tcy + 10	_	ns	
				With prescaler	Greater of: 20 ns or (Tcy + 40)/N	-	ns	N = prescale value (1, 2, 4,, 256)
45	T⊤1H	T1CKI High	Synchronous, n	o prescaler	0.5 Tcy + 20	—	ns	
		Time	Synchronous, w	vith prescaler	10	—	ns	
			Asynchronous		30		ns	
46	T⊤1L	T1CKI Low	Synchronous, n	o prescaler	0.5 Tcy + 5	_	ns	
		Time	Synchronous, w	vith prescaler	10	_	ns	
			Asynchronous		30	—	ns	
47	T⊤1P	T1CKI Input Period	Synchronous		Greater of: 20 ns or	—	ns	N = prescale value

(TCY + 40)/N

60

DC

2 Tosc

TABLE 31-13:	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
---------------------	---

Timer Increment

Asynchronous

T1CKI Oscillator Input Frequency Range

Delay from External T1CKI Clock Edge to

FT1

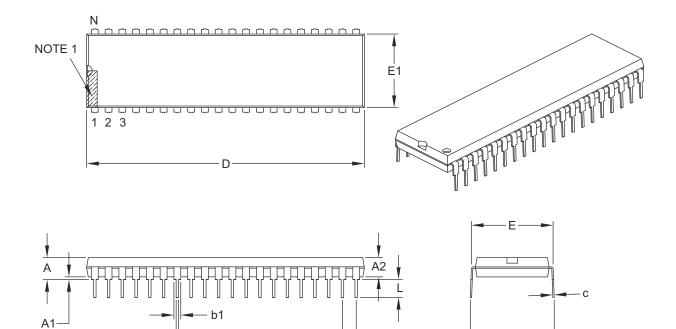
TCKE2TMRI

48

(1, 2, 4, 8)

ns

kHz



50

7 Tosc

40-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		40	•
Pitch	e	.100 BSC		
Top to Seating Plane	A	-	-	.250
Molded Package Thickness	A2	.125	-	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.590	-	.625
Molded Package Width	E1	.485	-	.580
Overall Length	D	1.980	-	2.095
Tip to Seating Plane	L	.115	-	.200
Lead Thickness	С	.008	-	.015
Upper Lead Width	b1	.030	-	.070
Lower Lead Width	b	.014	-	.023
Overall Row Spacing §	eB	_	-	.700

e

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

b

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-016B

eВ

0

On Chin Vallana Degulatan	474
On-Chip Voltage Regulator	
Oscillator Configuration	51
EC	51
ECIO	
HS	
Internal Oscillator Block	
INTIO1	
INTIO2	
LP	
RC	
RCIO	
XT	
Oscillator Selection	
Oscillator Start-up Timer (OST)	
Oscillator Switching	
Oscillator Transitions	
Oscillator, Timer1	
Oscillator, Timer3	

Ρ

P1A/P1B/P1C/P1D.See Enhanced Capture/Compare		
(ECCP)	2	271
Packaging	5	581
Details	5	583
Marking		
Parallel Slave Port (PSP)	1	92
Associated Registers		
PORTD	1	92
Pin Functions		
(Overline)MCLR/RE3		24
AVDD		43
AVss		43
MCLR/RE3		18
MCLR/RE3		33
OSC1/CLKIN/RA718,	24,	33
OSC2/CLKOUT/RA618,	24,	33
RA0/CVREF/AN0/ULPWU	19,	25
RA0/CVREF/AN0/ULPWU		34
RA1/AN1		
RA1/AN1/C1INC	25,	34
RA2/REF-/AN2		19
RA2/VREF-/AN2//C2INC		34
RA2/VREF-/AN2/C2INC		25
RA3/Vref+/AN3	19,	25
RA3/Vref+/AN3		
RA5/AN4/C2INB/HLVDIN/T1CKI/SS/CTMUI		
RA5/AN4/HLVDIN/T1CKI/SS		
RB0/AN10/C1INA/FLT0/INT0		
RB0/AN10/FLT0/INT0	26,	35
RB1/AN8/C1INB/P1B/CTDIN/INT1		20
RB1/AN8/CTDIN/INT1		
RB2/CANTX/C1OUT/P1C/CTED1/INT2		
RB2/CANTX/CTED1/INT2	26,	35
RB3/CANRX/C2OUT/P1D/CTED2/INT3		
RB3/CANRX/CTED2/INT3		
RB4/AN9/C2INA/ECCP1/P1A/CTPLS/KBI0		
RB4/AN9/CTPLS/KBI0		
RB5/T0CKI/T3CKI/CCP5/KBI121,	26,	35
RB6/PGC/KBI2		
RB6/PGC/TX2/CK2/KBI2		21
RB7/PGD/T3G/KBI3	,	
RB7/PGD/T3G/RX2/DT2/KBI3		21
RC0/SOSCO/SCLKI	28,	37
RC1/SOSC		28

	RC1/SOSCI		22	37
	RC2/T1G/CCP2			
	RC3/REFO/SCL/SCK			
	RC4/SDA/SDI			
	RC5/SDO			
	RC6/CANTX/TX1/CK1/CCP3			
	RC6/CCP3			
	RC7/CANRX/RX1/DT1/CCP4			
	RC7/CCP4			
	RD0/C1INA/PSP0			
	RD1/C1INB/PSP1			
	RD2/C2INA/PSP2		30,	38
	RD3/C2INB/CTMUI/PSP3		30,	38
	RD4/ECCP1/P1A/PSP4		30,	38
	RD5/P1B/PSP5			
	RD6/P1C/PSP6		,	
	RD6/TX2/CK2/P1C/PSP6			
	RD7/P1D/PSP7			
	RD7/RX2/DT2/P1D/PSP7			
	RE0/AN5/RD			
	RE1/AN6/C1OUT/wr		- ,	
	RE2/AN7/C2OUT/CS			
	RE4/CANRX			40
	RE5/CANTX			40
	RE6/RX2/DT2			40
	RE7/TX2/CK2			40
	RF0/MDMIN			41
	RF1			
	RF2/MDCIN1			
	RF3			
	RF4/MDCIN2			
	RF5			
	RF6/MDOUT			
	RF7			
	RG0/RX1/DT1			42
	RG1/CANTX2			42
	RG2/T3CKI			42
	RG3/TX1/CK1			42
	RG4/T0CKI			42
	VDD		32.	43
	VDDCORE/VCAP	23	32	43
	Vss			
PLL	V 00	20,	52,	-0
1	Frequency Multiplier			50
	HSPLL and ECPLL Oscillator Modes			
	Use with HF-INTOSC			
	Lock Time-out			
)		5	512
POF	R. See Power-on Reset.			
			1	76
	RTA			
	RTA Associated Registers LATA Register		1	75
	RTA Associated Registers LATA Register PORTA Register		1 1	75 75
POF	RTA Associated Registers LATA Register PORTA Register TRISA Register		1 1	75 75
POF	RTA Associated Registers LATA Register PORTA Register TRISA Register RTB		1 1 1	75 75 75
POF	RTA Associated Registers LATA Register PORTA Register TRISA Register RTB Associated Registers	· · · · · · · · · · · · · · · · · · ·	1 1 1	75 75 75 80
POF	RTA Associated Registers LATA Register PORTA Register TRISA Register RTB Associated Registers LATB Register		1 1 1 1 1	75 75 75 80 77
POF	RTA Associated Registers LATA Register PORTA Register TRISA Register RTB Associated Registers LATB Register PORTB Register		1 1 1 1 1	75 75 75 80 77 77
POF	ATA Associated Registers LATA Register PORTA Register TRISA Register TB Associated Registers LATB Register PORTB Register RB7:RB4 Interrupt-on-Change Flag (RBIF Bit))	1 1 1 1 1 1	75 75 75 80 77 77 77
	ATA Associated Registers LATA Register PORTA Register TRISA Register TB Associated Registers LATB Register PORTB Register RB7:RB4 Interrupt-on-Change Flag (RBIF Bit) TRISB Register)	1 1 1 1 1 1	75 75 75 80 77 77 77
POF	RTA Associated Registers LATA Register PORTA Register TRISA Register RTB Associated Registers LATB Register PORTB Register RB7:RB4 Interrupt-on-Change Flag (RBIF Bit) TRISB Register)	1 1 1 1 1 1	75 75 75 80 77 77 77 77
	Ara Associated Registers LATA Register PORTA Register TRISA Register Associated Registers LATB Register PORTB Register RB7:RB4 Interrupt-on-Change Flag (RBIF Bit) TRISB Register Associated Registers)	1 1 1 1 1 1 1	75 75 75 80 77 77 77 77 83
	Ara Associated Registers LATA Register PORTA Register TRISA Register Associated Registers LATB Register PORTB Register RB7:RB4 Interrupt-on-Change Flag (RBIF Bit) TRISB Register Associated Registers LATC Register)	1 1 1 1 1 1 1	75 75 75 80 77 77 77 77 83 81
	RTA Associated Registers LATA Register PORTA Register TRISA Register RTB Associated Registers LATB Register PORTB Register RB7:RB4 Interrupt-on-Change Flag (RBIF Bit) TRISB Register RTC Associated Registers LATC Register PORTC Register)	1 1 1 1 1 1 1 1	75 75 75 80 77 77 77 77 83 81 81
	Ara Associated Registers LATA Register PORTA Register TRISA Register Associated Registers LATB Register PORTB Register RB7:RB4 Interrupt-on-Change Flag (RBIF Bit) TRISB Register Associated Registers LATC Register)	1 1 1 1 1 1 1 1	75 75 75 80 77 77 77 77 83 81 81