

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	ECANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf45k80t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.6 Exiting Idle and Sleep Modes

An exit from Sleep mode or any of the Idle modes is triggered by an interrupt, a Reset or a WDT time-out. This section discusses the triggers that cause exits from power-managed modes. The clocking subsystem actions are discussed in each of the power-managed modes (see Section 4.2 "Run Modes", Section 4.3 "Sleep Mode" and Section 4.4 "Idle Modes").

4.6.1 EXIT BY INTERRUPT

Any of the available interrupt sources can cause the device to exit from an Idle mode or Sleep mode to a Run mode. To enable this functionality, an interrupt source must be enabled by setting its enable bit in one of the INTCONx or PIEx registers. The exit sequence is initiated when the corresponding interrupt flag bit is set.

On all exits from Idle or Sleep modes by interrupt, code execution branches to the interrupt vector if the GIE/ GIEH bit (INTCON<7>) is set. Otherwise, code execution continues or resumes without branching (see **Section 10.0 "Interrupts"**).

4.6.2 EXIT BY WDT TIME-OUT

A WDT time-out will cause different actions depending on which power-managed mode the device is in when the time-out occurs.

If the device is not executing code (all Idle modes and Sleep mode), the time-out will result in an exit from the power-managed mode (see Section 4.2 "Run Modes" and Section 4.3 "Sleep Mode"). If the device is executing code (all Run modes), the time-out will result in a WDT Reset (see Section 28.2 "Watchdog Timer (WDT)").

Executing a SLEEP or CLRWDT instruction clears the WDT timer and postscaler, loses the currently selected clock source (if the Fail-Safe Clock Monitor is enabled) and modifies the IRCFx bits in the OSCCON register (if the internal oscillator block is the device clock source).

4.6.3 EXIT BY RESET

Normally, the device is held in Reset by the Oscillator Start-up Timer (OST) until the primary clock becomes ready. At that time, the OSTS bit is set and the device begins executing code. If the internal oscillator block is the new clock source, the HFIOFS/MFIOFS bits are set instead.

The exit delay time from Reset to the start of code execution depends on both the clock sources before and after the wake-up, and the type of oscillator, if the new clock source is the primary clock. Exit delays are summarized in Table 4-4.

Code execution can begin before the primary clock becomes ready. If either the Two-Speed Start-up (see Section 28.4 "Two-Speed Start-up") or Fail-Safe Clock Monitor (see Section 28.5 "Fail-Safe Clock Monitor") is enabled, the device may begin execution as soon as the Reset source has cleared. Execution is clocked by the INTOSC multiplexer driven by the internal oscillator block. Execution is clocked by the internal oscillator block until either the primary clock becomes ready or a power-managed mode is entered before the primary clock becomes ready; the primary clock is then shut down.

4.6.4 EXIT WITHOUT AN OSCILLATOR START-UP DELAY

Certain exits from power-managed modes do not invoke the OST at all. The two cases are:

- When in PRI_IDLE mode, where the primary clock source is not stopped
- When the primary clock source is not any of the LP, XT, HS or HSPLL modes

In these instances, the primary clock source either does not require an oscillator start-up delay, since it is already running (PRI_IDLE), or normally, does not require an oscillator start-up delay (RC, EC and INTIO Oscillator modes). However, a fixed delay of interval, TCSD, following the wake event is still required when leaving Sleep and Idle modes to allow the CPU to prepare for execution. Instruction execution resumes on the first clock cycle following this delay.

PIC18F66K80 FAMILY

FIGURE 10-1: PIC18F66K80 FAMILY INTERRUPT LOGIC

10.1 INTCON Registers

The INTCON registers are readable and writable registers that contain various enable, priority and flag bits.

Note: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

REGISTER 10-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE ⁽²⁾	TMR0IF	INT0IF	RBIF ⁽¹⁾
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GIE/GIEH: Global Interrupt Enable bit
	When IPEN = <u>0</u> :
	1 = Enables all unmasked interrupts
	0 = Disables all interrupts
	When IPEN = 1:
	1 = Enables all high-priority interrupts
bit 6	PEIE/GIEL: Peripheral Interrupt Enable bit
	<u>When IPEN = 0:</u>
	\perp = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts
	When $IPEN = 1$:
	1 = Enables all low-priority peripheral interrupts
	0 = Disables all low-priority peripheral interrupts
bit 5	TMR0IE: TMR0 Overflow Interrupt Enable bit
	1 = Enables the TMR0 overflow interrupt
	0 = Disables the TMR0 overflow interrupt
bit 4	INTOIE: INTO External Interrupt Enable bit
	1 = Enables the INTO external interrupt
	0 = Disables the INT0 external interrupt
bit 3	RBIE: RB Port Change Interrupt Enable bit ⁽²⁾
	1 = Enables the RB port change interrupt
	0 = Disables the RB port change interrupt
bit 2	TMR0IF: TMR0 Overflow Interrupt Flag bit
	1 = I MR0 register has overflowed (must be cleared in software)
L 11 A	
DIT 1	IN I UIF: IN I U External Interrupt Flag bit
	1 = The INTO external interrupt did not occur 0 = The INTO external interrupt did not occur
hit 0	BBIE : BB Port Change Interrunt Elag hit(1)
	1 = At least one of the RB<7.4> pins changed state (must be cleared in software)
	0 = None of the RB<7:4> pins have changed state
Note 1:	A mismatch condition will continue to set this bit. To end the mismatch condition and allow the bit to be
•	cleared, read PORIB and wait one additional instruction cycle.

2: Each pin on PORTB for interrupt-on-change is individually enabled and disabled in the IOCB register. By default, all pins are disabled.

11.1.3 OPEN-DRAIN OUTPUTS

The output pins for several peripherals are also equipped with a configurable, open-drain output option. This allows the peripherals to communicate with external digital logic, operating at a higher voltage level, without the use of level translators.

The open-drain option is implemented on port pins specifically associated with the data and clock outputs of the USARTs, the MSSP module (in SPI mode) and the CCP modules. This option is selectively enabled by setting the open-drain control bits in the ODCON register.

When the open-drain option is required, the output pin must also be tied through an external pull-up resistor provided by the user to a higher voltage level, up to 5V (Figure 11-2). When a digital logic high signal is output, it is pulled up to the higher voltage level.

FIGURE 11-2:

USING THE OPEN-DRAIN OUTPUT (USARTx SHOWN AS EXAMPLE)

REGISTER 11-3: ODCON: PERIPHERAL OPEN-DRAIN CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSPOD	CCP5OD	CCP4OD	CCP3OD	CCP2OD	CCP10D	U2OD	U10D
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	SSPOD: SPI Open-Drain Output Enable bit 1 = Open-drain capability is enabled 0 = Open-drain capability is disabled
bit 6	CCP5OD: CCP5 Open-Drain Output Enable bit 1 = Open-drain capability is enabled
bit 5	 0 = Open-drain capability is disabled CCP4OD: CCP4 Open-Drain Output Enable bit 1 = Open-drain capability is enabled
bit 4	 0 = Open-drain capability is disabled CCP3OD: CCP3 Open-Drain Output Enable bit 1 = Open-drain capability is enabled
bit 3	 0 = Open-drain capability is disabled CCP2OD: CCP2 Open-Drain Output Enable bit 1 = Open-drain capability is enabled
bit 2	 Open-drain capability is disabled CCP1OD: CCP1 Open-Drain Output Enable bit
bit 1	 1 = Open-drain capability is enabled 0 = Open-drain capability is disabled U20D: UART2 Open-Drain Output Enable bit
	 1 = Open-drain capability is enabled 0 = Open-drain capability is disabled
dit U	 U1OD: UART1 Open-Drain Output Enable bit 1 = Open-drain capability is enabled 0 = Open-drain capability is disabled

13.0 TIMER0 MODULE

The Timer0 module incorporates the following features:

- Software selectable operation as a timer or counter in both 8-bit or 16-bit modes
- · Readable and writable registers
- Dedicated 8-bit, software programmable
 prescaler
- Selectable clock source (internal or external)
- · Edge select for external clock
- Interrupt-on-overflow

The T0CON register (Register 13-1) controls all aspects of the module's operation, including the prescale selection. It is both readable and writable.

Figure 13-1 provides a simplified block diagram of the Timer0 module in 8-bit mode. Figure 13-2 provides a simplified block diagram of the Timer0 module in 16-bit mode.

REGISTER 13-1: T0CON: TIMER0 CONTROL REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
TMR0ON	T08BIT	TOCS	TOSE	PSA	T0PS2	T0PS1	T0PS0
bit 7							bit 0

Legend:				
R = Readable	e bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR '1' = Bit is set		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7	TMR0ON: T	imer0 On/Off Control bit		
	1 = Enables	Timer0		
	0 = Stops Ti	mer0		
bit 6	TO8BIT: Tim	er0 8-Bit/16-Bit Control bit		
	1 = Timer0 i	s configured as an 8-bit timer/c	counter	
	0 = Timer0 i	s configured as a 16-bit timer/c	counter	
bit 5	TOCS: Time	r0 Clock Source Select bit		
	1 = Transitio	ns on TOCKI pin		
	0 = Internal	instruction cycle clock (CLKO)		
bit 4	T0SE: Timer	O Source Edge Select bit		
	1 = Increme	nts on high-to-low transition on	TOCKI pin	
		nts on low-to-nign transition on		
bit 3	PSA: Timer	Prescaler Assignment bit		
	1 = Iimer0 p	prescaler is not assigned; Time	r0 clock input bypasses preso	aler
h# 0.0		Timero Dresseler Calest hite	lock input comes from presca	
DIL 2-0	1005<2:0>	Timero Prescaler Select bits		
	111 = 1.230 110 = 1.128	Prescale value		
	101 = 1.120	Prescale value		
	100 = 1:32	Prescale value		
	011 = 1:16	Prescale value		
	010 = 1 :8	Prescale value		
	001 = 1:4	Prescale value		
	000 = 1:2	Prescale value		

14.8.3 TIMER1 GATE TOGGLE MODE

When Timer1 Gate Toggle mode is enabled, it is possible to measure the full cycle length of a Timer1 gate signal, as opposed to the duration of a single level pulse.

The Timer1 gate source is routed through a flip-flop that changes state on every incrementing edge of the signal. (For timing details, see Figure 14-5.)

FIGURE 14-5: TIMER1 GATE TOGGLE MODE

The T1GVAL bit (T1GCON<2>) indicates when the Toggled mode is active and the timer is counting.

The Timer1 Gate Toggle mode is enabled by setting the T1GTM bit (T1GCON<5>). When T1GTM is cleared, the flip-flop is cleared and held clear. This is necessary in order to control which edge is measured.

19.0 CAPTURE/COMPARE/PWM (CCP) MODULES

PIC18F66K80 family devices have four CCP (Capture/Compare/PWM) modules, designated CCP2 through CCP5. All the modules implement standard Capture, Compare and Pulse-Width Modulation (PWM) modes.

Note: Throughout this section, generic references are used for register and bit names that are the same, except for an 'x' variable that indicates the item's association with the specific CCP module. For example, the control register is named CCPxCON and refers to CCP2CON through CCP5CON.

Each CCP module contains a 16-bit register that can operate as a 16-bit Capture register, a 16-bit Compare register or a PWM Master/Slave Duty Cycle register. For the sake of clarity, all CCP module operation in the following sections is described with respect to CCP2, but is equally applicable to CCP3 through CCP5.

REGISTER 19-1: CCPxCON: CCPx CONTROL REGISTER (CCP2-CCP5 MODULES)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	DCxB1	DCxB0	CCPxM3 ⁽¹⁾	CCPxM2 ⁽¹⁾	CCPxM1 ⁽¹⁾	CCPxM0 ⁽¹⁾
bit 7							bit 0

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as '0'
bit 5-4	DCxB<1:0>: PWM Duty Cycle bit 1 and bit 0 for CCPx Module bits
	Capture mode:
	Unused.
	Compare mode:
	Unused.
	PWM mode:
	These bits are the two Least Significant bits (bit 1 and bit 0) of the 10-bit PWM duty cycle. The eight Most Significant bits (DCx<9:2>) of the duty cycle are found in CCPRxL.
bit 3-0	CCPxM<3:0>: CCPx Module Mode Select bits ⁽¹⁾
	0000 = Capture/Compare/PWM disabled (resets CCPx module) 0001 = Reserved
	0010 = Compare mode: toggle output on match (CCPXIF bit is set)
	0011 = Reserved 0100 = Capture mode: every falling edge or CAN message received (time-stamp) ⁽²⁾
	0101 = Capture mode: every rising edge or CAN message received (time-stamp) ⁽²⁾
	0110 = Capture mode: every 4th rising edge or on every fourth CAN message received (time-stamp) ⁽²⁾
	0111 = Capture mode: every 16th rising edge or on every 16th CAN message received (time-stamp) ⁽²⁾
	1000 = Compare mode: initialize CCPx pin low; on compare match, force CCPx pin high (CCPxIF bit is set)
	1001 = Compare mode: Initialize CCPX pin nigh; on compare match, force CCPX pin low (CCPXIF bit is set)
	reflects I/O state)
	1011 = Compare mode: Special Event Trigger; reset timer on CCPx match (CCPxIF bit is set)
	11xx = PWM mode
Note 1:	CCPxM<3:0> = 1011 will only reset the timer and not start an A/D conversion on CCPx match.

2: Available only on CCP2. Selected by the CANCAP (CIOCON<4>) bit. Overrides the CCP2 input pin source.

20.4.8 OPERATION IN POWER-MANAGED MODES

In Sleep mode, all clock sources are disabled. Timer2/4 will not increment and the state of the module will not change. If the ECCP1 pin is driving a value, it will continue to drive that value. When the device wakes up, it will continue from this state. If Two-Speed Start-ups are enabled, the initial start-up frequency from HF-INTOSC and the postscaler may not be stable immediately.

In PRI_IDLE mode, the primary clock will continue to clock the ECCP1 module without change.

20.4.8.1 Operation with Fail-Safe Clock Monitor (FSCM)

If the Fail-Safe Clock Monitor (FSCM) is enabled, a clock failure will force the device into the power-managed RC_RUN mode and the OSCFIF bit of the PIR2 register will be set. The ECCP1 will then be clocked from the internal oscillator clock source, which may have a different clock frequency than the primary clock.

20.4.9 EFFECTS OF A RESET

Both Power-on Reset and subsequent Resets will force all ports to Input mode and the ECCP registers to their Reset states.

This forces the ECCP module to reset to a state compatible with previous, non-enhanced CCP modules used on other PIC18 and PIC16 devices.

21.4.6.1 I^2C^{TM} Master Mode Operation

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDA while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted, 8 bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/\overline{W} bit. In this case, the R/\overline{W} bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address, followed by a '1' to indicate the receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received, 8 bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

The Baud Rate Generator, used for the SPI mode operation, is used to set the SCL clock frequency for either 100 kHz, 400 kHz or 1 MHz I²C operation. See **Section 21.4.7 "Baud Rate"** for more details.

A typical transmit sequence would go as follows:

- 1. The user generates a Start condition by setting the Start Enable bit, SEN (SSPCON2<0>).
- SSPIF is set. The MSSP module will wait the required start time before any other operation takes place.
- 3. The user loads the SSPBUF with the slave address to transmit.
- 4. Address is shifted out the SDA pin until all 8 bits are transmitted.
- 5. The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register (SSPCON2<6>).
- 6. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 7. The user loads the SSPBUF with eight bits of data.
- 8. Data is shifted out the SDA pin until all 8 bits are transmitted.
- The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register (SSPCON2<6>).
- 10. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 11. The user generates a Stop condition by setting the Stop Enable bit, PEN (SSPCON2<2>).
- 12. Interrupt is generated once the Stop condition is complete.

21.4.14 SLEEP OPERATION

While in Sleep mode, the I²C module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSP interrupt is enabled).

21.4.15 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

21.4.16 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I²C bus may be taken when the P bit (SSPSTAT<4>) is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the MSSP interrupt will generate the interrupt when the Stop condition occurs.

In multi-master operation, the SDA line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed in hardware with the result placed in the BCLIF bit.

The states where arbitration can be lost are:

- · Address Transfer
- Data Transfer
- A Start Condition
- · A Repeated Start Condition
- An Acknowledge Condition

21.4.17 MULTI -MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a '1' on SDA, by letting SDA float high, and another master asserts a '0'. When the SCL pin floats high, data should be stable. If the expected data on SDA is a '1' and the data sampled on the SDA pin = 0, then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLIF, and reset the I^2C port to its Idle state (Figure 21-27).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDA and SCL lines are deasserted and the SSPBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are deasserted and the respective control bits in the SSPCON2 register are cleared. When the user services the bus collision Interrupt Service Routine, and if the I²C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDA and SCL pins. If a Stop condition occurs, the SSPIF bit will be set.

A write to the SSPBUF will start the transmission of data at the first data bit regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPSTAT register, or the bus is Idle and the S and P bits are cleared.

FIGURE 21-27: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

26.2 HLVD Setup

To set up the HLVD module:

- 1. Select the desired HLVD trip point by writing the value to the HLVDL<3:0> bits.
- 2. Set the VDIRMAG bit to detect high voltage (VDIRMAG = 1) or low voltage (VDIRMAG = 0).
- 3. Enable the HLVD module by setting the HLVDEN bit.
- 4. Clear the HLVD interrupt flag (PIR2<2>), which may have been set from a previous interrupt.
- If interrupts are desired, enable the HLVD interrupt by setting the HLVDIE and GIE bits (PIE2<2> and INTCON<7>, respectively).

An interrupt will not be generated until the IRVST bit is set.

Note: Before changing any module settings (VDIRMAG, HLVDL<3:0>), first disable the module (HLVDEN = 0), make the changes and re-enable the module. This prevents the generation of false HLVD events.

26.3 Current Consumption

When the module is enabled, the HLVD comparator and voltage divider are enabled and consume static current. The total current consumption, when enabled, is specified in electrical specification Parameter D022B (Table 31-11).

Depending on the application, the HLVD module does not need to operate constantly. To reduce current requirements, the HLVD circuitry may only need to be enabled for short periods where the voltage is checked. After such a check, the module could be disabled.

26.4 HLVD Start-up Time

The internal reference voltage of the HLVD module, specified in electrical specification Parameter 37 (Section 31.0 "Electrical Characteristics"), may be used by other internal circuitry, such as the programmable Brown-out Reset. If the HLVD or other circuits using the voltage reference are disabled to lower the device's current consumption, the reference voltage circuit will require time to become stable before a low or high-voltage condition can be reliably detected. This start-up time, TIRVST, is an interval that is independent of device clock speed. It is specified in electrical specification Parameter 37 (Table 31-11).

The HLVD interrupt flag is not enabled until TIRVST has expired and a stable reference voltage is reached. For this reason, brief excursions beyond the set point may not be detected during this interval (see Figure 26-2 or Figure 26-3).

26.6 Operation During Sleep

When enabled, the HLVD circuitry continues to operate during Sleep. If the device voltage crosses the trip point, the HLVDIF bit will be set and the device will wake-up from Sleep. Device execution will continue from the interrupt vector address if interrupts have been globally enabled.

26.7 Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the HLVD module to be turned off.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
HLVDCON	VDIRMAG	BGVST	IRVST	HLVDEN	HLVDL3	HLVDL2	HLVDL1	HLVDL0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
PIR2	OSCFIF	—	_	—	BCLIF	HLVDIF	TMR3IF	TMR3GIF
PIE2	OSCFIE	_		_	BCLIE	HLVDIE	TMR3IE	TMR3GIE
IPR2	OSCFIP	_	_	—	BCLIP	HLVDIP	TMR3IP	TMR3GIP
TRISA	TRISA7 ⁽¹⁾	TRISA6 ⁽¹⁾	TRISA5	_	TRISA3	TRISA2	TRISA1	TRISA0

TABLE 26-1: REGISTERS ASSOCIATED WITH HIGH/LOW-VOLTAGE DETECT MODULE

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the HLVD module.

Note 1: PORTA<7:6> and their direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

27.0 ECAN MODULE

PIC18F66K80 family devices contain an Enhanced Controller Area Network (ECAN) module. The ECAN module is fully backward compatible with the CAN module available in PIC18CXX8 and PIC18FXX8 devices and the ECAN module in PIC18Fxx80 devices.

The Controller Area Network (CAN) module is a serial interface which is useful for communicating with other peripherals or microcontroller devices. This interface, or protocol, was designed to allow communications within noisy environments.

The ECAN module is a communication controller, implementing the CAN 2.0A or B protocol as defined in the BOSCH specification. The module will support CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system; however, the CAN specification is not covered within this data sheet. Refer to the BOSCH CAN specification for further details.

The module features are as follows:

- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- DeviceNet[™] data bytes filter support
- · Standard and extended data frames
- 0-8 bytes data length
- Programmable bit rate up to 1 Mbit/sec
- Fully backward compatible with the PIC18XXX8 CAN module
- · Three modes of operation:
 - Mode 0 Legacy mode
 - Mode 1 Enhanced Legacy mode with DeviceNet support
 - Mode 2 FIFO mode with DeviceNet support
- Support for remote frames with automated handling
 Double-buffered receiver with two prioritized
- received message storage buffers
- Six buffers programmable as RX and TX message buffers
- 16 full (standard/extended identifier) acceptance filters that can be linked to one of four masks
- Two full acceptance filter masks that can be assigned to any filter
- One full acceptance filter that can be used as either an acceptance filter or acceptance filter mask
- Three dedicated transmit buffers with application specified prioritization and abort capability
- Programmable wake-up functionality with integrated low-pass filter
- Programmable Loopback mode supports self-test operation
- Signaling via interrupt capabilities for all CAN receiver and transmitter error states
- · Programmable clock source
- Programmable link to timer module for time-stamping and network synchronization
- Low-power Sleep mode

27.1 Module Overview

The CAN bus module consists of a protocol engine and message buffering and control. The CAN protocol engine automatically handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the two receive registers.

The CAN module supports the following frame types:

- Standard Data Frame
- Extended Data Frame
- Remote Frame
- Error Frame
- Overload Frame Reception

The CAN module uses the RB2/CANTX and RB3/ CANRX pins to interface with the CAN bus. The CANTX and CANRX pins can be placed on alternate I/O pins by setting the CANMX (CONFIG3H<0>) Configuration bit.

For the PIC18F2XK80 and PIC18F4XK80, the alternate pin locations are RC6/CANTX and RC7/CANRX. For the PIC18F6XK80, the alternate pin locations are RE4/CANRX and RE5/CANTX.

In normal mode, the CAN module automatically overrides the appropriate TRIS bit for CANTX. The user must ensure that the appropriate TRIS bit for CANRX is set.

27.1.1 MODULE FUNCTIONALITY

The CAN bus module consists of a protocol engine, message buffering and control (see Figure 27-1). The protocol engine can best be understood by defining the types of data frames to be transmitted and received by the module.

The following sequence illustrates the necessary initialization steps before the ECAN module can be used to transmit or receive a message. Steps can be added or removed depending on the requirements of the application.

- 1. Initial LAT and TRIS bits for RX and TX CAN.
- 2. Ensure that the ECAN module is in Configuration mode.
- 3. Select ECAN Operational mode.
- 4. Set up the Baud Rate registers.
- 5. Set up the Filter and Mask registers.
- 6. Set the ECAN module to normal mode or any other mode required by the application logic.

EXAMPLE 27-1: CHANGING TO CONFIGURATION MODE

```
; Request Configuration mode.
                                        ; Set to Configuration Mode.
   MOVLW B'1000000'
   MOVWF CANCON
   ; A request to switch to Configuration mode may not be immediately honored.
   ; Module will wait for CAN bus to be idle before switching to Configuration Mode.
   ; Request for other modes such as Loopback, Disable etc. may be honored immediately.
   ; It is always good practice to wait and verify before continuing.
ConfigWait:
   MOVF CANSTAT, W
                                       ; Read current mode state.
   ANDLW B'1000000'
                                        ; Interested in OPMODE bits only.
   TSTFSZ WREG
                                        ; Is it Configuration mode yet?
   BRA ConfigWait
                                        ; No. Continue to wait...
   ; Module is in Configuration mode now.
   ; Modify configuration registers as required.
    ; Switch back to Normal mode to be able to communicate.
```

EXAMPLE 27-2: WIN AND ICODE BITS USAGE IN INTERRUPT SERVICE ROUTINE TO ACCESS TX/RX BUFFERS

	; Save	application required context.		
	; Poll	interrupt flags and determine :	so	urce of interrupt
	; This	was found to be CAN interrupt		
	; TempC	ANCON and TempCANSTAT are varia	ab	les defined in Access Bank low
	MOVFF	CANCON, TempCANCON	;	Save CANCON.WIN bits
			;	This is required to prevent CANCON
			;	from corrupting CAN buffer access
			;	in-progress while this interrupt
			;	occurred
	MOVFF	CANSTAT, TempCANSTAT	;	Save CANSTAT register
		· -	;	This is required to make sure that
			;	we use same CANSTAT value rather
			;	than one changed by another CAN
			;	interrupt.
	MOVF	TempCANSTAT, W	;	Retrieve ICODE bits
	ANDLW	B'00001110'		
	ADDWF	PCL, F	;	Perform computed GOTO
			;	to corresponding interrupt cause
	BRA	NoInterrupt	;	000 = No interrupt
	BRA	ErrorInterrupt	;	001 = Error interrupt
	BRA	TXB2Interrupt	;	010 = TXB2 interrupt
	BRA	TXBlInterrupt	;	011 = TXB1 interrupt
	BRA	TXB0Interrupt	;	100 = TXB0 interrupt
	BRA	RXB1Interrupt	;	101 = RXB1 interrupt
	BRA	RXB0Interrupt	;	110 = RXB0 interrupt
			;	111 = Wake-up on interrupt
Wake	eupInter	rupt		
	BCF	PIR3, WAKIF	;	Clear the interrupt flag
	;			
	; User	code to handle wake-up procedu:	re	
	;			
	;			
	; Conti	nue checking for other interru	pt	source or return from here
NoIr	nterrupt			
			;	PC should never vector here. User may
			;	place a trap such as infinite loop or pin/port
			;	indication to catch this error.

REGISTER 28-3: CONFIG2L: CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS 300002h)

U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
—	BORPWR1 ⁽¹⁾	BORPWR0 ⁽¹⁾	BORV1 ⁽¹⁾	BORV0 ⁽¹⁾	BOREN1 ⁽²⁾	BOREN0 ⁽²⁾	PWRTEN ⁽²⁾
bit 7							bit 0

Legend:	P = Programmable bit			
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7	Unimplemented: Read as '0'
bit 6-5	BORPWR<1:0>: BORMV Power-Level bits ⁽¹⁾
	 11 = ZPBORVMV instead of BORMV is selected 10 = BORMV is set to a high-power level 01 = BORMV is set to a medium power level 00 = BORMV is set to a low-power level
bit 4-3	BORV<1:0>: Brown-out Reset Voltage bits ⁽¹⁾
	11 = BVDD is set to 1.8V 10 = BVDD is set to 2.0V 01 = BVDD is set to 2.7V 00 = BVDD is set to 3.0V
bit 2-1	BOREN<1:0>: Brown-out Reset Enable bits ⁽²⁾
	 11 = Brown-out Reset is enabled in hardware only (SBOREN is disabled) 10 = Brown-out Reset is enabled in hardware only and disabled in Sleep mode (SBOREN is disabled) 01 = Brown-out Reset is enabled and controlled by software (SBOREN is enabled) 00 = Brown-out Reset is disabled in hardware and software
bit 0	PWRTEN: Power-up Timer Enable bit ⁽²⁾
	1 = PWRT disabled 0 = PWRT enabled
Note 1:	For the specifications, see Section 31.1 "DC Characteristics: Supply Voltage PIC18F66K80 Family (Industrial/Extended)".

2: The Power-up Timer is decoupled from Brown-out Reset, allowing these features to be independently controlled.

Mnemonic,		Description	Cycles	16-Bit Instruction Word				Status	Notaa	
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes	
BYTE-OR	ENTED	OPERATIONS								
ADDWF	f, d, a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	1, 2	
ADDWFC	f, d, a	Add WREG and Carry bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	1, 2	
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1,2	
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2	
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2	
CPFSEQ	f, a	Compare f with WREG, Skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4	
CPFSGT	f, a	Compare f with WREG, Skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4	
CPFSLT	f, a	Compare f with WREG, Skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2	
DECF	f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4	
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4	
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2	
INCF	f, d, a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4	
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff	None	4	
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1, 2	
IORWF	f, d, a	Inclusive OR WREG with f	1	0001	00da	ffff	ffff	Z, N	1, 2	
MOVF	f, d, a	Move f	1	0101	00da	ffff	ffff	Z, N	1	
MOVFF	f _s , f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None		
	0 u	f _d (destination) 2nd word		1111	ffff	ffff	ffff			
MOVWF	f, a	Move WREG to f	1	0110	111a	ffff	ffff	None		
MULWF	f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	1, 2	
NEGF	f, a	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N		
RLCF	f, d, a	Rotate Left f through Carry	1	0011	01da	ffff	ffff	C, Z, N	1, 2	
RLNCF	f, d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff	Z, N		
RRCF	f, d, a	Rotate Right f through Carry	1	0011	00da	ffff	ffff	C, Z, N		
RRNCF	f, d, a	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N		
SETF	f, a	Set f	1	0110	100a	ffff	ffff	None	1, 2	
SUBFWB	f, d, a	Subtract f from WREG with	1	0101	01da	ffff	ffff	C, DC, Z, OV, N		
		Borrow								
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	1, 2	
SUBWFB	f, d, a	Subtract WREG from f with	1	0101	10da	ffff	ffff	C, DC, Z, OV, N		
		Borrow								
SWAPF	f, d, a	Swap Nibbles in f	1	0011	10da	ffff	ffff	None	4	
TSTFSZ	f, a	Test f, Skip if 0	1 (2 or 3)	0110	011a	ffff	ffff	None	1, 2	
XORWF	f, d, a	Exclusive OR WREG with f	1	0001	10da	ffff	ffff	Z, N		

TABLE 29-2: PIC18F66K80 FAMILY INSTRUCTION SET

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as an input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

31.6.2 TIMING CONDITIONS

The temperature and voltages specified in Table 31-5 apply to all timing specifications unless otherwise noted. Figure 31-3 specifies the load conditions for the timing specifications.

TABLE 31-5: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Conditions (unless otherwise stated)					
	Operating temperature	-40°C \leq TA \leq +85°C for industrial				
AC CHARACTERISTICS		$-40^{\circ}C \le TA \le +125^{\circ}C$ for extended				
	Operating voltage VDD range as described in Section 31.1 and Section 31.3 .					

FIGURE 31-3: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

Param. No.	Symbol	Characteris	tic	Min	Max	Units	Conditions
100	Thigh	Clock High Time	100 kHz mode	4.0	_	μS	
			400 kHz mode	0.6	_	μS	
			MSSP module	1.5 TCY	_		
101	TLOW	Clock Low Time	100 kHz mode	4.7	_	μS	
			400 kHz mode	1.3	—	μS	
			MSSP module	1.5 TCY	_		
102	TR	SDA and SCL Rise Time	100 kHz mode	—	1000	ns	
			400 kHz mode	20 + 0.1 CB	300	ns	CB is specified to be from 10 to 400 pF
103	Tf	SDA and SCL Fall Time	100 kHz mode	—	300	ns	
			400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
90	TSU:STA	Start Condition Setup Time	100 kHz mode	4.7	—	μS	Only relevant for Repeated
			400 kHz mode	0.6	_	μS	Start condition
91	THD:STA	Start Condition Hold Time	100 kHz mode	4.0	_	μS	After this period, the first clock
			400 kHz mode	0.6	_	μS	pulse is generated
106	THD:DAT	Data Input Hold Time	100 kHz mode	0	_	ns	
			400 kHz mode	0	0.9	μS	
107	TSU:DAT	Data Input Setup Time	100 kHz mode	250	—	ns	(Note 2)
			400 kHz mode	100	—	ns	
92	Tsu:sto	Stop Condition Setup Time	100 kHz mode	4.7	—	μS	
			400 kHz mode	0.6	—	μS	
109	ΤΑΑ	Output Valid from Clock	100 kHz mode	—	3500	ns	(Note 1)
			400 kHz mode		—	ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7	—	μS	Time the bus must be free before
			400 kHz mode	1.3	—	μS	a new transmission can start
D102	Св	Bus Capacitive Loading		—	400	pF	

TABLE 31-20: I²C[™] BUS DATA REQUIREMENTS (SLAVE MODE)

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode I²C[™] bus device can be used in a Standard mode I²C bus system, but the requirement, TSU:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

PIC18F66K80 FAMILY

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
130	Tad	A/D Clock Period	0.8	12.5 ⁽¹⁾	μS	Tosc based, VREF \geq 3.0V
			1.4	25 ⁽¹⁾	μS	VDD = 3.0V; TOSC based, VREF full range
				1	μS	A/D RC mode
				3	μS	VDD = 3.0V; A/D RC mode
131	TCNV	Conversion Time (not including acquisition time) ⁽²⁾	14	15	Tad	
132	TACQ	Acquisition Time ⁽³⁾	1.4	_	μS	-40°C to +125°C
135	Tswc	Switching Time from Convert \rightarrow Sample		(Note 4)		
TBD	TDIS	Discharge Time	0.2	_	μS	-40°C to +125°C

Note 1: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.

2: ADRES registers may be read on the following TCY cycle.

3: The time for the holding capacitor to acquire the "New" input voltage when the voltage changes full scale after the conversion (VDD to Vss or Vss to VDD). The source impedance (Rs) on the input channels is 50 Ω .

4: On the following cycle of the device clock.

APPENDIX B: MIGRATION TO PIC18F66K80 FAMILY

Devices in the PIC18F66K80, PIC18F4580, PIC18F4680 and 18F8680 families are similar in their functions and features. Code can be migrated from the

other families to the PIC18F66K80 without many changes. The differences between the device families are listed in Table B-1 and Table B-2. For more details on migrating to the PIC18F66K80, refer to *"PIC18FXX80 to PIC18FXXK80 Migration Guide"* (DS39982).

TABLE B-1:NOTABLE DIFFERENCES BETWEEN 28, 40 AND 44-PIN DEVICES – PIC18F66K80,
PIC18F4580 AND PIC18F4680 FAMILIES

Characteristic	PIC18F66K80 Family	PIC18F4680 Family	PIC18F4580 Family	
Max Operating Frequency	64 MHz	40 MHz	40 MHz	
Max Program Memory	64 Kbytes	64 Kbytes	32 Kbytes	
Data Memory (bytes)	3,648	3,328	1,536	
CTMU	Yes	No	No	
SOSC Oscillator Options	Low-power oscillator option for SOSC	No options	No options	
T1CKI Clock	T1CKI can be used as a clock without enabling the SOSC oscillator	No	No	
INTOSC	Up to 16 MHz	Up to 8 MHz	Up to 8 MHz	
Timers	Two 8-bit, three 16-bit	One 8-bit, three 16-bit	One 8-bit, three 16-bit	
ECCP	One for all devices	40 and 44-pin devices – One 28-pin devices – None	40 and 44-pin devices – One 28-pin devices – None	
CCP	Four	One	One	
Data EEPROM (bytes)	1,024	1,024	256	
WDT Prescale Options	22	16	16	
5V Operation	18FXXK80 parts – 5V operation 18LFXXK80 parts – 3.3V operation	Yes	Yes	
nanoWatt XLP	Yes	No	No	
Regulator	18FXXK80 parts – Yes 18LFXXK80 parts – No	No	No	
Low-Power BOR	Yes	No	No	
A/D Converter	12-bit signed differential	10-bit	10-bit	
A/D Channels	28-pin devices – 8 Channels 40 and 44-pin devices – 11 Channels	8 Channels for 28-pin devices/ 11 Channels for 40 and 44-pin devices	8 Channels for 28-pin devices/ 11 Channels for 40 and 44-pin devices	
Internal Temp Sensor	Yes	No	No	
EUSART	Тwo	One	One	
Comparators	Two	28-pin devices – None 40 and 44-pin devices – Two	28-pin devices – None 40 and 44-pin devices – Two	
Oscillator Options	14	Nine	Nine	
Ultra Low-Power Wake-up (ULPW)	Yes	No	No	
Adjustable Slew Rate for I/O	Yes	No	No	
PLL	Available for all oscillator options	Available only for high-speed crystal and internal oscillator	Available only for high-speed crystal and internal oscillator	
TXM Modulator	No	No	No	