

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	ECANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf46k80-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

3.3 Clock Sources and Oscillator Switching

Essentially, PIC18F66K80 family devices have these independent clock sources:

- Primary oscillators
- · Secondary oscillators
- Internal oscillator

The **primary oscillators** can be thought of as the main device oscillators. These are any external oscillators connected to the OSC1 and OSC2 pins, and include the External Crystal and Resonator modes and the External Clock modes. If selected by the FOSC<3:0> Configuration bits (CONFIG1H<3:0>), the internal oscillator block may be considered a primary oscillator. The internal oscillator block can be one of the following:

- 31 kHz LF-INTOSC source
- 31 kHz to 500 kHz MF-INTOSC source
- · 31 kHz to 16 MHz HF-INTOSC source

The particular mode is defined by the FOSCx Configuration bits. The details of these modes are covered in **Section 3.5 "External Oscillator Modes**".

The **secondary oscillators** are external clock sources that are not connected to the OSC1 or OSC2 pin. These sources may continue to operate, even after the controller is placed in a power-managed mode. PIC18F66K80 family devices offer the SOSC (Timer1/3/5/7) oscillator as a secondary oscillator source.

The SOSC can be enabled from any peripheral that requests it. The SOSC can be enabled several ways by doing one of the following:

- The SOSC is selected as the source by either of the odd timers, which is done by each respective SOSCEN bit (TxCON<3>)
- The SOSC is selected as the CPU clock source by the SCSx bits (OSCCON<1:0>)
- The SOSCGO bit is set (OSCCON2<3>)

The SOSCGO bit is used to warm up the SOSC so that it is ready before any peripheral requests it.

The secondary oscillator has three Run modes. The SOSCSEL<1:0> bits (CONFIG1L<4:3>) decide the SOSC mode of operation:

- 11 = High-Power SOSC Circuit
- 10 = Digital (SCLKI) mode
- 11 = Low-Power SOSC Circuit

If a secondary oscillator is not desired and digital I/O on port pins, RC0 and RC1, is needed, the SOSCSELx bits must be set to Digital mode.

In addition to being a primary clock source in some circumstances, the **internal oscillator** is available as a power-managed mode clock source. The LF-INTOSC source is also used as the clock source for several special features, such as the WDT and Fail-Safe Clock Monitor. The internal oscillator block is discussed in more detail in **Section 3.6** "Internal Oscillator **Block**".

The PIC18F66K80 family includes features that allow the device clock source to be switched from the main oscillator, chosen by device configuration, to one of the alternate clock sources. When an alternate clock source is enabled, various power-managed operating modes are available.

3.3.1 OSC1/OSC2 OSCILLATOR

The OSC1/OSC2 oscillator block is used to provide the oscillator modes and frequency ranges:

Mode	Design Operating Frequency
LP	31.25-100 kHz
XT	100 kHz to 4 MHz
HS	4 MHz to 25 MHz
EC	0 to 64 MHz (external clock)
EXTRC	0 to 4 MHz (external RC)

The crystal-based oscillators (XT, HS and LP) have a built-in start-up time. The operation of the EC and EXTRC clocks is immediate.

3.3.2 CLOCK SOURCE SELECTION

The System Clock Select bits, SCS<1:0> (OSCCON<1:0>), select the clock source. The available clock sources are the primary clock defined by the FOSC<3:0> Configuration bits, the secondary clock (SOSC oscillator) and the internal oscillator. The clock source changes after one or more of the bits is written to, following a brief clock transition interval.

The OSTS (OSCCON<3>) and SOSCRUN (OSCCON2<6>) bits indicate which clock source is currently providing the device clock. The OSTS bit indicates that the Oscillator Start-up Timer (OST) has timed out and the primary clock is providing the device clock in primary clock modes. The SOSCRUN bit indicates when the SOSC oscillator (from Timer1/3/5/7) is providing the device clock in secondary clock modes. In power-managed modes, only one of these bits will be set at any time. If neither of these bits is set, the INTOSC is providing the clock or the internal oscillator has just started and is not yet stable.

The IDLEN bit (OSCCON<7>) determines if the device goes into Sleep mode or one of the Idle modes when the SLEEP instruction is executed.

TABLE 4-4:EXIT DELAY ON WAKE-UP BY RESET FROM SLEEP MODE OR ANY IDLE MODE
(BY CLOCK SOURCES)

Power-Managed Mode	Clock Source ⁽⁵⁾	Exit Delay	Clock Ready Status Bits
	LP, XT, HS		
	HSPLL		OSTS
	EC, RC	тоор(1)	
PRI_IDLE mode	HF-INTOSC ⁽²⁾		HFIOFS
	MF-INTOSC ⁽²⁾		MFIOFS
	LF-INTOSC		None
SEC_IDLE mode	SOSC	TCSD ⁽¹⁾	SOSCRUN
	HF-INTOSC ⁽²⁾		HFIOFS
RC_IDLE mode	MF-INTOSC ⁽²⁾	TCSD ⁽¹⁾	MFIOFS
	LF-INTOSC		None
	LP, XT, HS	Tost ⁽³⁾	
	HSPLL	Tost + t _{rc} (3)	OSTS
	EC, RC	TCSD ⁽¹⁾	
Sleep mode	HF-INTOSC ⁽²⁾		HFIOFS
	MF-INTOSC ⁽²⁾	TIOBST ⁽⁴⁾	MFIOFS
	LF-INTOSC		None

Note 1: TCSD (Parameter 38, Table 31-11) is a required delay when waking from Sleep and all Idle modes, and runs concurrently with any other required delays (see **Section 4.4 "Idle Modes"**).

2: Includes postscaler derived frequencies. On Reset, INTOSC defaults to HF-INTOSC at 8 MHz.

3: TOST is the Oscillator Start-up Timer (Parameter 32, Table 31-11). TRC is the PLL Lock-out Timer (Parameter F12, Table 31-7); it is also designated as TPLL.

4: Execution continues during TIOBST (Parameter 39, Table 31-11), the INTOSC stabilization period.

5: The clock source is dependent upon the settings of the SCSx (OSCCON<1:0>), IRCFx (OSCCON<6:4>) and FOSCx (CONFIG1H<3:0>) bits.

EXAMPLE 7-3: WRITING TO FLASH PROGRAM MEMORY

	MOVLW MOVWF	SIZE_OF_BLOCK COUNTER	; :	number of bytes in erase block
	MOVLW	BUFFER_ADDR_HIGH	;]	point to buffer
	MOVWF	FSROH		
	MOVLW	BUFFER_ADDR_LOW		
	MOVIN	FSRUL CODE ADDE HDDER		Load TRIDTR with the base
	MOVWF	TBLPTRU	; ;	address of the memory block
	MOVLW	CODE_ADDR_HIGH		-
	MOVWF	TBLPTRH		
	MOVLW	CODE_ADDR_LOW		
READ BLOCK	MOVWE	TREPTRE		
	TBLRD*+	-	;	read into TABLAT, and inc
	MOVF	TABLAT, W	;	get data
	MOVWF	POSTINC0	;	store data
	DECFSZ	COUNTER DEND BLOCK	; ;	done?
MODIFY WORD	BRA	READ_BLOCK	'	repear
1.001110010	MOVLW	DATA_ADDR_HIGH	; ;	point to buffer
	MOVWF	FSROH		
	MOVLW	DATA_ADDR_LOW		
	MOVWF MOVI W	FSRUL		undata buffar word
	MOVEW	POSTINCO	'	update buller word
	MOVLW	NEW_DATA_HIGH		
	MOVWF	INDF0		
ERASE_BLOCK				
	MOVLW	CODE_ADDR_UPPER	;	load TBLPTR with the base
	MOVWF	CODE ADDR HIGH	, ,	address of the memory brock
	MOVWF	TBLPTRH		
	MOVLW	CODE_ADDR_LOW		
	MOVWF	TBLPTRL		
	BSF	EECON1, EEPGD	;]	point to Flash program memory
	BSF	EECON1, WREN	;	enable write to memory
	BSF	EECON1, FREE	;	enable Row Erase operation
	BCF	INTCON, GIE	; (disable interrupts
D	MOVLW	55h		
Required	MOVIE	EECON2 Olab	;	write 55h
Sequence	MOVUW	EECON2	; ;	write 0AAh
	BSF	EECON1, WR	;	start erase (CPU stall)
	BSF	INTCON, GIE	;	re-enable interrupts
	TBLRD*-		; ;	dummy read decrement
	MOVLW	BUFFER_ADDR_HIGH	'	point to builer
	MOVLW	BUFFER_ADDR_LOW		
	MOVWF	FSROL		
WRITE_BUFFER_B	ACK			
	MOVLW	SIZE_OF_BLOCK	; :	number of bytes in holding register
WRITE BYTE TO	HREGS	COUNTER		
	MOVFF	POSTINC0, WREG	;	get low byte of buffer data
	MOVWF	TABLAT	;	present data to table latch
	TBLWT+*	•	;	write data, perform a short write
	DECEC	COUNTED	;	to internal TBLWT holding register.
	DECFSZ BRA	COUNTER MEITE BYTE TO HEFGE	<i>i</i> .	TOOP UNTIL DULLERS ARE FULL

Pin Name	Function	TRIS Setting	I/O	I/О Туре	Description				
RD0/C1INA/	RD0	0	0	DIG	LATD<0> data output.				
PSP0		1	I	ST	PORTD<0> data input.				
	C1INA	1	I	ANA	Comparator 1 Input A.				
	PSP0	x	I/O	ST	Parallel Slave Port data.				
RD1/C1INB/	RD1 ⁽¹⁾	0	0	DIG	LATD<1> data output.				
PSP1		1	Ι	ST	PORTD<1> data input.				
	C1INB ⁽¹⁾	1	I	ANA	Comparator 1 Input B.				
	PSP1 ⁽¹⁾	x	I/O	ST	Parallel Slave Port data.				
RD2/C2INA/	RD2	0	0	DIG	LATD<2> data output.				
PSP2		1	I	ST	PORTD<2> data input.				
	C2INA	1	I	ANA	Comparator 2 Input A.				
	PSP2	x	I/O	ST	Parallel Slave Port data.				
RD3/C2INB/	RD3	0	0	DIG	LATD<3> data output.				
CTMUI/PSP3		1	I	ST	PORTD<3> data input.				
	C2INB	1	I	ANA	Comparator 2 Input B.				
	CTMUI	x	I	_	CTMU pulse generator charger for the C2INB comparator input.				
	PSP3	x	I/O	ST	Parallel Slave Port data.				
RD4/ECCP1/	RD4	0	0	DIG	LATD<4> data output.				
P1A/PSP4		1	I	ST	PORTD<4> data input.				
	ECCP1	0	0	DIG	ECCP1 compare output and ECCP1 PWM output; takes priority over port data.				
		1	Ι	ST	ECCP1 capture input.				
	P1A	0	0	DIG	ECCP1 Enhanced PWM output, Channel A. May be configured for tri-state during Enhanced PWM shutdown events; takes priority over port data.				
	PSP4	x	I/O	ST	Parallel Slave Port data.				
RD5/P1B/PSP5	RD5	0	0	DIG	LATD<5> data output.				
		1	I	ST	PORTD<5> data input.				
	P1B	0	0	DIG	ECCP1 Enhanced PWM output, Channel B. May be configured for tri-state during Enhanced PWM shutdown events; takes priority over port data.				
	PSP5	x	I/O	ST	Parallel Slave Port data.				
RD6/TX2/CK2	RD6	0	0	DIG	LATD<6> data output.				
P1C/PSP6		1	I	ST	PORTD<6> data input.				
	TX2 ⁽¹⁾	0	0	DIG	Asynchronous serial data output (EUSARTx module); takes priority over port data.				
	CK2 ⁽¹⁾	0	0	DIG	Synchronous serial clock output (EUSARTx module); user must configure as an input.				
		1	Ι	ST	Synchronous serial clock input (EUSARTx module); user must configure as an input.				
	P1C	0	0	DIG	ECCP1 Enhanced PWM output, Channel C. May be configured for tri-state during Enhanced PWM.				
	PSP6	х	I/O	ST	Parallel Slave Port data.				

TABLE 11-7: PORTD FUNCTIONS

Legend: O = Output; I = Input; ANA = Analog Signal; DIG = CMOS Output; ST = Schmitt Trigger Buffer Input;

x = Don't care (TRIS bit does not affect port direction or is overridden for this option)

Note 1: This is the pin assignment for 40 and 44-pin devices (PIC18F4XK80).

Pin Name	Function	TRIS Setting	I/O	I/O Type	Description	
RE5/CANTX	RE5 ⁽¹⁾	0	0	DIG	LATE<5> data output.	
		1	Ι	ST	PORTE<5> data input.	
	CANTX ^(1,2)	0	0	DIG	CAN bus TX.	
RE6/RX2/DT2	RE6 ⁽¹⁾	0	0	DIG	LATE<6> data output.	
		1	Ι	ST	PORTE<6> data input.	
	RX2 ⁽¹⁾ 1 DT2 ⁽¹⁾ 1		Ι	ST	Asynchronous serial receive data input (EUSARTx module).	
			0	DIG	Synchronous serial data output (EUSARTx module); takes priority over port data.	
		1	I	ST	Synchronous serial data input (EUSARTx module); user must configure as an input.	
RE7/TX2/CK2	RE7 ⁽¹⁾	0	0	DIG	LATE<7> data output.	
		1	Ι	ST	PORTE<7> data input.	
	TX2 ⁽¹⁾	0	0	DIG	Asynchronous serial data output (EUSARTx module); takes priority over port data.	
CK2 ⁽¹⁾		0	0	DIG	Synchronous serial clock output (EUSARTx module); user must configure as an input.	
		1	I	ST	Synchronous serial clock input (EUSARTx module); user must configure as an input.	

TABLE 11-9: PORTE FUNCTIONS (CONTINUED)

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = CMOS Output, ST = Schmitt Trigger Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option)

Note 1: These bits are unavailable for 40 and 44-pin devices (PIC18F4XK0).

2: This is the alternate pin assignment for CANRX and CANTX on 64-pin devices (PIC18F6XK80) when the CANMX Configuration bit is cleared.

TABLE 11-10:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTE	RE7 ⁽¹⁾	RE6 ⁽¹⁾	RE5 ⁽¹⁾	RE4 ⁽¹⁾	RE3	RE2	RE1	RE0
LATE	LATE7	LATE6	LATE5	LATE4	—	LATE2	LATE1	LATE0
TRISE	TRISE7	TRISE6	TRISE5	TRISE4	—	TRISE2	TRISE1	TRISE0
PADCFG1	RDPU	REPU	RFPU ⁽¹⁾	RGPU ⁽¹⁾	_	—	—	CTMUDS
ANCON0	ANSEL7	ANSEL6	ANSEL5	ANSEL4	ANSEL3	ANSEL2	ANSEL1	ANSEL0

Legend: Shaded cells are not used by PORTE.

Note 1: These bits are unimplemented on 44-pin devices, read as '0'.

14.8.2 TIMER1 GATE SOURCE SELECTION

The Timer1 gate source can be selected from one of four sources. Source selection is controlled by the T1GSSx (T1GCON<1:0>) bits (see Table 14-4).

TABLE 14-4: TIN	IER1 GA	TE SO	URCES
-----------------	---------	-------	-------

T1GSS<1:0>	Timer1 Gate Source
00	Timer1 Gate Pin
01	TMR2 to Match PR2 (TMR2 increments to match PR2)
10	Comparator 1 Output (comparator logic high output)
11	Comparator 2 Output (comparator logic high output)

The polarity for each available source is also selectable, controlled by the T1GPOL bit (T1GCON<6>).

14.8.2.1 T1G Pin Gate Operation

The T1G pin is one source for Timer1 gate control. It can be used to supply an external source to the Timer1 gate circuitry.

14.8.2.2 Timer2 Match Gate Operation

The TMR2 register will increment until it matches the value in the PR2 register. On the very next increment cycle, TMR2 will be reset to 00h. When this Reset occurs, a low-to-high pulse will automatically be generated and internally supplied to the Timer1 gate circuitry. The pulse will remain high for one instruction cycle and will return back to a low state until the next match.

Depending on T1GPOL, Timer1 increments differently when TMR2 matches PR2. When T1GPOL = 1, Timer1 increments for a single instruction cycle following a TMR2 match with PR2. When T1GPOL = 0, Timer1 increments continuously except for the cycle following the match when the gate signal goes from low-to-high.

14.8.2.3 Comparator 1 Output Gate Operation

The output of Comparator 1 can be internally supplied to the Timer1 gate circuitry. After setting up Comparator 1 with the CM1CON register, Timer1 will increment depending on the transitions of the CMP1OUT (CMSTAT<6>) bit.

14.8.2.4 Comparator 2 Output Gate Operation

The output of Comparator 2 can be internally supplied to the Timer1 gate circuitry. After setting up Comparator 2 with the CM2CON register, Timer1 will increment depending on the transitions of the CMP2OUT (CMSTAT<7>) bit.

18.1 CTMU Registers

The control registers for the CTMU are:

- CTMUCONH
- CTMUCONL
- CTMUICON

The CTMUCONH and CTMUCONL registers (Register 18-1 and Register 18-2) contain control bits for configuring the CTMU module edge source selection, edge source polarity selection, edge sequencing, A/D trigger, analog circuit capacitor discharge and enables. The CTMUICON register (Register 18-3) has bits for selecting the current source range and current source trim.

REGISTER 18-1: CTMUCONH: CTMU CONTROL HIGH REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CTMUEN	—	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	CTMUEN: CTMU Enable bit
	1 = Module is enabled
	0 = Module is disabled
bit 6	Unimplemented: Read as '0'
bit 5	CTMUSIDL: Stop in Idle Mode bit
	1 = Discontinues module operation when device enters Idle mode0 = Continues module operation in Idle mode
bit 4	TGEN: Time Generation Enable bit
	1 = Enables edge delay generation
	 Disables edge delay generation
bit 3	EDGEN: Edge Enable bit
	1 = Edges are not blocked
	0 = Edges are blocked
bit 2	ESGSEQEN: Edge Sequence Enable bit
	1 = Edge 1 event must occur before Edge 2 event can occur
	0 = No edge sequence is needed
bit 1	IDISSEN: Analog Current Source Control bit
	1 = Analog current source output is grounded
	0 = Analog current source output is not grounded
bit 0	CTTRIG: CTMU Special Event Trigger bit
	1 = CIMU Special Event Trigger is enabled
	U = CTIVIO Special Event Trigger is disabled

18.7 Measuring Temperature with the CTMU

The constant current source provided by the CTMU module can be used for low-cost temperature measurement by exploiting a basic property of common and inexpensive diodes. An on-chip temperature sense diode is provided on A/D Channel 29 to further simplify design and cost.

18.7.1 BASIC PRINCIPAL

We can show that the forward voltage (V_F) of a P-N junction, such as a diode, is an extension of the equation for the junction's thermal voltage:

$$V_{\rm F} = \frac{kT}{q} \ln \left(1 - \frac{I_{\rm F}}{I_{\rm S}}\right)$$

where k is the Boltzmann constant (1.38×10^{-23} J K⁻¹), T is the absolute junction temperature in kelvin, q is the electron charge (1.6×10^{-19} C), I_F is the forward current applied to the diode and I_S is the diode's characteristic saturation current, which varies between devices.

Since k and q are physical constants, and I_S is a constant for the device, this only leaves T and I_F as independent variables. If I_F is held constant, it follows from the equation that V_F will vary as a function of T. As the natural log term of the equation will always be negative, the temperature will be negatively proportional to V_F . In other words, as temperature increases, V_F decreases.

By using the CTMU's current source to provide a constant I_F , it becomes possible to calculate the temperature by measuring the V_F across the diode.

18.7.2 IMPLEMENTATION

To implement this theory, all that is needed is to connect a regular junction diode to one of the microcontroller's A/D pins (Figure 18-2). The A/D channel multiplexer is shared by the CTMU and the A/D. To perform a measurement, the multiplexer is configured to select the pin connected to the diode. The CTMU current source is then turned on and an A/D conversion is performed on the channel. As shown in the equivalent circuit diagram, the diode is driven by the CTMU at I_F . The resulting V_F across the diode is measured by the A/D. A code snippet is shown in Example 18-5.

FIGURE 18-4: CTMU TEMPERATURE MEASUREMENT CIRCUIT

EXAMPLE 18-5: ROUTINE FOR TEMPERATURE MEASUREMENT USING INTERNAL DIODE

<pre>// Initialize CTMU CTMUICON = 0x03; CTMUCONHbits.CTMUEN = 1; CTMUCONLbits.EDG1STAT = 1;</pre>						
// Initialize ADC						
ADCON0 = 0x75;	// Enable ADC and connect to Internal diode					
$ADCON1 = 0 \times 00;$						
$ADCON2 = 0 \times BE;$	//Right Justified					
ADCONUBITS.GO = $1;$	// Start conversion					
while(ADCONUbits.GU);						
Temp = ADRESi	// Read ADC results (inversely proportional to temperature)					
Note: The temperature diode is not calibrated or standardized: the user must calibrate the diode to their application						

20.2.2 TIMER1/2/3/4 MODE SELECTION

The timers that are to be used with the capture feature (Timer1 2, 3 or 4) must be running in Timer mode or Synchronized Counter mode. In Asynchronous Counter mode, the capture operation may not work. The timer to be used with each ECCP module is selected in the CCPTMRS register (Register 20-2).

20.2.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCP1IE interrupt enable bit clear to avoid false interrupts. The interrupt flag bit, CCP1IF, should also be cleared following any such change in operating mode.

20.2.4 ECCP PRESCALER

There are four prescaler settings in Capture mode; they are specified as part of the operating mode selected by the mode select bits (CCP1M<3:0>). Whenever the ECCP module is turned off, or Capture mode is disabled, the prescaler counter is cleared. This means that any Reset will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared; therefore, the first capture may be from a non-zero prescaler. Example 20-1 provides the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 20-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP1CON	;	Turn ECCP module off
MOVLW	NEW_CAPT_PS	;	Load WREG with the
		;	new prescaler mode
		;	value and ECCP ON
MOVWF	CCP1CON	;	Load ECCP1CON with
		;	this value
	CLRF MOVLW MOVWF	CLRF CCP1CON MOVLW NEW_CAPT_PS MOVWF CCP1CON	CLRF CCP1CON ; MOVLW NEW_CAPT_PS ; ; MOVWF CCP1CON ; ;

FIGURE 20-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

21.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP) MODULE

21.1 Master SSP (MSSP) Module Overview

The Master Synchronous Serial Port (MSSP) module is a serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be devices such as serial EEPROMs, shift registers, display drivers and A/D Converters. The MSSP module can operate in either of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C[™])
 - Full Master mode
 - Slave mode (with general address call)

The $\mathrm{I}^2\mathrm{C}$ interface supports the following modes in hardware:

- Master mode
- · Multi-Master mode
- Slave mode with 5-bit and 7-bit address masking (with address masking for both 10-bit and 7-bit addressing)

21.2 Control Registers

The MSSP module has three associated control registers. These include a status register (SSPSTAT) and two control registers (SSPCON1 and SSPCON2). The use of these registers and their individual configuration bits differ significantly depending on whether the MSSP module is operated in SPI or I^2C mode.

Additional details are provided under the individual sections.

21.3 SPI Mode

The SPI mode allows 8 bits of data to be synchronously transmitted and received simultaneously. All four modes of SPI are supported. To accomplish communication, typically three pins are used:

- Serial Data Out (SDO) RC5/SDO
- Serial Data In (SDI) RC4/SDA/SDI
- Serial Clock (SCK) RC3/REF0/SCL/SCK

Additionally, a fourth pin may be used when in a Slave mode of operation:

 Slave Select (SS) – RA5/AN4/C2INB/ HLVDIN/T1CKI/SS/CTMU1

Figure 21-1 shows the block diagram of the MSSP module when operating in SPI mode.

FIGURE 21-1:

MSSP BLOCK DIAGRAM (SPI MODE)

FIGURE 24-4: COMPARATOR CONFIGURATIONS

25.0 COMPARATOR VOLTAGE REFERENCE MODULE

The comparator voltage reference is a 32-tap resistor ladder network that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it may also be used independently of them.

A block diagram of the module is shown in Figure 25-1. The resistor ladder is segmented to provide a range of CVREF values and has a power-down function to conserve power when the reference is not being used. The module's supply reference can be provided from either device VDD/VSS or an external voltage reference.

25.1 Configuring the Comparator Voltage Reference

The comparator voltage reference module is controlled through the CVRCON register (Register 25-1). The comparator voltage reference provides a range of output voltage with 32 levels.

The CVR<4:0> selection bits (CVRCON<4:0>) offer a range of output voltages. Equation 25-1 shows the how the comparator voltage reference is computed.

EQUATION 25-1:

$$\frac{\text{If CVRSS} = 1:}{\text{CVREF}} = \left(\text{VREF} + \frac{\text{CVR} < 4:0>}{32}\right) \cdot (\text{VREF} + - \text{VREF})$$

$$\frac{\text{If CVRSS} = 0:}{\text{CVREF}} = \left(\text{AVSS} + \frac{\text{CVR} < 4:0>}{32}\right) \cdot (\text{AVDD} - \text{AVSS})$$

The comparator reference supply voltage can come from either VDD and Vss, or the external VREF+ and VREF- that are multiplexed with RA3 and RA2. The voltage source is selected by the CVRSS bit (CVRCON<5>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output (see Table 31-2 in **Section 31.0** "**Electrical Characteristics**").

REGISTER 25-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CVREN	CVROE	CVRSS	CVR4	CVR3	CVR2	CVR1	CVR0		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 7	CVREN: Com	parator Voltage	Reference E	nable bit					
	1 = CVREF ci	rcuit powered o	n						
	0 = CVREF ci	rcuit powered d	own						
bit 6	CVROE: Com	nparator VREF C	utput Enable	bit					
	1 = CVREF VC	oltage level is o	utput on CVRE	F pin					
	0 = CVREF vc	oltage level is di	sconnected fr	om CVREF pin					
bit 5	it 5 CVRSS: Comparator VREF Source Selection bit								
	1 = Compara	tor reference so	ource, CVRSRO	c = VREF + - VR	EF-				
	0 = Comparator reference source, CVRSRC = AVDD – AVSS								
bit 4-0	bit 4-0 CVR<4:0>: Comparator VREF Value Selection $0 \le CVR<4:0> \le 31$ bits								
When $CVRSS = 1$:									
$CVREF = (VREF-) + (CVR<4:0>/32) \bullet (VREF+ - VREF-)$									
	<u>When CVRS</u>	5 = 0: (C)/P<4.0							
	GVREF - (AVS	55) + (UVK-4.0	-152) • (AVDD	- AV33)					

26.2 HLVD Setup

To set up the HLVD module:

- 1. Select the desired HLVD trip point by writing the value to the HLVDL<3:0> bits.
- 2. Set the VDIRMAG bit to detect high voltage (VDIRMAG = 1) or low voltage (VDIRMAG = 0).
- 3. Enable the HLVD module by setting the HLVDEN bit.
- 4. Clear the HLVD interrupt flag (PIR2<2>), which may have been set from a previous interrupt.
- If interrupts are desired, enable the HLVD interrupt by setting the HLVDIE and GIE bits (PIE2<2> and INTCON<7>, respectively).

An interrupt will not be generated until the IRVST bit is set.

Note: Before changing any module settings (VDIRMAG, HLVDL<3:0>), first disable the module (HLVDEN = 0), make the changes and re-enable the module. This prevents the generation of false HLVD events.

26.3 Current Consumption

When the module is enabled, the HLVD comparator and voltage divider are enabled and consume static current. The total current consumption, when enabled, is specified in electrical specification Parameter D022B (Table 31-11).

Depending on the application, the HLVD module does not need to operate constantly. To reduce current requirements, the HLVD circuitry may only need to be enabled for short periods where the voltage is checked. After such a check, the module could be disabled.

26.4 HLVD Start-up Time

The internal reference voltage of the HLVD module, specified in electrical specification Parameter 37 (Section 31.0 "Electrical Characteristics"), may be used by other internal circuitry, such as the programmable Brown-out Reset. If the HLVD or other circuits using the voltage reference are disabled to lower the device's current consumption, the reference voltage circuit will require time to become stable before a low or high-voltage condition can be reliably detected. This start-up time, TIRVST, is an interval that is independent of device clock speed. It is specified in electrical specification Parameter 37 (Table 31-11).

The HLVD interrupt flag is not enabled until TIRVST has expired and a stable reference voltage is reached. For this reason, brief excursions beyond the set point may not be detected during this interval (see Figure 26-2 or Figure 26-3).

R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
MDSEL1 ⁽¹⁾	MDSEL0 ⁽¹⁾	FIFOWM ⁽²⁾	EWIN4	EWIN3	EWIN2	EWIN1	EWIN0
bit 7	•	•		•	•	•	bit 0
Legend:							
R = Readable bit		W = Writable I	bit	U = Unimplei	mented bit, reac	l as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown
bit 7-6	bit 7-6 MDSEL<1:0>: Mode Select bits ⁽¹⁾						
	00 = Legacy I	mode (Mode 0,					
	10 = Enhance	ed EIEO mode (Mode 2)				
	11 = Reserve	d	(11000 2)				
bit 5	FIFOWM: FIF	O High Water I	Mark bit ⁽²⁾				
	1 = Will cause	e FIFO interrupt	t when one re	eceive buffer re	emains		
	0 = Will cause	e FIFO interrup	t when four re	eceive buffers i	remain ⁽³⁾		
bit 4-0	EWIN<4:0>:	Enhanced Wind	low Address	bits			
	These bits ma	ap the group of	16 banked (CAN SFRs into	Access Bank a	addresses, 0F6	0-0F6Dh. The
	Mode 0:	i registers to m	ap is determ	ined by the bin	ary value of the	se bits.	
	Unimplemen	ted: Read as '()'				
	<u>Mode 1, 2:</u>						
	00000 = Acce	eptance Filters	0, 1, 2 and B	RGCON2, 3			
	00001 = Acce	eptance Filters	3, 4, 5 and B	RGCON1, CIC			
	00010 = Acce	eptance Filter N	lasks, Error a	and interrupt C	ontrol		
	00100 = Trar	smit Buffer 1					
	00101 = Tran	smit Buffer 2					
	00110 = Acce	eptance Filters	6, 7, 8				
	00111 = Acce	eptance Filters	9, 10, 11				
	01000 = Acce	eptance Filters	12, 13, 14				
	01001 = Acce	= Reserved	C				
	01111 = RXII	NT0. RXINT1					
	10000 = Rec	eive Buffer 0					
	10001 = Rec	eive Buffer 1					
	10010 = TX/F	RX Buffer 0					
	10011 = TX/F	RX Buffer 1					
	10100 = TX/F	X Buffer 2					
	10101 = IX/I						
	10111 = TX/F	RX Builer 5					
	11000-11111	1 = Reserved					

REGISTER 27-3: ECANCON: ENHANCED CAN CONTROL REGISTER

- **Note 1:** These bits can only be changed in Configuration mode. See Register 27-1 to change to Configuration mode.
 - **2:** This bit is used in Mode 2 only.
 - 3: If FIFO is configured to contain four or less buffers, then the FIFO interrupt will trigger.

REGISTER 27-13: RXB0CON: RECEIVE BUFFER 0 CONTROL REGISTER (CONTINUED)

bit 2	Mode 0: PRODEEN: Descrive Buffer & Deuble Buffer Encode bit
	ABODBEN. Receive Bullet O Double-Bullet Enable bit
	\perp = No Receive Buffer 0 overflow to Receive Buffer 1
	Mode 1 2:
	FIL HIT<4:0 >: Filter Hit bit 2
	This bit combines with other bits to form filter acceptance bits<4:0>.
bit 1	Mode 0:
	JTOFF: Jump Table Offset bit (read-only copy of RXB0DBEN) ⁽²⁾
	1 = Allows jump table offset between 6 and 7
	0 = Allows jump table offset between 1 and 0
	<u>Mode 1, 2:</u>
	FILHIT<4:0>: Filter Hit bit 1
	This bit combines with other bits to form filter acceptance bits<4:0>.
bit 0	Mode 0:
	FILHITO: Filter Hit bit 0
	This bit indicates which acceptance filter enabled the message reception into Receive Buffer 0.
	1 = Acceptance Filter 1 (RXF1)
	0 = Acceptance Filter 0 (RXFU)
	Mode 1, 2:
	FILMI1<4:0>: FILMET MILDIE U This hit in combination with FILMIT<4:1> indicates which accentance filter enabled the message recention.
	into this receive buffer.
	01111 = Acceptance Filter 15 (RXF15)
	01110 = Acceptance Filter 14 (RXF14)
	00000 = Acceptance Filter 0 (RXF0)

- **Note 1:** This bit is set by the CAN module upon receiving a message and must be cleared by software after the buffer is read. As long as RXFUL is set, no new message will be loaded and the buffer will be considered full. After clearing the RXFUL flag, the PIR5 bit, RXB0IF, can be cleared. If RXB0IF is cleared, but RXFUL is not cleared, then RXB0IF is set again.
 - 2: This bit allows the same filter jump table for both RXB0CON and RXB1CON.

REGISTER 27-16: RXBnSIDL: RECEIVE BUFFER 'n' STANDARD IDENTIFIER REGISTERS, LOW BYTE [0 \leq n \leq 1]

R-x	R-x	R-x	R-x	R-x	U-0	R-x	R-x
SID2	SID1	SID0	SRR	EXID	—	EID17	EID16
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	SID<2:0>: Standard Identifier bits (if EXID = 0)
	Extended Identifier bits, EID<20:18> (if EXID = 1).
bit 4	SRR: Substitute Remote Request bit
bit 3	EXID: Extended Identifier bit
	1 = Received message is an extended data frame, SID<10:0> are EID<28:18>0 = Received message is a standard data frame
bit 2	Unimplemented: Read as '0'
bit 1-0	EID<17:16>: Extended Identifier bits

REGISTER 27-17: RXBnEIDH: RECEIVE BUFFER 'n' EXTENDED IDENTIFIER REGISTERS, HIGH BYTE [0 \leq n \leq 1]

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 EID<15:8>: Extended Identifier bits

REGISTER 27-18: RXBnEIDL: RECEIVE BUFFER 'n' EXTENDED IDENTIFIER REGISTERS, LOW BYTE [0 \leq n \leq 1]

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 EID<7:0>: Extended Identifier bits

BTFSC	Bit Test File	Bit Test File, Skip if Clear		BTFS	SS	Bit Test File, Skip if Set			
Syntax:	BTFSC f, b	BTFSC f, b {,a}		Synta	ix:	BTFSS f, b {,a}			
Operands:	$\begin{array}{l} 0\leq f\leq 255\\ 0\leq b\leq 7\\ a\in [0,1] \end{array}$	$0 \le f \le 255$ $0 \le b \le 7$ $a \in [0,1]$		Opera	ands:	$0 \le f \le 255$ $0 \le b < 7$ $a \in [0,1]$			
Operation:	skip if (f)	= 0		Opera	ation:	skip if (f)	= 1		
Status Affected	l: None			Statu	s Affected:	None			
Encoding:	1011	bbba ff	ff ffff	Enco	ding:	1010 bbba ffff fff:			
Description:	If bit 'b' in re instruction is the next inst current instru and a NOP is this a two-cy	gister 'f' is '0', t skipped. If bit ruction fetched uction executio s executed instruction.	hen the next 'b' is '0', then during the n is discarded ead, making	Desc	ription:	If bit 'b' in reg instruction is the next instruction current instru- and a NOP is this a two-cy	gister 'f' is '1', t skipped. If bit ruction fetched action execution executed inste cle instruction.	hen the next 'b' is '1', then during the n is discarded ead, making	
	If 'a' is '0', th 'a' is '1', the GPR bank.	e Access Bank BSR is used to	is selected. If select the			If 'a' is '0', the 'a' is '1', the GPR bank.	e Access Bank BSR is used to	is selected. If select the	
	If 'a' is '0' and is enabled, t Indexed Lite whenever f ⊴ Section 29.3 Bit-Oriented Literal Offse	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 29.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details				If 'a' is '0' an set is enable Indexed Lite whenever f ⊴ Section 29.2 Bit-Oriented Literal Offse	d the extended d, this instruction ral Offset Addro 5 (5Fh). See 2.3 "Byte-Orie I Instructions et Mode" for de	l instruction on operates in essing mode nted and in Indexed etails.	
Words:	1			Word	s:	1			
Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction.		Cycle	2S:	: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction.					
Q Cycle Activi	ty:			QC	cle Activity:				
Q1	Q2	Q3	Q4	1	Q1	Q2	Q3	Q4	
Decod	e Read	Process	No		Decode	Read	Process	No	
lf skin [.]	register i	Dala	operation	lf ski	in:	Tegister T	Dala	operation	
Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4	
No	No	No	No		No	No	No	No	
operatio	on operation	operation	operation		operation	operation	operation	operation	
If skip and foll	owed by 2-word ins	truction:		lf ski	ip and followed	by 2-word inst	truction:		
Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4	
No	N0 operation	N0 operation	N0 operation		N0 operation	No	N0 operation	No	
No	No	No	No		No	No	No	No	
operatio	on operation	operation	operation		operation	operation	operation	operation	
Example:	HERE B FALSE : TRUE :	IFSC FLAG	, 1, 0	<u>Exam</u>	<u>nple:</u>	HERE BI FALSE : TRUE :	FSS FLAG	, 1, 0	
Before Instruction PC = address (HERE) After Instruction If FLAG<1> = 0; PC = address (TRUE) If FLAG<1> = 1; PC = address (FALSE)			,	Before Instruction PC = address (HERE) After Instruction If FLAG<1> = 0; PC = address (FALSE) If FLAG<1> = 1; PC = address (TRUE)					

TABLE 31-19:	I ² C [™] BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)
--------------	--	-------------

Param. No.	Symbol	Characte	Min	Мах	Units	Conditions		
90	TSU:STA	Start Condition	100 kHz mode	4700		ns	Only relevant for Repeated	
		Setup Time	400 kHz mode	600			Start condition	
91	THD:STA	Start Condition	100 kHz mode	4000	—	ns	After this period, the first	
		Hold Time	400 kHz mode	600			clock pulse is generated	
92	Tsu:sto	Stop Condition	100 kHz mode	4700	—	ns		
		Setup Time	400 kHz mode	600				
93	THD:STO	Stop Condition	100 kHz mode	4000	—	ns		
		Hold Time	400 kHz mode	600				

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent				
From	Name					
	Company					
	Address					
	City / State / ZIP / Country					
	Telephone: ()	FAX: ()				
Appli	cation (optional):					
Woul	d you like a reply?YN					
Devid	ce: PIC18F66K80 Family	Literature Number: DS39977F				
Ques	stions:					
1. V	Vhat are the best features of this document?					
_						
_						
2. ⊦	low does this document meet your hardware and softwar	e development needs?				
_						
- 3. E	Do you find the organization of this document easy to follo	w? If not, why?				
	, , , , , , , , , , , , , , , , , , , ,					
_						
4. V	What additions to the document do you think would enhar	nce the structure and subject?				
_						
5. V	What deletions from the document could be made without affecting the overall usefulness?					
_						
6. Is	s there any incorrect or misleading information (what and	where)?				
_						
_						
7. ⊦	low would you improve this document?					
_						
_						