
Microchip Technology - PIC18LF66K80-I/PT Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 64MHz

Connectivity ECANbus, I²C, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, LVD, POR, PWM, WDT

Number of I/O 54

Program Memory Size 64KB (32K x 16)

Program Memory Type FLASH

EEPROM Size 1K x 8

RAM Size 3.6K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters A/D 11x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 64-TQFP

Supplier Device Package 64-TQFP (10x10)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18lf66k80-i-pt

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18lf66k80-i-pt-4388240
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18F66K80 FAMILY
2.4 Voltage Regulator Pins (ENVREG
and VCAP/VDDCORE)

The on-chip voltage regulator enable pin, ENVREG,
must always be connected directly to either a supply
voltage or to ground. Tying ENVREG to VDD enables
the regulator, while tying it to ground disables the
regulator. Refer to Section 28.3 “On-Chip Voltage
Regulator” for details on connecting and using the
on-chip regulator.

When the regulator is enabled, a low-ESR (< 5Ω)
capacitor is required on the VCAP/VDDCORE pin to
stabilize the voltage regulator output voltage. The
VCAP/VDDCORE pin must not be connected to VDD and
must use a capacitor of 10 µF connected to ground. The
type can be ceramic or tantalum. Suitable examples of
capacitors are shown in Table 2-1. Capacitors with
equivalent specifications can be used.

Designers may use Figure 2-3 to evaluate ESR
equivalence of candidate devices.

It is recommended that the trace length not exceed
0.25 inch (6 mm). Refer to Section 31.0 “Electrical
Characteristics” for additional information.

When the regulator is disabled, the VCAP/VDDCORE pin
must be tied to a voltage supply at the VDDCORE level.
Refer to Section 31.0 “Electrical Characteristics” for
information on VDD and VDDCORE.

Some PIC18FXXKXX families, or some devices within
a family, do not provide the option of enabling or
disabling the on-chip voltage regulator:

• Some devices (with the name, PIC18LFXXKXX)
permanently disable the voltage regulator.
These devices do not have the ENVREG pin and
require a 0.1 F capacitor on the VCAP/VDDCORE
pin. The VDD level of these devices must comply
with the “voltage regulator disabled” specification
for Parameter D001, in Section 31.0 “Electrical
Characteristics”.

• Some devices permanently enable the voltage
regulator.
These devices also do not have the ENVREG pin.
The 10 F capacitor is still required on the
VCAP/VDDCORE pin.

FIGURE 2-3: FREQUENCY vs. ESR
PERFORMANCE FOR
SUGGESTED VCAP

.

10

1

0.1

0.01

0.001
0.01 0.1 1 10 100 1000 10,000

Frequency (MHz)

E
S

R
 (


)

Note: Typical data measurement at 25°C, 0V DC bias.

TABLE 2-1: SUITABLE CAPACITOR EQUIVALENTS

Make Part #
Nominal

Capacitance
Base Tolerance Rated Voltage Temp. Range

TDK C3216X7R1C106K 10 µF ±10% 16V -55 to 125ºC

TDK C3216X5R1C106K 10 µF ±10% 16V -55 to 85ºC

Panasonic ECJ-3YX1C106K 10 µF ±10% 16V -55 to 125ºC

Panasonic ECJ-4YB1C106K 10 µF ±10% 16V -55 to 85ºC

Murata GRM32DR71C106KA01L 10 µF ±10% 16V -55 to 125ºC

Murata GRM31CR61C106KC31L 10 µF ±10% 16V -55 to 85ºC
 2010-2012 Microchip Technology Inc. DS39977F-page 47

PIC18F66K80 FAMILY
PIE5 PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 0000 0000 0000 0000 uuuu uuuu

EEADRH PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 ---- --00 ---- --00 ---- --00

EEADR PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 0000 0000 0000 0000 uuuu uuuu

EEDATA PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 0000 0000 0000 0000 uuuu uuuu

ECANCON PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 0001 0000 0001 0000 uuuu uuuu

COMSTAT PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 0000 0000 0000 0000 uuuu uuuu

CIOCON PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 0000 ---0 0000 ---0 uuuu ---u

CANCON PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 1000 0000 1000 0000 uuuu uuuu

CANSTAT PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 1000 0000 1000 0000 uuuu uuuu

RXB0D7 PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 xxxx xxxx uuuu uuuu uuuu uuuu

RXB0D6 PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 xxxx xxxx uuuu uuuu uuuu uuuu

RXB0D5 PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 xxxx xxxx uuuu uuuu uuuu uuuu

RXB0D4 PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 xxxx xxxx uuuu uuuu uuuu uuuu

RXB0D3 PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 xxxx xxxx uuuu uuuu uuuu uuuu

RXB0D2 PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 xxxx xxxx uuuu uuuu uuuu uuuu

RXB0D1 PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 xxxx xxxx uuuu uuuu uuuu uuuu

RXB0D0 PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 xxxx xxxx uuuu uuuu uuuu uuuu

RXB0DLC PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 xxxx xxxx uuuu uuuu uuuu uuuu

RXB0EIDL PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 xxxx xxxx uuuu uuuu uuuu uuuu

RXB0EIDH PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 xxxx xxxx uuuu uuuu uuuu uuuu

RXB0SIDL PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 xxxx x-xx uuuu u-uu uuuu u-uu

RXB0SIDH PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 xxxx xxxx uuuu uuuu uuuu uuuu

RXB0CON PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 0000 0000 0000 0000 uuuu uuuu

CM1CON PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 0001 1111 0001 1111 uuuu uuuu

CM2CON PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 0001 1111 0001 1111 uuuu uuuu

ANCON0 PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 1111 1111 1111 1111 uuuu uuuu

ANCON1 PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 -111 1111 -111 1111 -uuu uuuu

WPUB PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 xxxx xxxx 1111 1111 uuuu uuuu

IOCB PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 0000 ---- 0000 ---- uuuu ----

PMD0 PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 0000 0000 0000 0000 uuuu uuuu

TABLE 5-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Register Applicable Devices

Power-on
Reset,

Brown-out
Reset

MCLR Resets,
WDT Reset,

RESET Instruction,
Stack Resets

Wake-up via
WDT

or Interrupt

Legend: u = unchanged; x = unknown; - = unimplemented bit, read as ‘0’; q = value depends on condition.
Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt

vector (0008h or 0018h).
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are

updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware
stack.

4: See Table 5-3 for Reset value for specific conditions.
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not

enabled as PORTA pins, they are disabled and read as ‘0’.
DS39977F-page 92  2010-2012 Microchip Technology Inc.

PIC18F66K80 FAMILY
B0EIDH PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 xxxx xxxx uuuu uuuu uuuu uuuu

B0SIDL PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 xxxx x-xx uuuu u-uu uuuu u-uu

B0SIDH PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 xxxx xxxx uuuu uuuu uuuu uuuu

B0CON PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 0000 0000 0000 0000 uuuu uuuu

TXBIE PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 ---0 00-- ---u uu-- ---u uu--

BIE0 PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 0000 0000 0000 0000 uuuu uuuu

BSEL0 PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 0000 00-- 0000 00-- uuuu uu--

MSEL3 PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 0000 0000 0000 0000 uuuu uuuu

MSEL2 PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 0000 0000 0000 0000 uuuu uuuu

MSEL1 PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 0000 0101 0000 0101 uuuu uuuu

MSEL0 PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 0101 0000 0101 0000 uuuu uuuu

RXFBCON7 PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 0000 0000 0000 0000 uuuu uuuu

RXFBCON6 PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 0000 0000 0000 0000 uuuu uuuu

RXFBCON5 PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 0000 0000 0000 0000 uuuu uuuu

RXFBCON4 PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 0000 0000 0000 0000 uuuu uuuu

RXFBCON3 PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 0000 0000 0000 0000 uuuu uuuu

RXFBCON2 PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 0001 0001 0001 0001 uuuu uuuu

RXFBCON1 PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 0001 0001 0001 0001 uuuu uuuu

RXFBCON0 PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 0000 0000 0000 0000 uuuu uuuu

SDFLC PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 ---0 0000 ---0 0000 ---u uuuu

RXF15EIDL PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 xxxx xxxx uuuu uuuu uuuu uuuu

RXF15EIDH PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 xxxx xxxx uuuu uuuu uuuu uuuu

RXF15SIDL PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 xxx- x-xx uuu- u-uu uuu- u-uu

RXF15SIDH PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 xxxx xxxx uuuu uuuu uuuu uuuu

RXF14EIDL PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 xxxx xxxx uuuu uuuu uuuu uuuu

RXF14EIDH PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 xxxx xxxx uuuu uuuu uuuu uuuu

RXF14SIDL PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 xxx- x-xx uuu- u-uu uuu- u-uu

RXF14SIDH PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 xxxx xxxx uuuu uuuu uuuu uuuu

RXF13EIDL PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 xxxx xxxx uuuu uuuu uuuu uuuu

RXF13EIDH PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 xxxx xxxx uuuu uuuu uuuu uuuu

RXF13SIDL PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 xxx- x-xx uuu- u-uu uuu- u-uu

RXF13SIDH PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 xxxx xxxx uuuu uuuu uuuu uuuu

RXF12EIDL PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 xxxx xxxx uuuu uuuu uuuu uuuu

RXF12EIDH PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 xxxx xxxx uuuu uuuu uuuu uuuu

RXF12SIDL PIC18F2XK80 PIC18F4XK80 PIC18F6XK80 xxx- x-xx uuu- u-uu uuu- u-uu

TABLE 5-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Register Applicable Devices

Power-on
Reset,

Brown-out
Reset

MCLR Resets,
WDT Reset,

RESET Instruction,
Stack Resets

Wake-up via
WDT

or Interrupt

Legend: u = unchanged; x = unknown; - = unimplemented bit, read as ‘0’; q = value depends on condition.
Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt

vector (0008h or 0018h).
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are

updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware
stack.

4: See Table 5-3 for Reset value for specific conditions.
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not

enabled as PORTA pins, they are disabled and read as ‘0’.
 2010-2012 Microchip Technology Inc. DS39977F-page 99

PIC18F66K80 FAMILY
6.4.3.2 FSR Registers and POSTINC,
POSTDEC, PREINC and PLUSW

In addition to the INDF operand, each FSR register pair
also has four additional indirect operands. Like INDF,
these are “virtual” registers that cannot be indirectly
read or written to. Accessing these registers actually
accesses the associated FSR register pair, but also
performs a specific action on its stored value.

These operands are:

• POSTDEC – Accesses the FSR value, then
automatically decrements it by ‘1’ afterwards

• POSTINC – Accesses the FSR value, then
automatically increments it by ‘1’ afterwards

• PREINC – Increments the FSR value by ‘1’, then
uses it in the operation

• PLUSW – Adds the signed value of the W register
(range of -127 to 128) to that of the FSR and uses
the new value in the operation

In this context, accessing an INDF register uses the
value in the FSR registers without changing them.
Similarly, accessing a PLUSW register gives the FSR
value, offset by the value in the W register, with neither
value actually changed in the operation. Accessing the
other virtual registers changes the value of the FSR
registers.

Operations on the FSRs with POSTDEC, POSTINC
and PREINC affect the entire register pair. Rollovers of
the FSRnL register, from FFh to 00h, carry over to the
FSRnH register. On the other hand, results of these
operations do not change the value of any flags in the
STATUS register (for example, Z, N and OV bits).

The PLUSW register can be used to implement a form
of Indexed Addressing in the data memory space. By
manipulating the value in the W register, users can
reach addresses that are fixed offsets from pointer
addresses. In some applications, this can be used to
implement some powerful program control structure,
such as software stacks, inside of data memory.

6.4.3.3 Operations by FSRs on FSRs

Indirect Addressing operations that target other FSRs
or virtual registers represent special cases. For
example, using an FSR to point to one of the virtual
registers will not result in successful operations.

As a specific case, assume that the FSR0H:FSR0L
registers contain FE7h, the address of INDF1.
Attempts to read the value of the INDF1, using INDF0
as an operand, will return 00h. Attempts to write to
INDF1, using INDF0 as the operand, will result in a
NOP.

On the other hand, using the virtual registers to write to
an FSR pair may not occur as planned. In these cases,
the value will be written to the FSR pair, but without any
incrementing or decrementing. Thus, writing to INDF2
or POSTDEC2 will write the same value to the
FSR2H:FSR2L.

Since the FSRs are physical registers mapped in the
SFR space, they can be manipulated through all direct
operations. Users should proceed cautiously when
working on these registers, however, particularly if their
code uses Indirect Addressing.

Similarly, operations by Indirect Addressing are gener-
ally permitted on all other SFRs. Users should exercise
the appropriate caution, so that they do not inadvertently
change settings that might affect the operation of the
device.

6.5 Program Memory and the
Extended Instruction Set

The operation of program memory is unaffected by the
use of the extended instruction set.

Enabling the extended instruction set adds five
additional two-word commands to the existing PIC18
instruction set: ADDFSR, CALLW, MOVSF, MOVSS and
SUBFSR. These instructions are executed as described
in Section 6.2.4 “Two-Word Instructions”.
 2010-2012 Microchip Technology Inc. DS39977F-page 125

PIC18F66K80 FAMILY
FIGURE 7-2: TABLE WRITE OPERATION

7.2 Control Registers

Several control registers are used in conjunction with
the TBLRD and TBLWT instructions. These include the:

• EECON1 register

• EECON2 register

• TABLAT register

• TBLPTR registers

7.2.1 EECON1 AND EECON2 REGISTERS

The EECON1 register (Register 7-1) is the control
register for memory accesses. The EECON2 register,
not a physical register, is used exclusively in the
memory write and erase sequences. Reading
EECON2 will read all ‘0’s.

The EEPGD control bit determines if the access is a
program or data EEPROM memory access. When
clear, any subsequent operations operate on the data
EEPROM memory. When set, any subsequent
operations operate on the program memory.

The CFGS control bit determines if the access is to the
Configuration registers or to program memory/data
EEPROM memory. When set, subsequent operations
operate on Configuration registers regardless of
EEPGD (see Section 28.0 “Special Features of the
CPU”). When clear, memory selection access is
determined by EEPGD.

The FREE bit, when set, allows a program memory
erase operation. When FREE is set, the erase
operation is initiated on the next WR command. When
FREE is clear, only writes are enabled.

The WREN bit, when set, allows a write operation. On
power-up, the WREN bit is clear. The WRERR bit is set
in hardware when the WR bit is set and cleared when
the internal programming timer expires and the write
operation is complete.

The WR control bit initiates write operations. The bit
cannot be cleared, only set, in software. It is cleared in
hardware at the completion of the write operation.

Table Pointer(1)
Table Latch (8-bit)

TBLPTRH TBLPTRL TABLAT

Program Memory
(TBLPTR)

TBLPTRU

Instruction: TBLWT*

Note 1: The Table Pointer actually points to one of 64 holding registers, the address of which is determined by
TBLPTRL<5:0>. The process for physically writing data to the program memory array is discussed in
Section 7.5 “Writing to Flash Program Memory”.

 Holding Registers
 Program Memory

Note: During normal operation, the WRERR is
read as ‘1’. This can indicate that a write
operation was prematurely terminated by
a Reset, or a write operation was
attempted improperly.

Note: The EEIF interrupt flag bit (PIR4<6>) is
set when the write is complete. It must be
cleared in software.
DS39977F-page 130  2010-2012 Microchip Technology Inc.

PIC18F66K80 FAMILY
7.4 Erasing Flash Program Memory

The erase blocks are 32 words or 64 bytes.

Word erase in the Flash array is not supported.

When initiating an erase sequence from the micro-
controller itself, a block of 64 bytes of program memory
is erased. The Most Significant 16 bits of the
TBLPTR<21:6> point to the block being erased. The
TBLPTR<5:0> bits are ignored.

The EECON1 register commands the erase operation.
The EEPGD bit must be set to point to the Flash
program memory. The WREN bit must be set to enable
write operations. The FREE bit is set to select an erase
operation.

For protection, the write initiate sequence for EECON2
must be used.

A long write is necessary for erasing the internal Flash.
Instruction execution is halted while in a long write
cycle. The long write will be terminated by the internal
programming timer.

7.4.1 FLASH PROGRAM MEMORY
ERASE SEQUENCE

The sequence of events for erasing a block of internal
program memory location is:

1. Load the Table Pointer register with the address
of row to be erased.

2. Set the EECON1 register for the erase operation:

• Set the EEPGD bit to point to program memory

• Clear the CFGS bit to access program memory

• Set the WREN bit to enable writes

• Set the FREE bit to enable the erase

3. Disable the interrupts.

4. Write 55h to EECON2.

5. Write 0AAh to EECON2.

6. Set the WR bit.

This begins the row erase cycle.

The CPU will stall for the duration of the erase
for TIW. (See Parameter D133A.)

7. Re-enable interrupts.

EXAMPLE 7-2: ERASING A FLASH PROGRAM MEMORY ROW

MOVLW CODE_ADDR_UPPER ; load TBLPTR with the base
MOVWF TBLPTRU ; address of the memory block
MOVLW CODE_ADDR_HIGH
MOVWF TBLPTRH
MOVLW CODE_ADDR_LOW
MOVWF TBLPTRL

ERASE_ROW
BSF EECON1, EEPGD ; point to Flash program memory
BCF EECON1, CFGS ; access Flash program memory
BSF EECON1, WREN ; enable write to memory
BSF EECON1, FREE ; enable Row Erase operation
BCF INTCON, GIE ; disable interrupts

Required MOVLW 55h
Sequence MOVWF EECON2 ; write 55h

MOVLW 0AAh
MOVWF EECON2 ; write 0AAh
BSF EECON1, WR ; start erase (CPU stall)
BSF INTCON, GIE ; re-enable interrupts
DS39977F-page 134  2010-2012 Microchip Technology Inc.

PIC18F66K80 FAMILY
8.3 Reading the Data EEPROM
Memory

To read a data memory location, the user must write the
address to the EEADRH:EEADR register pair, clear the
EEPGD control bit (EECON1<7>) and then set control
bit, RD (EECON1<0>). The data is available after one
instruction cycle, in the EEDATA register. It can be read
after one NOP instruction. EEDATA will hold this value
until another read operation or until it is written to by the
user (during a write operation).

The basic process is shown in Example 8-1.

8.4 Writing to the Data EEPROM
Memory

To write an EEPROM data location, the address must
first be written to the EEADRH:EEADR register pair
and the data written to the EEDATA register. The
sequence in Example 8-2 must be followed to initiate
the write cycle.

The write will not begin if this sequence is not exactly
followed (write 55h to EECON2, write 0AAh to
EECON2, then set WR bit) for each byte. It is strongly
recommended that interrupts be disabled during this
code segment.

Additionally, the WREN bit in EECON1 must be set to
enable writes. This mechanism prevents accidental
writes to data EEPROM due to unexpected code exe-
cution (i.e., runaway programs). The WREN bit should
be kept clear at all times, except when updating the
EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, EECON1,
EEADRH:EEADR and EEDATA cannot be modified.
The WR bit will be inhibited from being set unless the
WREN bit is set. The WREN bit must be set on a
previous instruction. Both WR and WREN cannot be
set with the same instruction.

At the completion of the write cycle, the WR bit is
cleared in hardware and the EEPROM Interrupt Flag bit
(EEIF) is set. The user may either enable this interrupt
or poll this bit; EEIF must be cleared by software.

8.5 Write Verify

Depending on the application, good programming
practice may dictate that the value written to the
memory should be verified against the original value.
This should be used in applications where excessive
writes can stress bits near the specification limit.

Note: Self-write execution to Flash and
EEPROM memory cannot be done while
running in LP Oscillator (low-power)
mode. Executing a self-write will put the
device into High-Power mode.
 2010-2012 Microchip Technology Inc. DS39977F-page 141

PIC18F66K80 FAMILY
13.0 TIMER0 MODULE

The Timer0 module incorporates the following features:

• Software selectable operation as a timer or
counter in both 8-bit or 16-bit modes

• Readable and writable registers

• Dedicated 8-bit, software programmable
prescaler

• Selectable clock source (internal or external)

• Edge select for external clock

• Interrupt-on-overflow

The T0CON register (Register 13-1) controls all
aspects of the module’s operation, including the
prescale selection. It is both readable and writable.

Figure 13-1 provides a simplified block diagram of the
Timer0 module in 8-bit mode. Figure 13-2 provides a
simplified block diagram of the Timer0 module in 16-bit
mode.

REGISTER 13-1: T0CON: TIMER0 CONTROL REGISTER

R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1

TMR0ON T08BIT T0CS T0SE PSA T0PS2 T0PS1 T0PS0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 TMR0ON: Timer0 On/Off Control bit

1 = Enables Timer0
0 = Stops Timer0

bit 6 T08BIT: Timer0 8-Bit/16-Bit Control bit

1 = Timer0 is configured as an 8-bit timer/counter
0 = Timer0 is configured as a 16-bit timer/counter

bit 5 T0CS: Timer0 Clock Source Select bit

1 = Transitions on T0CKI pin
0 = Internal instruction cycle clock (CLKO)

bit 4 T0SE: Timer0 Source Edge Select bit

1 = Increments on high-to-low transition on T0CKI pin
0 = Increments on low-to-high transition on T0CKI pin

bit 3 PSA: Timer0 Prescaler Assignment bit

1 = Timer0 prescaler is not assigned; Timer0 clock input bypasses prescaler
0 = Timer0 prescaler is assigned; Timer0 clock input comes from prescaler output

bit 2-0 T0PS<2:0>: Timer0 Prescaler Select bits

111 = 1:256 Prescale value
110 = 1:128 Prescale value
101 = 1:64 Prescale value
100 = 1:32 Prescale value
011 = 1:16 Prescale value
010 = 1:8 Prescale value
001 = 1:4 Prescale value
000 = 1:2 Prescale value
 2010-2012 Microchip Technology Inc. DS39977F-page 205

PIC18F66K80 FAMILY
13.1 Timer0 Operation

Timer0 can operate as either a timer or a counter. The
mode is selected with the T0CS bit (T0CON<5>). In
Timer mode (T0CS = 0), the module increments on
every clock by default unless a different prescaler value
is selected (see Section 13.3 “Prescaler”). If the
TMR0 register is written to, the increment is inhibited
for the following two instruction cycles. The user can
work around this by writing an adjusted value to the
TMR0 register.

The Counter mode is selected by setting the T0CS bit
(= 1). In this mode, Timer0 increments either on every
rising edge or falling edge of the T0CKI pin. The
incrementing edge is determined by the Timer0 Source
Edge Select bit, T0SE (T0CON<4>); clearing this bit
selects the rising edge. Restrictions on the external
clock input are discussed below.

An external clock source can be used to drive Timer0;
however, it must meet certain requirements to ensure
that the external clock can be synchronized with the

internal phase clock (TOSC). There is a delay between
synchronization and the onset of incrementing the
timer/counter.

13.2 Timer0 Reads and Writes in 16-Bit
Mode

TMR0H is not the actual high byte of Timer0 in 16-bit
mode. It is actually a buffered version of the real high
byte of Timer0, which is not directly readable nor
writable. (See Figure 13-2.) TMR0H is updated with the
contents of the high byte of Timer0 during a read of
TMR0L. This provides the ability to read all 16 bits of
Timer0 without having to verify that the read of the high
and low byte were valid, due to a rollover between
successive reads of the high and low byte.

Similarly, a write to the high byte of Timer0 must also
take place through the TMR0H Buffer register. The high
byte is updated with the contents of TMR0H when a
write occurs to TMR0L. This allows all 16 bits of Timer0
to be updated at once.

FIGURE 13-1: TIMER0 BLOCK DIAGRAM (8-BIT MODE)

FIGURE 13-2: TIMER0 BLOCK DIAGRAM (16-BIT MODE)

Note: Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.

T0CKI Pin

T0SE

0

1

1

0

T0CS

FOSC/4

Programmable
Prescaler

Sync with
Internal
Clocks

TMR0L

(2 TCY Delay)

Internal Data BusPSA

T0PS<2:0>

Set
TMR0IF
on Overflow

3 8

8

Note: Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.

T0CKI Pin

T0SE

0

1

1

0

T0CS

FOSC/4

Sync with
Internal
Clocks

TMR0L

(2 TCY Delay)

Internal Data Bus

8

PSA

T0PS<2:0>

Set
TMR0IF
on Overflow

3

TMR0

TMR0H

 High Byte

8
8

8

Read TMR0L

Write TMR0L

8

Programmable
Prescaler
DS39977F-page 206  2010-2012 Microchip Technology Inc.

PIC18F66K80 FAMILY
For more details on selecting the optimum C1 and C2
for a given crystal, see the crystal manufacture’s appli-
cations information. The optimum value depends in
part on the amount of parasitic capacitance in the
circuit, which is often unknown. For that reason, it is
highly recommended that thorough testing and valida-
tion of the oscillator be performed after values have
been selected.

14.5.1 USING SOSC AS A
CLOCK SOURCE

The SOSC oscillator is also available as a clock source
in power-managed modes. By setting the clock select
bits, SCS<1:0> (OSCCON<1:0>), to ‘01’, the device
switches to SEC_RUN mode and both the CPU and
peripherals are clocked from the SOSC oscillator. If the
IDLEN bit (OSCCON<7>) is cleared and a SLEEP
instruction is executed, the device enters SEC_IDLE
mode. Additional details are available in Section 4.0
“Power-Managed Modes”.

Whenever the SOSC oscillator is providing the clock
source, the SOSC System Clock Status flag,
SOSCRUN (OSCCON2<6>), is set. This can be used
to determine the controller’s current clocking mode. It
can also indicate the clock source currently being used
by the Fail-Safe Clock Monitor.

If the Clock Monitor is enabled and the SOSC oscillator
fails while providing the clock, polling the SOCSRUN
bit will indicate whether the clock is being provided by
the SOSC oscillator or another source.

14.5.2 SOSC OSCILLATOR LAYOUT
CONSIDERATIONS

The SOSC oscillator circuit draws very little power
during operation. Due to the low-power nature of the
oscillator, it may also be sensitive to rapidly changing
signals in close proximity. This is especially true when
the oscillator is configured for extremely Low-Power
mode, SOSCSEL<1:0> (CONFIG1L<4:3>) = 01.

The oscillator circuit, displayed in Figure 14-2, should
be located as close as possible to the microcontroller.
There should be no circuits passing within the oscillator
circuit boundaries other than VSS or VDD.

If a high-speed circuit must be located near the oscillator,
it may help to have a grounded guard ring around the
oscillator circuit. The guard, as displayed in Figure 14-3,
could be used on a single-sided PCB or in addition to a
ground plane. (Examples of a high-speed circuit include
the ECCP1 pin, in Output Compare or PWM mode, or
the primary oscillator, using the OSC2 pin.)

FIGURE 14-3: OSCILLATOR CIRCUIT
WITH GROUNDED
GUARD RING

In the Low Drive Level mode, SOSCSEL<1:0> = 01, it is
critical that RC2 I/O pin signals be kept away from the
oscillator circuit. Configuring RC2 as a digital output, and
toggling it, can potentially disturb the oscillator circuit,
even with a relatively good PCB layout. If possible, either
leave RC2 unused or use it as an input pin with a slew
rate limited signal source. If RC2 must be used as a
digital output, it may be necessary to use the Higher
Drive Level Oscillator mode (SOSCSEL<1:0> = 11) with
many PCB layouts.

Even in the Higher Drive Level mode, careful layout
procedures should still be followed when designing the
oscillator circuit.

In addition to dV/dt induced noise considerations, it is
important to ensure that the circuit board is clean. Even
a very small amount of conductive, soldering flux
residue can cause PCB leakage currents that can
overwhelm the oscillator circuit.

14.6 Timer1 Interrupt

The TMR1 register pair (TMR1H:TMR1L) increments
from 0000h to FFFFh and rolls over to 0000h. The
Timer1 interrupt, if enabled, is generated on overflow
which is latched in interrupt flag bit, TMR1IF
(PIR1<0>). This interrupt can be enabled or disabled
by setting or clearing the Timer1 Interrupt Enable bit,
TMR1IE (PIE1<0>).

VDD

OSC1

VSS

OSC2

RC0

RC1

RC2

Note: Not drawn to scale.
 2010-2012 Microchip Technology Inc. DS39977F-page 215

PIC18F66K80 FAMILY
TABLE 20-2: EXAMPLE PIN ASSIGNMENTS FOR VARIOUS PWM ENHANCED MODES

FIGURE 20-4: EXAMPLE PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS
(ACTIVE-HIGH STATE)

ECCP Mode P1M<1:0> P1A P1B P1C P1D

Single 00 Yes(1) Yes(1) Yes(1) Yes(1)

Half-Bridge 10 Yes Yes No No

Full-Bridge, Forward 01 Yes Yes Yes Yes

Full-Bridge, Reverse 11 Yes Yes Yes Yes

Note 1: Outputs are enabled by pulse steering in Single mode (see Register 20-5).

0

Period

00

10

01

11

Signal
PR2 + 1

P1M<1:0>

P1A Modulated

P1A Modulated

P1B Modulated

P1A Active

P1B Inactive

P1C Inactive

P1D Modulated

P1A Inactive

P1B Modulated

P1C Active

P1D Inactive

Pulse Width

(Single Output)

(Half-Bridge)

(Full-Bridge,
Forward)

(Full-Bridge,
Reverse)

Delay(1)

Relationships:
• Period = 4 * TOSC * (PR2 + 1) * (TMR2 Prescale Value)
• Pulse Width = TOSC * (CCPR1L<7:0>:CCP1CON<5:4>) * (TMR2 Prescale Value)
• Delay = 4 * TOSC * (ECCP1DEL<6:0>)

Note 1: Dead-band delay is programmed using the ECCP1DEL register (Section 20.4.6 “Programmable Dead-Band
Delay Mode”).

Delay(1)
DS39977F-page 272  2010-2012 Microchip Technology Inc.

PIC18F66K80 FAMILY
23.0 12-BIT ANALOG-TO-DIGITAL
CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) Converter module in the
PIC18F66K80 family of devices. It is a 13-bit differential
A/D with 12-bit single-ended compatibility. It has inputs
eight inputs for the 28-pin devices, 11 inputs for the
40/44-pin and 64-pin devices. This module allows con-
version of an analog input signal to a corresponding
12-bit digital number.

The module has these registers:

• A/D Control Register 0 (ADCON0)

• A/D Control Register 1 (ADCON1)

• A/D Control Register 2 (ADCON2)

• A/D Port Configuration Register 1 (ANCON0)

• A/D Port Configuration Register 2 (ANCON1)

• ADRESH (the upper, A/D Results register)

• ADRESL (the lower, A/D Results register)

The ADCON0 register, shown in Register 23-1, con-
trols the operation of the A/D module. The ADCON1
register, shown in Register 23-2, configures the voltage
reference and special trigger selection. The ADCON2
register, shown in Register 23-3, configures the A/D
clock source and programmed acquisition time and
justification.

23.1 Differential A/D Converter

The converter in PIC18F66K80 family devices is
implemented as a differential A/D where the differential
voltage between two channels is measured and
converted to digital values (see Figure 23-1).

The converter also can be configured to measure a
voltage from a single input by clearing the CHSNx bits
(ADCON1<2:0>). With this configuration, the negative
channel input is connected internally to AVSS (see
Figure 23-2).

FIGURE 23-1: DIFFERENTIAL CHANNEL
MEASUREMENT

Differential conversion feeds the two input channels to
a unity gain differential amplifier. The positive channel
input is selected using the CHSx bits (ADCON0<6:2>)
and the negative channel input is selected using the
CHSNx bits (ADCON1<2:0>).

The output from the amplifier is fed to the A/D Con-
verter, as shown in Figure 23-1. The 12-bit result is
available on the ADRESH and ADRESL registers. An
additional bit indicates if the 12-bit result is a positive or
negative value.

FIGURE 23-2: SINGLE CHANNEL
MEASUREMENT

In the Single Channel Measurement mode, the
negative input is connected to AVSS by clearing the
CHSNx bits (ADCON1<2:0>).

A/D

Positive Input
CHS<4:0>

Negative Input
CHSN<2:0>

A/D

Positive Input
CHS<4:0>

CHSN<2:0> = 000
 2010-2012 Microchip Technology Inc. DS39977F-page 357

PIC18F66K80 FAMILY
24.6 Comparator Interrupts

The comparator interrupt flag is set whenever any of
the following occurs:

• Low-to-high transition of the comparator output

• High-to-low transition of the comparator output

• Any change in the comparator output

The comparator interrupt selection is done by the
EVPOL<1:0> bits in the CMxCON register
(CMxCON<4:3>).

In order to provide maximum flexibility, the output of the
comparator may be inverted using the CPOL bit in the
CMxCON register (CMxCON<5>). This is functionally
identical to reversing the inverting and non-inverting
inputs of the comparator for a particular mode.

An interrupt is generated on the low-to-high or high-to-
low transition of the comparator output. This mode of
interrupt generation is dependent on EVPOL<1:0> in
the CMxCON register. When EVPOL<1:0> = 01 or 10,
the interrupt is generated on a low-to-high or high-to-
low transition of the comparator output. Once the
interrupt is generated, it is required to clear the interrupt
flag by software.

When EVPOL<1:0> = 11, the comparator interrupt flag
is set whenever there is a change in the output value of
either comparator. Software will need to maintain
information about the status of the output bits, as read
from CMSTAT<7:6>, to determine the actual change
that occurred.

The CMPxIF<2:0> (PIR4<5:4) bits are the Comparator
Interrupt Flags. The CMPxIF bits must be reset by
clearing them. Since it is also possible to write a ‘1’ to
this register, a simulated interrupt may be initiated.
Table 24-2 shows the interrupt generation with respect
to comparator input voltages and EVPOL bit settings.

Both the CMPxIE bits (PIE4<5:4>) and the PEIE bit
(INTCON<6>) must be set to enable the interrupt. In
addition, the GIE bit (INTCON<7>) must also be set. If
any of these bits are clear, the interrupt is not enabled,
though the CMPxIF bits will still be set if an interrupt
condition occurs.

A simplified diagram of the interrupt section is shown in
Figure 24-3.

TABLE 24-2: COMPARATOR INTERRUPT GENERATION

Note: CMPxIF will not be set when
EVPOL<1:0> = 00.

CPOL EVPOL<1:0>
Comparator

Input Change
CxOUT Transition

Interrupt
Generated

0

00
VIN+ > VIN- Low-to-High No

VIN+ < VIN- High-to-Low No

01
VIN+ > VIN- Low-to-High Yes

VIN+ < VIN- High-to-Low No

10
VIN+ > VIN- Low-to-High No

VIN+ < VIN- High-to-Low Yes

11
VIN+ > VIN- Low-to-High Yes

VIN+ < VIN- High-to-Low Yes

1

00
VIN+ > VIN- High-to-Low No

VIN+ < VIN- Low-to-High No

01
VIN+ > VIN- High-to-Low No

VIN+ < VIN- Low-to-High Yes

10
VIN+ > VIN- High-to-Low Yes

VIN+ < VIN- Low-to-High No

11
VIN+ > VIN- High-to-Low Yes

VIN+ < VIN- Low-to-High Yes
 2010-2012 Microchip Technology Inc. DS39977F-page 379

PIC18F66K80 FAMILY
27.0 ECAN MODULE
PIC18F66K80 family devices contain an Enhanced
Controller Area Network (ECAN) module. The ECAN
module is fully backward compatible with the CAN
module available in PIC18CXX8 and PIC18FXX8
devices and the ECAN module in PIC18Fxx80 devices.

The Controller Area Network (CAN) module is a serial
interface which is useful for communicating with other
peripherals or microcontroller devices. This interface,
or protocol, was designed to allow communications
within noisy environments.

The ECAN module is a communication controller, imple-
menting the CAN 2.0A or B protocol as defined in the
BOSCH specification. The module will support CAN 1.2,
CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active
versions of the protocol. The module implementation is
a full CAN system; however, the CAN specification is not
covered within this data sheet. Refer to the BOSCH CAN
specification for further details.

The module features are as follows:

• Implementation of the CAN protocol, CAN 1.2,
CAN 2.0A and CAN 2.0B

• DeviceNetTM data bytes filter support
• Standard and extended data frames
• 0-8 bytes data length
• Programmable bit rate up to 1 Mbit/sec
• Fully backward compatible with the PIC18XXX8

CAN module
• Three modes of operation:

- Mode 0 – Legacy mode
- Mode 1 – Enhanced Legacy mode with

DeviceNet support
- Mode 2 – FIFO mode with DeviceNet support

• Support for remote frames with automated handling
• Double-buffered receiver with two prioritized

received message storage buffers
• Six buffers programmable as RX and TX

message buffers
• 16 full (standard/extended identifier) acceptance

filters that can be linked to one of four masks
• Two full acceptance filter masks that can be

assigned to any filter
• One full acceptance filter that can be used as either

an acceptance filter or acceptance filter mask
• Three dedicated transmit buffers with application

specified prioritization and abort capability
• Programmable wake-up functionality with

integrated low-pass filter
• Programmable Loopback mode supports self-test

operation
• Signaling via interrupt capabilities for all CAN

receiver and transmitter error states
• Programmable clock source
• Programmable link to timer module for

time-stamping and network synchronization
• Low-power Sleep mode

27.1 Module Overview

The CAN bus module consists of a protocol engine and
message buffering and control. The CAN protocol
engine automatically handles all functions for receiving
and transmitting messages on the CAN bus. Messages
are transmitted by first loading the appropriate data
registers. Status and errors can be checked by reading
the appropriate registers. Any message detected on
the CAN bus is checked for errors and then matched
against filters to see if it should be received and stored
in one of the two receive registers.

The CAN module supports the following frame types:

• Standard Data Frame

• Extended Data Frame

• Remote Frame

• Error Frame

• Overload Frame Reception

The CAN module uses the RB2/CANTX and RB3/
CANRX pins to interface with the CAN bus. The
CANTX and CANRX pins can be placed on alternate
I/O pins by setting the CANMX (CONFIG3H<0>)
Configuration bit.

For the PIC18F2XK80 and PIC18F4XK80, the alter-
nate pin locations are RC6/CANTX and RC7/CANRX.
For the PIC18F6XK80, the alternate pin locations are
RE4/CANRX and RE5/CANTX.

In normal mode, the CAN module automatically over-
rides the appropriate TRIS bit for CANTX. The user
must ensure that the appropriate TRIS bit for CANRX
is set.

27.1.1 MODULE FUNCTIONALITY

The CAN bus module consists of a protocol engine,
message buffering and control (see Figure 27-1). The
protocol engine can best be understood by defining the
types of data frames to be transmitted and received by
the module.

The following sequence illustrates the necessary initial-
ization steps before the ECAN module can be used to
transmit or receive a message. Steps can be added or
removed depending on the requirements of the
application.

1. Initial LAT and TRIS bits for RX and TX CAN.

2. Ensure that the ECAN module is in Configuration
mode.

3. Select ECAN Operational mode.

4. Set up the Baud Rate registers.

5. Set up the Filter and Mask registers.

6. Set the ECAN module to normal mode or any
other mode required by the application logic.
 2010-2012 Microchip Technology Inc. DS39977F-page 391

PIC18F66K80 FAMILY

REGISTER 27-16: RXBnSIDL: RECEIVE BUFFER ‘n’ STANDARD IDENTIFIER REGISTERS,
LOW BYTE [0  n  1]

R-x R-x R-x R-x R-x U-0 R-x R-x

SID2 SID1 SID0 SRR EXID — EID17 EID16

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-5 SID<2:0>: Standard Identifier bits (if EXID = 0)

Extended Identifier bits, EID<20:18> (if EXID = 1).

bit 4 SRR: Substitute Remote Request bit

bit 3 EXID: Extended Identifier bit

1 = Received message is an extended data frame, SID<10:0> are EID<28:18>
0 = Received message is a standard data frame

bit 2 Unimplemented: Read as ‘0’

bit 1-0 EID<17:16>: Extended Identifier bits

REGISTER 27-17: RXBnEIDH: RECEIVE BUFFER ‘n’ EXTENDED IDENTIFIER REGISTERS,
HIGH BYTE [0  n  1]

R-x R-x R-x R-x R-x R-x R-x R-x

EID15 EID14 EID13 EID12 EID11 EID10 EID9 EID8

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-0 EID<15:8>: Extended Identifier bits

REGISTER 27-18: RXBnEIDL: RECEIVE BUFFER ‘n’ EXTENDED IDENTIFIER REGISTERS,
LOW BYTE [0  n  1]

R-x R-x R-x R-x R-x R-x R-x R-x

EID7 EID6 EID5 EID4 EID3 EID2 EID1 EID0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-0 EID<7:0>: Extended Identifier bits
DS39977F-page 410  2010-2012 Microchip Technology Inc.

PIC18F66K80 FAMILY
27.3.4 LISTEN ONLY MODE

Listen Only mode provides a means for the
PIC18F66K80 family devices to receive all messages,
including messages with errors. This mode can be
used for bus monitor applications or for detecting the
baud rate in ‘hot plugging’ situations. For auto-baud
detection, it is necessary that there are at least two
other nodes which are communicating with each other.
The baud rate can be detected empirically by testing
different values until valid messages are received. The
Listen Only mode is a silent mode, meaning no mes-
sages will be transmitted while in this state, including
error flags or Acknowledge signals. In Listen Only
mode, both valid and invalid messages will be
received, regardless of RXMn bit settings. The filters
and masks can still be used to allow only particular
valid messages to be loaded into the Receive registers,
or the filter masks can be set to all zeros to allow a mes-
sage with any identifier to pass. All invalid messages
will be received in this mode, regardless of filters and
masks or RXMn Receive Buffer mode bits.The error
counters are reset and deactivated in this state. The
Listen Only mode is activated by setting the mode
request bits in the CANCON register.

27.3.5 LOOPBACK MODE

This mode will allow internal transmission of messages
from the transmit buffers to the receive buffers without
actually transmitting messages on the CAN bus. This
mode can be used in system development and testing.
In this mode, the ACK bit is ignored and the device will
allow incoming messages from itself, just as if they
were coming from another node. The Loopback mode
is a silent mode, meaning no messages will be trans-
mitted while in this state, including error flags or
Acknowledge signals. The TXCAN pin will revert to port
I/O while the device is in this mode. The filters and
masks can be used to allow only particular messages
to be loaded into the receive registers. The masks can
be set to all zeros to provide a mode that accepts all
messages. The Loopback mode is activated by setting
the mode request bits in the CANCON register.

27.3.6 ERROR RECOGNITION MODE

The module can be set to ignore all errors and receive
any message. In functional Mode 0, the Error Recogni-
tion mode is activated by setting the RXM<1:0> bits in
the RXBnCON registers to ‘11’. In this mode, the data
which is in the message assembly buffer until the error
time, is copied in the receive buffer and can be read via
the CPU interface.

27.4 CAN Module Functional Modes

In addition to CAN modes of operation, the ECAN mod-
ule offers a total of 3 functional modes. Each of these
modes are identified as Mode 0, Mode 1 and Mode 2.

27.4.1 MODE 0 – LEGACY MODE

Mode 0 is designed to be fully compatible with CAN
modules used in PIC18CXX8 and PIC18FXX8 devices.
This is the default mode of operation on all Reset con-
ditions. As a result, module code written for the
PIC18XX8 CAN module may be used on the ECAN
module without any code changes.

The following is the list of resources available in Mode 0:

• Three transmit buffers: TXB0, TXB1 and TXB2

• Two receive buffers: RXB0 and RXB1

• Two acceptance masks, one for each receive
buffer: RXM0, RXM1

• Six acceptance filters, 2 for RXB0 and 4 for RXB1:
RXF0, RXF1, RXF2, RXF3, RXF4, RXF5

27.4.2 MODE 1 – ENHANCED LEGACY
MODE

Mode 1 is similar to Mode 0, with the exception
that more resources are available in Mode 1. There are
16 acceptance filters and two acceptance mask regis-
ters. Acceptance Filter 15 can be used as either an
acceptance filter or an acceptance mask register. In
addition to three transmit and two receive buffers, there
are six more message buffers. One or more of these
additional buffers can be programmed as transmit or
receive buffers. These additional buffers can also be
programmed to automatically handle RTR messages.

Fourteen of sixteen acceptance filter registers can be
dynamically associated to any receive buffer and
acceptance mask register. One can use this capability
to associate more than one filter to any one buffer.

When a receive buffer is programmed to use standard
identifier messages, part of the full acceptance filter reg-
ister can be used as a data byte filter. The length of the
data byte filter is programmable from 0 to 18 bits. This
functionality simplifies implementation of high-level
protocols, such as the DeviceNet™ protocol.

The following is the list of resources available in Mode 1:

• Three transmit buffers: TXB0, TXB1 and TXB2

• Two receive buffers: RXB0 and RXB1

• Six buffers programmable as TX or RX: B0-B5

• Automatic RTR handling on B0-B5

• Sixteen dynamically assigned acceptance filters:
RXF0-RXF15

• Two dedicated acceptance mask registers;
RXF15 programmable as third mask:
RXM0-RXM1, RXF15

• Programmable data filter on standard identifier
messages: SDFLC
 2010-2012 Microchip Technology Inc. DS39977F-page 439

PIC18F66K80 FAMILY
27.15.6.1 Receiver Overflow

An overflow condition occurs when the MAB has
assembled a valid received message (the message
meets the criteria of the acceptance filters) and the
receive buffer associated with the filter is not available
for loading of a new message. The associated
RXBnOVFL bit in the COMSTAT register will be set to
indicate the overflow condition. This bit must be cleared
by the MCU.

27.15.6.2 Receiver Warning

The receive error counter has reached the MCU
warning limit of 96.

27.15.6.3 Transmitter Warning

The transmit error counter has reached the MCU
warning limit of 96.

27.15.6.4 Receiver Bus Passive

This will occur when the device has gone to the error-
passive state because the receive error counter is
greater or equal to 128.

27.15.6.5 Transmitter Bus Passive

This will occur when the device has gone to the error-
passive state because the transmit error counter is
greater or equal to 128.

27.15.6.6 Bus-Off

The transmit error counter has exceeded 255 and the
device has gone to bus-off state.
 2010-2012 Microchip Technology Inc. DS39977F-page 455

PIC18F66K80 FAMILY
FIGURE 29-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file register operations

15 10 9 8 7 0

d = 0 for result destination to be WREG register

OPCODE d a f (FILE #)

d = 1 for result destination to be file register (f)
a = 0 to force Access Bank

Bit-oriented file register operations

15 12 11 9 8 7 0

OPCODE b (BIT #) a f (FILE #)

b = 3-bit position of bit in file register (f)

Literal operations

15 8 7 0

 OPCODE k (literal)

k = 8-bit immediate value

Byte to Byte move operations (2-word)

15 12 11 0

OPCODE f (Source FILE #)

CALL, GOTO and Branch operations

15 8 7 0

OPCODE n<7:0> (literal)

n = 20-bit immediate value

a = 1 for BSR to select bank
f = 8-bit file register address

a = 0 to force Access Bank
a = 1 for BSR to select bank
f = 8-bit file register address

15 12 11 0

1111 n<19:8> (literal)

15 12 11 0

 1111 f (Destination FILE #)

f = 12-bit file register address

Control operations

Example Instruction

ADDWF MYREG, W, B

MOVFF MYREG1, MYREG2

BSF MYREG, bit, B

MOVLW 7Fh

GOTO Label

15 8 7 0

OPCODE S n<7:0> (literal)

15 12 11 0

1111 n<19:8> (literal)

CALL MYFUNC

15 11 10 0

OPCODE n<10:0> (literal)

S = Fast bit

BRA MYFUNC

15 8 7 0

OPCODE n<7:0> (literal) BC MYFUNC
 2010-2012 Microchip Technology Inc. DS39977F-page 485

PIC18F66K80 FAMILY
30.2 MPLAB C Compilers for Various
Device Families

The MPLAB C Compiler code development systems
are complete ANSI C compilers for Microchip’s PIC18,
PIC24 and PIC32 families of microcontrollers and the
dsPIC30 and dsPIC33 families of digital signal control-
lers. These compilers provide powerful integration
capabilities, superior code optimization and ease of
use.

For easy source level debugging, the compilers provide
symbol information that is optimized to the MPLAB IDE
debugger.

30.3 HI-TECH C for Various Device
Families

The HI-TECH C Compiler code development systems
are complete ANSI C compilers for Microchip’s PIC
family of microcontrollers and the dsPIC family of digital
signal controllers. These compilers provide powerful
integration capabilities, omniscient code generation
and ease of use.

For easy source level debugging, the compilers provide
symbol information that is optimized to the MPLAB IDE
debugger.

The compilers include a macro assembler, linker, pre-
processor, and one-step driver, and can run on multiple
platforms.

30.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal
macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object
files for the MPLINK Object Linker, Intel® standard HEX
files, MAP files to detail memory usage and symbol
reference, absolute LST files that contain source lines
and generated machine code and COFF files for
debugging.

The MPASM Assembler features include:

• Integration into MPLAB IDE projects

• User-defined macros to streamline
assembly code

• Conditional assembly for multi-purpose
source files

• Directives that allow complete control over the
assembly process

30.5 MPLINK Object Linker/
MPLIB Object Librarian

The MPLINK Object Linker combines relocatable
objects created by the MPASM Assembler and the
MPLAB C18 C Compiler. It can link relocatable objects
from precompiled libraries, using directives from a
linker script.

The MPLIB Object Librarian manages the creation and
modification of library files of precompiled code. When
a routine from a library is called from a source file, only
the modules that contain that routine will be linked in
with the application. This allows large libraries to be
used efficiently in many different applications.

The object linker/library features include:

• Efficient linking of single libraries instead of many
smaller files

• Enhanced code maintainability by grouping
related modules together

• Flexible creation of libraries with easy module
listing, replacement, deletion and extraction

30.6 MPLAB Assembler, Linker and
Librarian for Various Device
Families

MPLAB Assembler produces relocatable machine
code from symbolic assembly language for PIC24,
PIC32 and dsPIC devices. MPLAB C Compiler uses
the assembler to produce its object file. The assembler
generates relocatable object files that can then be
archived or linked with other relocatable object files and
archives to create an executable file. Notable features
of the assembler include:

• Support for the entire device instruction set

• Support for fixed-point and floating-point data

• Command line interface

• Rich directive set

• Flexible macro language

• MPLAB IDE compatibility
DS39977F-page 534  2010-2012 Microchip Technology Inc.

PIC18F66K80 FAMILY
BRG. See Baud Rate Generator.
Brown-out Reset (BOR) .. 82

Detection... 82
Disabling in Sleep Mode ... 82
Software Enabled.. 82

BSF ... 495
BTFSC .. 496
BTFSS... 496
BTG... 497
BZ.. 498

C
C Compilers

MPLAB C18 .. 534
CALL ... 498
CALLW.. 527
CAN Module

External-Internal Clock in HS-PLL Based Oscillators447
Capture (CCP Module).. 257

CCP Pin Configuration.. 257
CCPRxH:CCPRxL Registers 257
Software Interrupt ... 258
Timer1/3 Mode Selection .. 257

Capture (ECCP Module) ... 268
CCPR1H:CCPR1L Registers.................................... 268
ECCP Pin Configuration ... 268
Prescaler... 269
Software Interrupt ... 269
Timer1/2/3/4 Mode Selection 269

Capture, Compare, Timer1/3
Associated Registers .. 261

Capture/Compare/PWM (CCP)... 253
Capture Mode. See Capture.
CCP Mode and Timer Resources 256
CCPRxH Register ... 256
CCPRxL Register.. 256
Compare Mode. See Compare.
Configuration... 256
Open-Drain Output Option .. 256

Charge Time Measurement Unit (CTMU) 235
Associated Registers .. 252
Calibrating the Module .. 240
Creating a Delay ... 250
Effects of a Reset.. 252
Measuring Capacitance .. 246
Measuring Time .. 248
Module Initialization .. 240
Operation .. 239

During Sleep, Idle Modes.................................. 252
Temperature Measurement 249

Clock Sources ... 56
Default System Clock on Reset 57
Selection Using OSCCON Register 56

CLRF... 499
CLRWDT... 499
Code Examples

16 x 16 Signed Multiply Routine 146
16 x 16 Unsigned Multiply Routine 146
8 x 8 Signed Multiply Routine 145
8 x 8 Unsigned Multiply Routine 145
Capacitance Calibration Routine 245
Changing Between Capture Prescalers 258, 269
Changing to Configuration Mode 396
Computed GOTO Using an Offset Value.................. 105
Current Calibration Routine 243
Data EEPROM Read .. 142

Data EEPROM Refresh Routine............................... 143
Data EEPROM Write .. 142
Erasing a Flash Program Memory Row.................... 134
Fast Register Stack .. 105
How to Clear RAM (Bank 1) Using Indirect Addressing .

123
Initializing PORTA... 175
Initializing PORTB... 177
Initializing PORTC .. 181
Initializing PORTD .. 184
Initializing PORTE... 187
Initializing PORTF... 189
Initializing PORTG .. 190
Loading the SSPBUF (SSPSR) Register.................. 290
Reading a CAN Message ... 412
Reading a Flash Program Memory Word 133
Routine for Capacitive Touch Switch........................ 247
Routine for Temperature Measurement Using Internal

Diode .. 249, 251
Saving STATUS, WREG and BSR Registers in RAM....

169
Setup for CTMU Calibration Routines 242
Transmitting a CAN Message Using Banked Method

404
Transmitting a CAN Message Using WIN Bits.......... 405
Ultra Low-Power Wake-up Initialization 77
WIN and ICODE Bits Usage in Interrupt Service Routine

to Access TX/RX Buffers 396
Writing to Flash Program Memory.................... 136–137

Code Protection .. 457
COMF ... 500
Comparator... 373

Analog Input Connection Considerations 376
Associated Registers .. 380
Configuration .. 377
Control .. 377
Effects of a Reset ... 380
Enable and Input Selection....................................... 377
Enable and Output Selection 377
Interrupts .. 379
Operation .. 376
Operation During Sleep .. 380
Response Time... 376

Comparator Specifications.. 559
Comparator Voltage Reference .. 381

Accuracy and Error ... 382
Associated Registers .. 383
Configuring ... 381
Connection Considerations....................................... 382
Effects of a Reset ... 382
Operation During Sleep .. 382

Compare (CCP Module) ... 259
CCP Pin Configuration.. 259
Software Interrupt ... 259
Special Event Trigger ... 259
Timer1/3 Mode Selection.. 259

Compare (ECCP Module)... 270
CCPR1 Register ... 270
Pin Configuration .. 270
Software Interrupt ... 270
Special Event Trigger 232, 270
Timer1/2/3/4 Mode Selection.................................... 270

Computed GOTO.. 105
Configuration Bits ... 457
Configuration Mismatch (CM) Reset................................... 83
DS39977F-page 606  2010-2012 Microchip Technology Inc.

