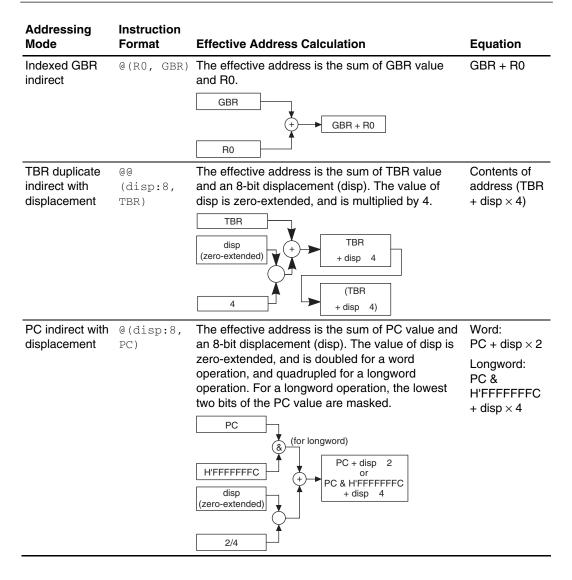


Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	SH2A
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	SCI
Peripherals	DMA, PWM, WDT
Number of I/O	63
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f72434d100fp-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Classification	Types	Operation Code	Function	No. of Instructions
Arithmetic	26	ADD	Binary addition	40
operations		ADDC	Binary addition with carry	_
		ADDV	Binary addition with overflow check	_
		CMP/cond	Comparison	_
		CLIPS	Signed saturation value comparison	-
		CLIPU	Unsigned saturation value comparison	-
		DIVS	Signed division (32 ÷ 32)	_
		DIVU	Unsigned division (32 ÷ 32)	-
		DIV1	One-step division	-
		DIV0S	Initialization of signed one-step division	-
		DIV0U	Initialization of unsigned one-step division	_
		DMULS	Signed double-precision multiplication	_
		DMULU	Unsigned double-precision multiplication	-
		DT	Decrement and test	_
		EXTS	Sign extension	_
		EXTU	Zero extension	-
		MAC	Multiply-and-accumulate, double-precision multiply-and-accumulate operation	_
		MUL	Double-precision multiply operation	_
		MULR	Signed multiplication with result storage in Rn	-
		MULS	Signed multiplication	_
		MULU	Unsigned multiplication	_
		NEG	Negation	_
		NEGC	Negation with borrow	-
		SUB	Binary subtraction	-
		SUBC	Binary subtraction with borrow	-
		SUBV	Binary subtraction with underflow	_

Bit	Bit Name	Initial Value	R/W	Description
4	DTS	Undefined	_	DTC Transfer Mode Select
				Specifies either the source or destination as repeat or block area during repeat or block transfer mode.
				0: Specifies the destination as repeat or block area
				1: Specifies the source as repeat or block area
3, 2	DM[1:0]	Undefined		Destination Address Mode 1 and 0
				Specify a DAR operation after a data transfer.
				0x: DAR is fixed
				(DAR write-back is skipped)
				10: DAR is incremented after a transfer
				(by 1 when Sz1 and Sz0 = B'00; by 2 when Sz1 and Sz0 = B'01; by 4 when Sz1 and Sz0 = B'10)
				11: SAR is decremented after a transfer
				(by 1 when Sz1 and Sz0 = B'00; by 2 when Sz1 and Sz0 = B'01; by 4 when Sz1 and Sz0 = B'10)
1, 0	_	Undefined	_	Reserved
				The write value should always be 0.

[Legend]

x: Don't care

As shown in figure 9.16, two sets of SDRAMs of 32Mbytes or smaller can be connected to the same CS space by using \overline{RASU} , \overline{RASL} , \overline{CASU} , and \overline{CASL} . In this case, a total of 8 banks are assigned to the same CS space: 4 banks specified by \overline{RASL} and \overline{CASL} , and 4 banks specified by \overline{RASU} and \overline{CASU} . When accessing the address with A25 = 0, \overline{RASL} and \overline{CASL} are asserted. When accessing the address with A25 = 1, \overline{RASU} and \overline{CASU} are asserted.

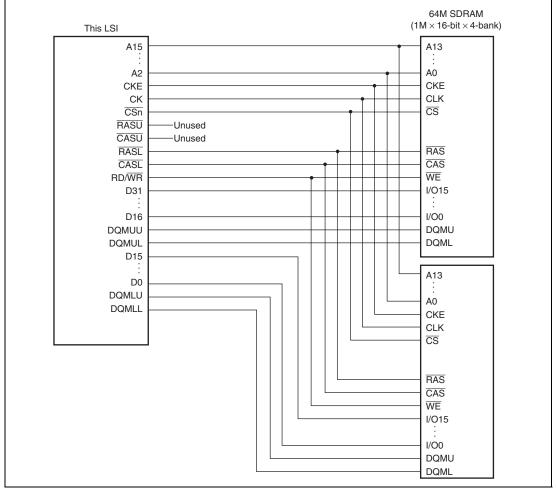


Figure 9.14 Example of 32-Bit Data Width SDRAM Connection (RASU and CASU are Not Used)

Description

Table 11.15 TIOR_2 (Channel 2)

					Description
Bit 7 IOB3	Bit 6 IOB2	Bit 5 IOB1	Bit 4 IOB0	TGRB_2 Function	TIOC2B Pin Function
0	0	0	0	Output	Output retained*
			1	compare register	Initial output is 0
				register	0 output at compare match
		1	0	_	Initial output is 0
					1 output at compare match
			1	_	Initial output is 0
					Toggle output at compare match
	1	0	0	_	Output retained
			1	_	Initial output is 1
					0 output at compare match
		1	0	_	Initial output is 1
					1 output at compare match
			1	_	Initial output is 1
					Toggle output at compare match
1	Х	0	0		Input capture at rising edge
			1	register	Input capture at falling edge
		1	Х	_	Input capture at both edges
[Legen	d]		_		

[Legend]

X: Don't care

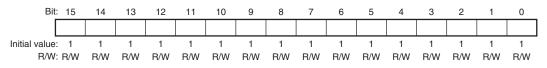
Note: After power-on reset, 0 is output until TIOR is set. *

Bit	Bit Name	Initial value	R/W	Description
0	OLS1P	0	R/W	Output Level Select 1P*
				This bit selects the output level on TIOC3B in reset- synchronized PWM mode/complementary PWM mode. See table 11.38.

Note: * Setting the TOCS bit in TOCR1 to 1 makes this bit setting valid.

Table 11.32 Setting of Bits BF1 and BF0

Bit 7	Bit 6	Description							
BF1	BF0	Complementary PWM Mode	Reset-Synchronized PWM Mode						
0	0	Does not transfer data from the buffer register (TOLBR) to TOCR2.	Does not transfer data from the buffer register (TOLBR) to TOCR2.						
0	1	Transfers data from the buffer register (TOLBR) to TOCR2 at the crest of the TCNT_4 count.	Transfers data from the buffer register (TOLBR) to TOCR2 when TCNT_3/TCNT_4 is cleared						
1	0	Transfers data from the buffer register (TOLBR) to TOCR2 at the trough of the TCNT_4 count.	Setting prohibited						
1	1	Transfers data from the buffer register (TOLBR) to TOCR2 at the crest and trough of the TCNT_4 count.	Setting prohibited						


Table 11.33 TIOC4D Output Level Select Function

Bit 5		Function										
				Compare Match Output								
OLS3N	Initial Output	Active Level	Up Count	Down Count								
0	High level	Low level	High level	Low level								
1	Low level	High level	Low level	High level								

Note: The reverse phase waveform initial output value changes to the active level after elapse of the dead time after count start.

11.3.27 Timer Cycle Buffer Register (TCBR)

TCBR is a 16-bit register used only in complementary PWM mode. It functions as a buffer register for the TCDR register. The TCBR register values are transferred to the TCDR register with the transfer timing set in the TMDR register.

Note: Accessing the TCBR in 8-bit units is prohibited. Always access in 16-bit units.

11.3.28 Timer Interrupt Skipping Set Register (TITCR)

TITCR is an 8-bit readable/writable register that enables or disables interrupt skipping and specifies the interrupt skipping count. The MTU2 has one TITCR.

		Bit:	7	6	5	4	3	2	1	0	_
			T3AEN	3	ACOR[2:	0]	T4VEN	4'	VCOR[2:	0]	
		Initial value: R/W:	0 R/W	0 R/W	0 R/W	0 R/W	0 R/W	0 R/W	0 R/W	0 R/W	
Bit	Bit Name	Initial value	R/\	N	Desc	riptic	on				
7	T3AEN	0	R/\	N	ТЗАЕ	EN					
					Enab	les or	[,] disab	les T	GIA_3	interr	upt skipping.
					0: TO	AIA_3	interru	ıpt ski	pping	disab	led
					1: TG	alA_3	interru	ıpt ski	pping	enab	led
6 to 4	3ACOR[2:0]	000	R/\	N			specif range f	-			errupt skipping count
					For d	letails	, see t	able 1	1.40.		
3	T4VEN	0	R/\	N	T4VE	EN					
					Enab	les or	[,] disab	les T	CIV_4	interr	upt skipping.
					0: TC	VIV_4	interru	ipt ski	pping	disab	led
					1: TC	CIV_4	interru	ıpt ski	pping	enabl	led

(h) Register Data Updating

In complementary PWM mode, the buffer register is used to update the data in a compare register. The update data can be written to the buffer register at any time. There are five PWM duty and carrier cycle registers that have buffer registers and can be updated during operation.

There is a temporary register between each of these registers and its buffer register. When subcounter TCNTS is not counting, if buffer register data is updated, the temporary register value is also rewritten. Transfer is not performed from buffer registers to temporary registers when TCNTS is counting; in this case, the value written to a buffer register is transferred after TCNTS halts.

The temporary register value is transferred to the compare register at the data update timing set with bits MD3 to MD0 in the timer mode register (TMDR). Figure 11.43 shows an example of data updating in complementary PWM mode. This example shows the mode in which data updating is performed at both the counter crest and trough.

When rewriting buffer register data, a write to TGRD_4 must be performed at the end of the update. Data transfer from the buffer registers to the temporary registers is performed simultaneously for all five registers after the write to TGRD_4.

A write to TGRD_4 must be performed after writing data to the registers to be updated, even when not updating all five registers, or when updating the TGRD_4 data. In this case, the data written to TGRD_4 should be the same as the data prior to the write operation.

Bit	Bit Name	Initial Value	R/W	Description
14	POE6F	0	R/(W)*1	POE6 Flag
				Indicates that a high impedance request has been input to the $\overline{\text{POE6}}$ pin.
				[Clearing conditions]
				• By writing 0 to POE6F after reading POE6F = 1
				(when the falling edge is selected by bits 5 and 4 in ICSR2)
				 By writing 0 to POE6F after reading POE6F = 1 after a high level input to POE6 is sampled at Pφ/8, Pφ/16, or Pφ/128 clock (when low-level sampling is selected by bits 5 and 4 in ICSR2)
				[Setting condition]
				• When the input condition set by bits 5 and 4 in ICSR2 occurs at the POE6 pin
13	POE5F	0	R/(W)*1	POE5 Flag
				Indicates that a high impedance request has been input to the $\overline{\text{POE5}}$ pin.
				[Clearing conditions]
				 By writing 0 to POE5F after reading POE5F = 1 (when the falling edge is selected by bits 3 and 2 in ICSR2)
				 By writing 0 to POE5F after reading POE5F = 1 after a high level input to POE5 is sampled at Pφ/8, Pφ/16, or Pφ/128 clock (when low-level sampling is selected by bits 3 and 2 in ICSR2)
				[Setting condition]
				• When the input condition set by bits 3 and 2 in ICSR2 occurs at the POE5 pin

In serial transmission, the SCI operates as described below.

- 1. The SCI monitors the TDRE flag in the serial status register (SCSSR). If it is cleared to 0, the SCI recognizes that data has been written to the transmit data register (SCTDR) and transfers the data from SCTDR to the transmit shift register (SCTSR).
- 2. After transferring data from SCTDR to SCTSR, the SCI sets the TDRE flag to 1 and starts transmission. If the TIE bit in the serial control register (SCSCR) is set to 1 at this time, a transmit-data-empty interrupt (TXI) request is generated.

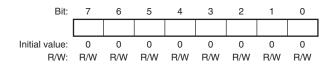
The serial transmit data is sent from the TXD pin in the following order.

- A. Start bit: One-bit 0 is output.
- B. Transmit data: 8-bit or 7-bit data is output in LSB-first order.
- C. Parity bit or multiprocessor bit: One parity bit (even or odd parity) or one multiprocessor bit is output. (A format in which neither parity nor multiprocessor bit is output can also be selected.)
- D. Stop bit(s): One or two 1 bits (stop bits) are output.
- E. Mark state: 1 is output continuously until the start bit that starts the next transmission is sent.
- 3. The SCI checks the TDRE flag at the timing for sending the stop bit. If the TDRE flag is 0, the data is transferred from SCTDR to SCTSR, the stop bit is sent, and then serial transmission of the next frame is started.

If the TDRE flag is 1, the TEND flag in SCSSR is set to 1, the stop bit is sent, and then the "mark state" is entered in which 1 is output. If the TEIE bit in SCSCR is set to 1 at this time, a TEI interrupt request is generated.

21.3 **Register Descriptions**

The D/A converter has the following registers.


Table 21.2 Register Configuration

Register Name	Abbreviation	R/W	Initial Value	Address	Access Size
D/A data register 0	DADR0	R/W	H'00	H'FFFE6800	8, 16
D/A data register 1	DADR1	R/W	H'00	H'FFFE6801	8, 16
D/A control register	DACR	R/W	H'1F	H'FFFE6802	8, 16

21.3.1 D/A Data Registers 0 and 1 (DADR0 and DADR1)

DADR is an 8-bit readable/writable register that stores data to which D/A conversion is to be performed. Whenever analog output is enabled, the values in DADR are converted and output to the analog output pins.

DADR is initialized to H'00 by a power-on reset or in module standby mode.

(5) Interrupt Mask Register (IMR)

The interrupt mask register is a 16 bit register that protects all corresponding interrupts in the Interrupt Request Register (IRR) from generating an output signal on the IRQ. An interrupt request is masked if the corresponding bit position is set to '1'. This register can be read or written at any time. The IMR directly controls the generation of IRQ, but does not prevent the setting of the corresponding bit in the IRR.

• IMR (Address = H'00A)

Bi	t: 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	IMR15	IMR14	IMR13	IMR12	IMR11	IMR10	IMR9	IMR8	IMR7	IMR6	IMR5	IMR4	IMR3	IMR2	IMR1	IMR0
Initial value	e: 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
R/W	/: R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 15 to 0: Maskable interrupt sources corresponding to IRR[15:0] respectively. When a bit is set, the interrupt signal is not generated, although setting the corresponding IRR bit is still performed.

Bit[15:0]: IMRn Description

	•
0	Corresponding IRR is not masked (IRQ is generated for interrupt conditions)
1	Corresponding interrupt of IRR is masked (Initial value)

(6) Transmit Error Counter (TEC) and Receive Error Counter (REC)

The Transmit Error Counter (TEC) and Receive Error Counter (REC) is a 16-bit read/(write) register that functions as a counter indicating the number of transmit/receive message errors on the CAN Interface. The count value is stipulated in the CAN protocol specification Refs. [1], [2], [3] and [4]. When not in (Write Error Counter) test mode this register is read only, and can only be modified by the CAN Interface. This register can be cleared by a Reset request (MCR0) or entering to bus off.

In Write Error Counter test mode (i.e. TST[2:0] = 3'b100), it is possible to write to this register. The same value can only be written to TEC/REC, and the value written into TEC is set to TEC and REC. When writing to this register, RCAN-ET needs to be put into Halt Mode. This feature is only intended for test purposes.

Bit	Bit Name	Initial Value	R/W	Description
2 to 0	PB16MD[2:0]	000*	R/W	PB16 Mode
				Select the function of the PB16/A22/CASL/DACK3 pin.
				000: PB16 I/O (port)
				001: A22 output (BSC)
				010: CASL output (BSC)
				011: Setting prohibited
				100: Setting prohibited
				101: Setting prohibited
				110: Setting prohibited
				111: DACK3 input (DMAC)

Note: * The initial value is 1 during the on-chip ROM disabled external extension mode.

• Port B Control Register L4 (PBCRL4)

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-	PE	315MD[2	:0]	-	PE	314MD[2	:0]	-	PE	313MD[2	:0]	-	PE	312MD[2	:0]
Initial value:	0	0	0	0*	0	0	0	0	0	0	0	0	0	0	0	0*
R/W:	R	R/W	R/W	R/W	R	R/W	R/W	R/W	R	R/W	R/W	R/W	R	R/W	R/W	R/W

Note: * The initial value is 1 during the on-chip ROM disabled external extension mode.

Bit	Bit Name	Initial Value	R/W	Description
15		0	R	Reserved
				This bit is always read as 0. The write value should always be 0.

• PDDRL (SH7243, SH7285 and SH7286)

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	PD15 DR	PD14 DR	PD13 DR	PD12 DR	PD11 DR	PD10 DR	PD9 DR	PD8 DR	PD7 DR	PD6 DR	PD5 DR	PD4 DR	PD3 DR	PD2 DR	PD1 DR	PD0 DR
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit	Bit Name	Initial Value	R/W	Description
15	PD15DR	0	R/W	See table 24.8.
14	PD14DR	0	R/W	
13	PD13DR	0	R/W	_
12	PD12DR	0	R/W	_
11	PD11DR	0	R/W	-
10	PD10DR	0	R/W	-
9	PD9DR	0	R/W	_
8	PD8DR	0	R/W	_
7	PD7DR	0	R/W	_
6	PD6DR	0	R/W	_
5	PD5DR	0	R/W	_
4	PD4DR	0	R/W	_
3	PD3DR	0	R/W	_
2	PD2DR	0	R/W	_
1	PD1DR	0	R/W	_
0	PD0DR	0	R/W	

		User Program	User Boot	USB Boot	Programmer
Programming/ erasing	Boot Mode On-board programming	Mode On-board programming	Mode* ³ On-board programming	Mode* ³ On-board programming	Mode Off-board programming
environment Programming/ erasing enable MAT	User MAT User boot MAT	User MAT	User MAT	User MAT	User MAT User boot MAT
Programming/ erasing control	Command method	Programming/ erasing interface	Programming/ erasing interface	Command method	_
All erasure	Possible (Automatic)	Possible	Possible	Possible (Automatic)	Possible (Automatic)
Block division erasure	Possible*1	Possible	Possible	Possible*1	Not possible
Program data transfer	From host via SCI	From optional device via RAM	From optional device via RAM	From host via USB	Via programmer
User branch function	Not possible	Possible	Possible	Not possible	Not possible
Reset initiation MAT	Embedded program storage MAT	User MAT	User boot MAT* ²	Embedded program storage MAT	Embedded program storage MAT
Transition to user mode	Mode setting change and reset	FWE setting change	Mode setting change and reset	Mode setting change and reset	_
Pin state	CK: output Other pins: input (same as the states in MCU extension mode 2) RXD0 and TXD0: valid	Dependent on user settings	CK: output (initial setting) Other pins: input (initial setting)	CK: output Other pins: input (same as the states in MCU extension mode 2)	Programmer dedicated pins

Table 26.2 Comparison of Programming Modes

Notes: 1. All-erasure is performed. After that, the specified block can be erased.

2. Initiation starts from the embedded program storage MAT. After checking the flashmemory related registers, initiation starts from the reset vector of the user MAT.

3. Not available in the SH7243.

Module Name	Register Name	Abbreviation	Number of Bits	Address	Access Size
ADC	A/D analog input channel select register_1	ADANSR_1	8	H'FFFFEC20	8
	A/D bypass control register_1	ADBYPSCR_1	8	H'FFFFEC30	8
	A/D data register 4	ADDR4	16	H'FFFFEC40	16
	A/D data register 5	ADDR5	16	H'FFFFEC42	16
	A/D data register 6	ADDR6	16	H'FFFFEC44	16
	A/D data register 7	ADDR7	16	H'FFFFEC46	16
	A/D control register_2	ADCR_2	8	H'FFFFEE00	8
	A/D status register_2	ADSR_2	8	H'FFFFEE02	8
	A/D start trigger select register_2	ADSTRGR_2	8	H'FFFFEE1C	8
	A/D analog input channel select register_2	ADANSR_2	8	H'FFFFEE20	8
	A/D bypass control register_2	ADBYPSCR_2	8	H'FFFFEE30	8
	A/D data register 8	ADDR8	16	H'FFFFEE40	16
	A/D data register 9	ADDR9	16	H'FFFFEE42	16
	A/D data register 10	ADDR10	16	H'FFFFEE44	16
	A/D data register 11	ADDR11	16	H'FFFFEE46	16
DAC	D/A data register 0	DADR0	8	H'FFFE6800	8, 16
	D/A data register 1	DADR1	8	H'FFFE6801	8, 16
	D/A control register	DACR	8	H'FFFE6802	8, 16
RCAN-ET	Master control register	MCR	16	H'FFFFD000	16
	General control register	GSR	16	H'FFFFD002	16
	Bit configuration register 1	BCR1	16	H'FFFFD004	16
	Bit configuration register 0	BCR0	16	H'FFFFD006	16
	Interrupt request register	IRR	16	H'FFFFD008	16
	Interrupt mask register	IMR	16	H'FFFFD00A	16
	Transmit error counter/Receive error counter	TEC/REC	16	H'FFFFD00C	16
	Transmit wait register 1, 0	TXPR1, 0	32	H'FFFFD020	32
	Transmit cancel register 0	TXCR0	16	H'FFFFD02A	16
	Transmit acknowledge register 0	TXACK0	16	H'FFFFD032	16
	Abort acknowledge register 0	ABACK0	16	H'FFFFD03A	16
	Data frame receive completion register	RXPR0	16	H'FFFFD042	16
	Remote frame receive completion register	RFPR0	16	H'FFFFD04A	16

Module Name	Register Abbreviation	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
DMAC	DMATCR_6								
	CHCR_6	TC	—	—	RLD			—	_
		_	_		_	HE	HIE	_	—
		DM	[1:0]	SM	[1:0]		RS[[3:0]	
		—	—	ТВ	TS[1:0]	IE	TE	DE
	RSAR_6								
	RDAR_6								
	RDMATCR_6								
	SAR_7								
	DAR_7								
	DMATCR_7								
	CHCR_7	тс	—	—	RLD	_	—	—	—
		_	—	—	—	HE	HIE	—	
		DM	[1:0]	SM				[3:0]	1
		-	—	ТВ	TS[1:0]	IE	TE	DE

Section 31 Electrical Characteristics

Note: The current specifications of this section are provisional. Note that they are subject to change without notice.

31.1 Absolute Maximum Ratings

Table 31.1 lists the absolute maximum ratings.

Table 31.1 Absolute Maximum Ratings

Item		Symbol	Value	Unit
Power supply voltage	e (Internal)	V _{cc}	–0.3 to +7.0	V
		DrV_{cc}	-0.3 to +7.0	V
Input voltage (except	analog input pins)	Vin	–0.3 to V $_{\rm cc}$ +0.3	V
Analog power supply	voltage	AV_{cc}	–0.3 to +7.0	V
Analog reference vol	tage	AVREF	–0.3 to AV $_{\rm cc}$ +0.3	V
Analog input voltage		V _{AN}	–0.3 to AV $_{\rm cc}$ +0.3	V
Operating temperature	0		–20 to +85	°C
	Industrial specifications		-40 to +85	°C
Storage temperature		T _{stg}	–55 to +125	°C

Caution: Permanent damage to the LSI may result if absolute maximum ratings are exceeded.

Pin	Pin Function										
				Reset State			Power-Down Sta				
			Po	ower-On		_			_		
		Expans withou		Expansion	Single-	-			Bus Master- ship	Oscillation Stop	POE Function
Туре	Pin Name	8 bits	16 bits	with ROM	chip	Manual	Software Standby	Sleep	Release	Detected	Used
I/O Port	PE4, PE7, PE8, PE10	Z				I/O	K* ¹	I/O	I/O	I/O	I/O
	PE0 to PE3, PE5, PE6	Z				I/O	Z (MZIZEL in HCPCR = 0) K^{*^1} (MZIZEL in HCPCR = 1)	I/O	I/O	I/O* ⁸	Z
	PE9, PE11 to PE15	Z				I/O	Z (MZIZEH in HCPCR = 0) K^{*^1} (MZIZEH in HCPCR = 1)	I/O	I/O	I/O* ⁷	Z
	PF0 to PF11	Z				I	Z	I	I	1	I

[Legend]

- I: Input
- O: Output
- H: High-level output
- L: Low-level output
- Z: High-impedance
- K: Input pins become high-impedance, and output pins retain their state.
- Notes: 1. Output pins become high-impedance when the HIZ bit in standby control register 3 (STBCR3) is set to 1.
 - 2. Becomes output when the HIZCNT bit in the common control register (CMNCR) is set to 1.
 - 3. Becomes output when the HIZMEM bit in the common control register (CMNCR) is set to 1.
 - 4. Becomes output when the HIZCKIO bit in the common control register (CMNCR) is set to 1.
 - 5. Becomes high-impedance when the MZIZDH bit in the high-current port control register (HCPCR) is cleared to 0.
 - 6. Becomes high-impedance when the MZIZDL bit in the high-current port control register (HCPCR) is cleared to 0.
 - 7. Becomes high-impedance when the MZIZEH bit in the high-current port control register (HCPCR) is cleared to 0.
 - 8. Becomes high-impedance when the MZIZEL bit in the high-current port control register (HCPCR) is cleared to 0.
 - 9. Becomes input during a power-on reset. Pull-up to prevent erroneous operation. Pull-down with a resistance of at least 1 M Ω as required.
 - 10. Pulled-up inside the LSI when there is no input.

Item	Page	Revi	sion (Se	e Man	ual for	Details)			
16.5 SCI Interrupt Sources	823	Ame	nded						
and DTC		When the ORER, FER, or PER flag in SCSSR is set to an ERI interrupt request is generated. This request cannot be used to activate the DTC. In processing for data reception, generation of ERI interrupt requests can only enabled if generation of RXI interrupt requests is disable. In this case, set the RIE bit and the EIO bit in SCSPTR to 1. However, note that the DMAC or DTC will not transfer received data since RXI interrupt requests are not generated while the EIO bit is set to 1.							
Figure 17.1 Block Diagram of SCIF	832	Amei	nded						
		SCBRR Baud rate generator							
Table 17.2 Register	834	Ame	nded						
Configuration		Chan 3		egister N erial port i	ame register_3	Initial Abbreviation R/W Value SCSPTR_3 R/W H'00xx			
17.3.7 Serial Status Register	851	Ame	nded						
(SCFSR)		Bit	Bit Name	Initial Value	R/W	Description			
		0	DR	0	R/(W)*	Receive Data Ready			
						:			
						 [Clearing conditions] DR is cleared to 0 when the chip undergoes a power-on reset 			
						 DR is cleared to 0 when all receive data are read after 1 is read from DR and then 0 is written. 			
						 DR is cleared to 0 when all receive data in SCFRDR are read by the DMAC or DTC. 			