E:XFL Renesas Electronics America Inc - <u>R5F72865N100FP#U2</u> Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	SH2A
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	CANbus, I ² C, SCI, SSU, USB
Peripherals	DMA, PWM, WDT
Number of I/O	101
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 12x12b, 2x8b
Oscillator Type	External
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP
Supplier Device Package	176-LFQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f72865n100fp-u2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Addressing Mode	Instruction Format	Effective Address Calculation	Equation
PC relative	disp:8	The effective address is the sum of PC value and the value that is obtained by doubling the sign- extended 8-bit displacement (disp).	$PC + disp \times 2$
		PC disp (sign-extended) 2	
	disp:12	The effective address is the sum of PC value and the value that is obtained by doubling the sign- extended 12-bit displacement (disp).	$PC + disp \times 2$
		PC disp (sign-extended)	
		2	
	Rn	The effective address is the sum of PC value and Rn.	PC + Rn
		PC + PC + Rn	
		Rn	

Bit	Bit Name	Initial Value	R/W	Description
15 to 11	_	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
10 to 8	STC[2:0]	011	R/W	Bus Clock (Bø) Frequency Division Ratio
				These bits specify the frequency division ratio of the bus clock.
				000: × 1
				001: × 1/2
				010: Setting prohibited
				011: × 1/4
				100: Setting prohibited
				101: × 1/8
				Others: Setting prohibited
7	_	0	R	Reserved
				This bit is always read as 0. The write value should always be 0.
6 to 4	IFC[2:0]	011	R/W	Internal Clock (I) Frequency Division Ratio
				These bits specify the frequency division ratio of the internal clock.
				000: × 1
				001: × 1/2
				010: Setting prohibited
				011: × 1/4
				100: Setting prohibited
				101: × 1/8
				Others: Setting prohibited
3		0	R	Reserved
				This bit is always read as 0. The write value should always be 0.

7.2 Input/Output Pin

Table 7.1 shows the pin configuration of the UBC.

Table 7.1Pin Configuration

Pin Name	Symbol	I/O	Function
UBC trigger	UBCTRG	Output	Indicates that a setting condition is satisfied on either channel 0, 1, 2, or 3 of the UBC.

Bit	Bit Name	Initial Value	R/W	Description						
21	SZSEL	0	R/W	MPX-I/O	Interface Bus V	Vidth Specificati	on			
				Specifies an address to select the bus width wh BSZ[1:0] of CS5BCR are specified as 11. This valid only when area 5 is specified as MPX-I/O set this bit to 0 in the SH7285 and SH7243.						
				0: Selects	s the bus width	by address A14				
				1: Selects	s the bus width	by address A21				
				The relati selected I	onship betwee by A14 or A21	n the SZSEL bit are summarized	and bus width below.			
				SZSEL	A14	A21	Bus Width			
				0	0	Not affected	8 bits			
				0	1	Not affected	16 bits			
				1	Not affected	0	8 bits			
				1	Not affected	1	16 bits			
20	MPXW	0	R/W	MPX-I/O	Interface Addre	ess Wait				
				This bit setting is valid only when area 5 is specified as MPX-I/O. Specifies the address cycle insertion wait for MPX-I/O interface.						
		0: Inserts no wait cycle								
				1: Inserts 1 wait cycle						
	BAS	0	R/W	SRAM wi	th Byte Selection	on Byte Access	Select			
				This bit setting is valid only when area 5 is specified as SRAM with byte selection.						
				Specifies the $\overline{\text{WRxx}}$ and RD/ $\overline{\text{WR}}$ signal timing when the SRAM interface with byte selection is used.						
		nal at the read ti gnal during the v	ming and write access							
				1: Asserts cycle a timing.	s the WRxx sig nd asserts the	nal during the re RD/WR signal a	ad access It the write			
19	_	0	R	Reserved						
				This bit is always be	always read a e 0.	s 0. The write va	alue should			

Pø	
TCNT input clock	
TCNT (underflow)	H'0000 H'FFFF
Underflow signal	
TCFU flag	
TCIU interrupt	

(4) Status Flag Clearing Timing

After a status flag is read as 1 by the CPU, it is cleared by writing 0 to it. When the DMAC is activated, the flag is cleared automatically. Figures 11.115 and 116 show the timing for status flag clearing by the CPU, and figure 11.117 shows the timing for status flag clearing by the DMAC.

Pø	TSR write cycle $ -T1 \rightarrow -T2 \rightarrow $
Address	TSR address
Write signal	
Status flag	
Interrupt request signal	

Figure 11.115 Timing for Status Flag Clearing by CPU (Channels 0 to 4)

Figure 16.21 Receive Data Sampling Timing in Asynchronous Mode

The receive margin in asynchronous mode can therefore be expressed as shown in equation 1. **Equation 1:**

$$M = \left| (0.5 - \frac{1}{2N}) - (L - 0.5) F - \frac{|D - 0.5|}{N} (1+F) \right| \times 100 \%$$

Where: M: Receive margin (%)

N: Ratio of bit rate to clock (N = 16)

D: Clock duty (D = 0 to 1.0)

L: Frame length (L = 9 to 12)

F: Absolute deviation of clock frequency

From equation 1, if F = 0 and D = 0.5, the receive margin is 46.875%, as given by equation 2. Equation 2:

When D = 0.5 and F = 0: M = $(0.5 - 1/(2 \times 16)) \times 100\%$ = 46.875%

This is a theoretical value. A reasonable margin to allow in system designs is 20% to 30%.

Figure 19.23 Bit Synchronous Circuit Timing

20.3.1 A/D Control Registers 0 to 2 (ADCR_0 to ADCR_2)

ADCR is an 8-bit readable/writable register that selects A/D conversion mode and others.

			Bit:	7	6	5	4	3	2	1	0				
				ADST	ADCS	ACE	ADIE	-	-	TRGE	EXTRG				
		Initial	value:	0	0	0	0	0	0	0	0				
			R/W:	R/W	R/W	R/W	R/W	R	R	R/W	R/W				
		I													
Bit	Bit Name	Value		R/W	D	escrii	otion								
7	ADST	0					urt								—
1	ADST	0		H/ VV	A/	D 518					-				
					W	hen t	his bit	is clea	ared t	0 0, A	/D con	versio	n is sto	opped	
					ar				ter en	nters tr	ne lale	state.	vvnen	this dit	
					m	ode t	his hit	is aut	omati	ically (cleared.	in Sing 1 to 0 t	when A		1
					cc	onvers	sion er	nds on	the s	selecte	ed sinc	ile cha	nnel. I	n	
					СС	ontinu	ous so	an mo	ode, A	VD co	nversi	on is c	ontinu	ously	
					pe	erform	ed for	the se	electe	ed cha	nnels	in seqi	uence	until this	s
					bi	t is cle	eared	oy sof	tware	, a res	set, or	in soft	ware s	tandby	
					m	ode.									
6	ADCS	0		R/W	A/	D Co	ntinuo	us Sca	an						
					Se m	Selects either a single-cycle or a continuous scan in scan mode. This bit is valid only when scan mode is selected.									۱
					0:	Singl	e-cycl	e scar	า	,					
					1:	Cont	inuous	scan							
					W	hen c	hangi	ng the	oper	ating I	node,	first cl	ear the	ADST	
					bi	t to 0.	Ũ		•	C					
5	ACE	0		R/W	Aı	utoma	tic Cle	ear En	able						
Enables or disables the automatic clearin ADDR is read by the CPU or DMAC. Whe to 1, ADDR is automatically cleared to H'0 CPU or DMAC reads ADDR. This functior detection of any renewal failures of ADDF							ering When o H'00 oction a DDR.	of ADE this bi 00 afte allows	DR after t is set er the the	ŗ					
					0:	Auto disab	matic o led.	clearir	ng of A	ADDR	after l	being r	read is		
					1:	Auto	matic o	clearir	ng of A	ADDR	after l	being r	read is	enable	d.

• Port A Control Register L3 (PACRL3)

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-	PA	\11MD[2	:0]	-	PA	10MD[2	:0]	-	F	PA9MD[2	:0]	-	P	A8MD[2:	0]
Initial value:	0	0	0	0*	0	0	0	0*	0	0	0	0	0	0	0	0*
R/W:	R	R/W	R/W	R/W	R	R/W	R/W	R/W	R	R/W	R/W	R/W	R	R/W	R/W	R/W

Note: * The initial value is 1 during the on-chip ROM disabled 32-bit external extension mode

		Initial		
Bit	Bit Name	Value	R/W	Description
15	_	0	R	Reserved
				This bit is always read as 0. The write value should always be 0.
14 to 12	PA11MD	000*	R/W	PA11 Mode
	[2:0]			Select the function of the PA11/WRHH /DQMUU/AH pin.
				000: PA11 I/O (port)
				001: WRHH output, DQMUU output and AH output (BSC)
				010: Setting prohibited
				011: Setting prohibited
				100: Setting prohibited
				101: Setting prohibited
				110: Setting prohibited
				111: Setting prohibited
11	_	0	R	Reserved
				This bit is always read as 0. The write value should always be 0.

• Port B Control Register L2 (PBCRL2)

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-	P	B7MD[2:	0]	-	Р	B6MD[2:	0]	-	-	-	-	-	-	-	-
Initial value:	0	0	0	0*	0	0	0	0*	0	0	0	0	0	0	0	0
R/W:	R	R/W	R/W	R/W	R	R/W	R/W	R/W	R	R	R	R	R	R	R	R

Note: * The initial value is 1 during the on-chip ROM disabled external extension mode.

		Initial		
Bit	Bit Name	Value	R/W	Description
15	_	0	R	Reserved
				This bit is always read as 0. The write value should always be 0.
14 to 12	PB7MD[2:0]	000*	R/W	PB7 Mode
				Select the function of the PB7/A19/BREQ/IRQ6/POE4/TXD0 pin.
				000: PB7 I/O (port)
				001: A19 output (BSC)
				010: BREQ output (BSC)
				011: IRQ6 input (INTC)
				100: POE4 I/O (POE2)
				101: TXD0 output (SCI)
				110: Setting prohibited
				111: Setting prohibited
11	_	0	R	Reserved
				This bit is always read as 0. The write value should always be 0.

Bit	Bit Name	Initial Value	R/W	Description
6 to 4		000*	R/W	PC13 Mode
0104		000	10,00	Select the function of the PC13/A13/IBO0 nin
				000· PC13 I/O (port)
				001: A12 output (BSC)
				010: Sotting prohibited
				010. Setting prohibited
				100: Cetting prohibited
				100: Setting prohibited
				110: Setting prohibited
				111: Setting prohibited
3	—	0	R	Reserved
				This bit is always read as 0. The write value should always be 0.
2 to 0	PC12MD[2:0]	000*	R/W	PC12 Mode
				Select the function of the PC12/A12 pin.
				000: PC12 I/O (port)
				001: A12 output (BSC)
				010: Setting prohibited
				011: Setting prohibited
				100: Setting prohibited
				101: Setting prohibited
				110: Setting prohibited
				111: Setting prohibited

Note: * The initial value is 1 during the on-chip ROM disabled external extension mode.

Figure 25.26 Example of DTC Transfer for Bulk-IN Transfer (EP2) (When Transmit Data Size is Determined Before Receiving IN Token)

(2) Programming/Erasing Initialization

The on-chip programming/erasing program to be downloaded includes the initialization program.

The specified period pulse must be applied when programming or erasing. The specified pulse width is made by the method in which wait loop is configured by the CPU instruction. The operating frequency of the CPU must be set. Since the user branch function is supported, the user branch destination address must be set.

The initial program is set as a parameter of the programming/erasing program which has downloaded these settings.

(2.1) Flash Programming/Erasing Frequency Parameter (FPEFEQ: General Register R4 of CPU)

This parameter sets the operating frequency of the CPU.

For the operating frequency of this LSI, see section 31.3.1, Clock Timing.

Bit:	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial value: R/W:	- R/W															
Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	F15	F14	F13	F12	F11	F10	F9	F8	F7	F6	F5	F4	F3	F2	F1	F0
Initial value: R/W:	- R/W															

(2) Programming Procedure in User Program Mode

The procedures for download, initialization, and programming are shown in figure 26.13.

Figure 26.13 Programming Procedure

The details of the programming procedure are described below. The procedure program must be executed in an area other than the flash memory to be programmed. Especially the part where the SCO bit in FCCS is set to 1 for downloading must be executed in the on-chip RAM. Specify $I\phi = B\phi = P\phi$ as the frequency division ratio of an internal clock (I ϕ), a bus clock (B ϕ), and a peripheral clock (P ϕ) through the frequency control register (FRQCR).

After downloading has been completed and the SCO bit has been cleared to 0, FRQCR can be changed to a desired value.

(2) Interrupts during Programming/Erasing

Do not generate NMI, IRQ, and all other interrupts during programming/erasing of the downloaded on-chip program.

26.7.3 Other Notes

(1) Download Time of On-Chip Program

The programming program that includes the initialization routine and the erasing program that includes the initialization routine are each 3 Kbytes or less. Accordingly, when the CPU clock frequency is 40 MHz, the download for each program takes approximately 10 ms at maximum.

(2) User Branch Processing Intervals

The intervals for executing the user branch processing differs in programming and erasing. The processing phase also differs. Table 26.11 lists the maximum and minimum intervals for initiating the user branch processing when the CPU clock frequency is 40 MHz.

Processing Name	Maximum Interval
Programming	1.6 ms
Erasing	12 ms

Table 26.11 Initiation Intervals of User Branch Processing

However, when operation is done with CPU clock of 40 MHz, maximum and minimum values of the time until first user branch processing are as shown in table 26.12.

Table 26.12 Initial User Branch Processing Time

Processing Name	Maximum
Programming	1.6 ms
Erasing	12 ms

(3) Write to Flash-Memory Related Registers by DMAC

While an instruction in on-chip RAM is being executed, the DMAC can write to the SCO bit in FCCS that is used for a download request or FMATS that is used for MAT switching. Make sure that these registers are not accidentally written to, otherwise an on-chip program may be downloaded and destroy RAM or a MAT switchover may occur and the CPU get out of control.

(2) Bit-Rate Matching State

In bit-rate matching, the boot program measures the low-level intervals in a signal carrying H'00 data that is transmitted by the host, and calculates the bit rate from this. The bit rate can be changed by the new-bit-rate selection command. On completion of bit-rate matching, the boot program goes to the inquiry and selection state. The sequence of processing in bit-rate matching is shown in figure 26.22.

Figure 26.22 Sequence of Bit-Rate Matching

(3) Communications Protocol

Formats in the communications protocol between the host and boot program after completion of the bit-rate matching are as follows.

1. One-character command or one-character response

A command or response consisting of a single character used for an inquiry or the ACK code indicating normal completion.

2. n-character command or n-character response

A command or response that requires n bytes of data, which is used as a selection command or response to an inquiry. The length of programming data is treated separately below.

3. Error response

Response to a command in case of an error: two bytes, consisting of the error response and error code.

Bit	Bit Name	Initial Value	R/W	Description
2	RAMWE2	1	R/W	RAM Write Enable 2 (corresponding RAM addresses: H'FFF84000 to H'FFF85FFF)
				0: On-chip RAM write disabled
				1: On-chip RAM write enabled
				Note: Write 1 to this bit in the SH7243.
1	RAMWE1	1	R/W	RAM Write Enable 1 (SH7286/SH7285: H'FFF82000 to H'FFF83FFF, SH7243: H'FFF82000 to H'FFF82FFF)
				0: On-chip RAM write disabled
				1: On-chip RAM write enabled
0	RAMWE0	1	R/W	RAM Write Enable 0 (corresponding RAM addresses: H'FFF80000 to H'FFF81FFF)
				0: On-chip RAM write disabled
				1: On-chip RAM write enabled

30.2 Register Bits

Module Name	Register Abbreviation	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
CPG	FRQCR	—	—	—	—	—		STC[2:0]			
		—		IFC[2:0]			PFC[2:0]				
	MCLKCR	—	—	—	—	—	_	MSDI	/S[1:0]		
	ACLKCR	_	—	—	—	—	-	ASDIV	/S[1:0]		
	OSCCR	—	_	_	_	_	OSCSTOP		OSCERS		
INTC	ICR0	NMIL	_	_	_	_			NMIE		
		—	—	—	—	—	_	_	—		
	ICR1	IRQ71S	IRQ70S	IRQ61S	IRQ60S	IRQ51S	IRQ50S	IRQ41S	IRQ40S		
		IRQ31S	IRQ30S	IRQ21S	IRQ20S	IRQ11S	IRQ10S	IRQ01S	IRQ00S		
	IRQRR	—	—	—	—	—	_	_	—		
		IRQ7F	IRQ6F	IRQ5F	IRQ4F	IRQ3F	IRQ2F	IRQ1F	IRQ0F		
	IBCR	E15	E14	E13	E12	E11	E10	E9	E8		
		E7	E6	E5	E4	E3	E2	E1	—		
	IBNR	BE[1:0]	BOVE	—	—	_	_	—		
		—	—	—	—		BN[3:0]				
	IPR01		IR	Q0		IRQ1					
			IR	Q2		IRQ3					
	IPR02		IR	Q4		IRQ5					
			IR	Q6			IRQ7				
	IPR05	—	—	—	—	—	—	—	—		
			A	010		ADI1					
	IPR06		DM	AC0		DMAC1					
			DM	AC2		DMAC3					
	IPR07		DM	AC4		DMAC5					
			DM	AC6		DMAC7					
	IPR08		CN	1T0			CN	1T1			
			B	SC		WDT					
	IPR09		MT	U0			MT	U0			
			MT	·U1			MT	Ū1			
	IPR10		MT	U2			MT	U2			
			MT	U3			MT	U3			
	IPR11		MT	⁻ U4			MT	⁻ U4			
			МТ	Ū5		POE2					

31.2 DC Characteristics

Tables 31.2 and 31.3 list DC characteristics.

Table 31.2 DC Characteristics (1) [Common Items]

Conditions: $Ta = -20^{\circ}C$ to +85°C (Consumer specifications), $Ta = -40^{\circ}C$ to +85°C (Industrial specifications)

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Power supply v	oltage	V _{cc}	3.0	5.0	5.5	V	
Analog power s	supply voltage	AV_{cc}	4.5	5.0	5.5	V	
USB power sup	oply* ³	$\mathrm{DrV}_{\mathrm{cc}}$	3.0	3.3	3.6	V	
Supply current* ¹	Normal operation	I _{cc}	_	155	180	mA	Iφ = 100 MHz Bφ = 50 MHz Pφ = 50 MHz (SH7286, SH7285)
		I _{cc}	_	125	140	mA	$I\phi = 100 \text{ MHz}$ $B\phi = 50 \text{ MHz}$ $P\phi = 50 \text{ MHz}$ (SH7243)
	Software standby mode	l _{stby}	_	10	20	mA	$V_{cc} = 5.0 V$
	Sleep mode	sleep	_	80	120	mA	SH7286 SH7285
				70	100		SH7243
Input leakage current	All input pins	_{in}	_	_	1	μΑ	$V_{in} = 0.5 \text{ to } V_{cc} - 0.5 \text{ V}$
Three-state leakage current	Input/output pins, all output pins (off state)	_{sti}	_	_	1	μA	$V_{in} = 0.5$ to $V_{cc} - 0.5$ V
Input capacitance	All pins	C _{in}	_	_	20	pF	
Analog power supply current	During A/D or D/A conversion	Al _{cc}	_	3.0	5.0	mA	Per 1 module
	Waiting for A/D or D/A conversion	_	_	30	50	μA	Per 1 module

G

General illegal instructions	. 113
General registers	23
Global base register (GBR)	25

H

Halt mode	1083
Hardware protection	1466
H-UDI commands	1542
H-UDI interrupt 133,	1545
H-UDI related pin timing	1680
H-UDI reset	1545

I

I/O port timing	1679
I/O ports	1295
I ² C bus format	958
I ² C bus interface 3 (IIC3)	939
ID Reorder	1052
IIC3 module timing	1677
Immediate data	32
Immediate data accessing	32
Immediate data format	
Initial user branch processing time	1472
Initial values of control registers	27
Initial values of general registers	27
Initial values of system registers	27
Initiation intervals of user branch	
processing	1472
Input sampling and A/D conversion	
time	1013
Instruction features	30
Instruction format	39
Instruction set	43
Integer division instructions	113
Interrupt controller (INTC)	119
Interrupt exception handling	110

J

Jump	table	base	register	(TBR)	25
------	-------	------	----------	-------	----

L

Load-store architecture	
Local acceptance filter mask	
(LAFM)	1049
Location of transfer information and	
DTC vector table	210
Logic operation instructions	

Μ

Mailbox104	0
Mailbox control104	0
Mailbox structure	4
Manual reset104, 151	8
Master receive operation96	1
Master transmit operation95	9
MCU extension mode	4
MCU operating modes	3
Message control field 104	5
Message data fields 105	0
Message receive sequence 109	0
Message transmission sequence108	7
Micro processor interface (MPI)104	0
Module standby function153	6
Module standby mode	
setting	6
MPX-I/O interface	8
MTU2 functions	2
MTU2 interrupts	5