E·XFL Renesas Electronics America Inc - <u>R5F72867N100FA#U2 Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	SH2A
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	CANbus, I ² C, SCI, SSU, USB
Peripherals	DMA, PWM, WDT
Number of I/O	101
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 12x12b, 2x8b
Oscillator Type	External
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP
Supplier Device Package	176-LFQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f72867n100fa-u2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Secti	on 31	Electrical Characteristics	
31.1	Absolu	te Maximum Ratings	
31.2	DC Cha	aracteristics	
31.3	AC Cha	aracteristics	
	31.3.1	Clock Timing	
	31.3.2	Control Signal Timing	
	31.3.3	Bus Timing	
	31.3.4	UBC Trigger Timing	
	31.3.5	DMAC Module Timing	
	31.3.6	Multi Function Timer Pulse Unit 2 (MTU2) Timing	
	31.3.7	Multi Function Timer Pulse Unit 2S (MTU2S) Timing	
	31.3.8	POE2 Module Timing	
	31.3.9	Watchdog Timer Timing	
	31.3.10		
	31.3.11	SCIF Module Timing	
	31.3.12		
	31.3.13	Controller Area Network (RCAN-ET) Timing	
	31.3.14	IIC3 Module Timing	
	31.3.15	-	
	31.3.16	I/O Port Timing	
	31.3.17	H-UDI Related Pin Timing	
	31.3.18	AC Characteristics Measurement Conditions	
31.4	A/D Co	onverter Characteristics	
31.5	D/A Co	onverter Characteristics	
31.6	USB C	haracteristics	
31.7	Flash M	Iemory Characteristics	
31.8		Notes	
	31.8.1	Notes on Connecting Capacitors	
Appe	endix		
A.		tes	
B.	Product	t Code Lineup	
C.		e Dimensions	
Main	Revisi	ons and Additions in this Edition	
Index	κ		

Page xxx of xxx

RENESAS

7.4.3 Break on Data Access Cycle

- 1. If the C bus is specified as a break condition for data access break, condition comparison is performed for the virtual address accessed by the executed instructions, and a break occurs if the condition is satisfied. If the I bus is specified as a break condition, condition comparison is performed for the physical address of the data access cycles that are issued by the bus master specified by the bits to select the bus master of the I bus, and a break occurs if the condition is satisfied. For details on the CPU bus cycles issued on the I bus, see 6 in section 7.4.1, Flow of the User Break Operation.
- 2. The relationship between the data access cycle address and the comparison condition for each operand size is listed in table 7.3.

Table 7.3	Data Access Cycle Addres	ses and Operand Size (Comparison Conditions
-----------	--------------------------	------------------------	------------------------------

Access Size	Address Compared
Longword	Compares break address register bits 31 to 2 to address bus bits 31 to 2
Word	Compares break address register bits 31 to 1 to address bus bits 31 to 1
Byte	Compares break address register bits 31 to 0 to address bus bits 31 to 0

This means that when address H'00001003 is set in the break address register (BAR), for example, the bus cycle in which the break condition is satisfied is as follows (where other conditions are met).

Longword access at H'00001000 Word access at H'00001002 Byte access at H'00001003

3. If the data access cycle is selected, the instruction at which the break will occur cannot be determined.

9.5.2 Normal Space Interface

(1) Basic Timing

For access to a normal space, this LSI uses strobe signal output in consideration of the fact that mainly static RAM will be directly connected. When using SRAM with a byte-selection pin, see section 9.5.8, SRAM Interface with Byte Selection. Figure 9.2 shows the basic timings of normal space access. A no-wait normal access is completed in two cycles. The $\overline{\text{BS}}$ signal is asserted for one cycle to indicate the start of a bus cycle.

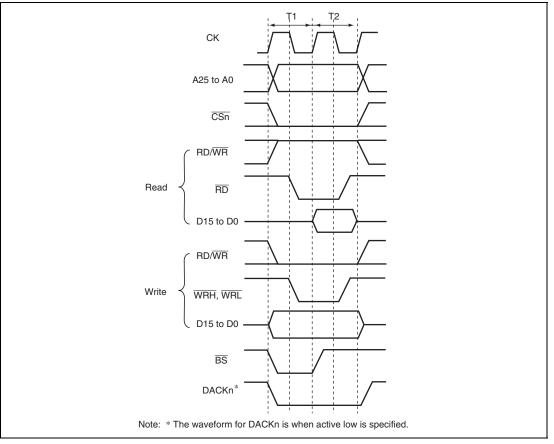


Figure 9.2 Normal Space Basic Access Timing (Access Wait 0)

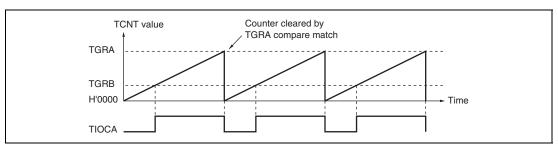


Figure 11.26 Example of PWM Mode Operation (1)

Figure 11.27 shows an example of PWM mode 2 operation.

In this example, synchronous operation is designated for channels 0 and 1, TGRB_1 compare match is set as the TCNT clearing source, and 0 is set for the initial output value and 1 for the output value of the other TGR registers (TGRA_0 to TGRD_0, TGRA_1), outputting a 5-phase PWM waveform.

In this case, the value set in TGRB_1 is used as the cycle, and the values set in the other TGRs are used as the duty levels.

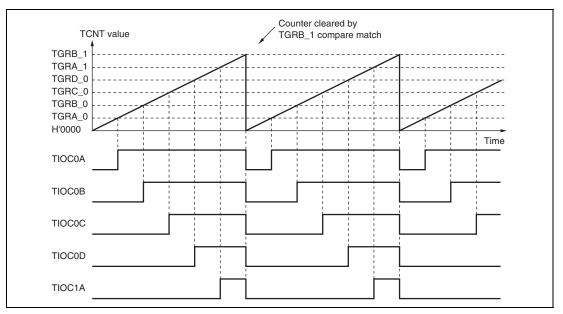


Figure 11.27 Example of PWM Mode Operation (2)

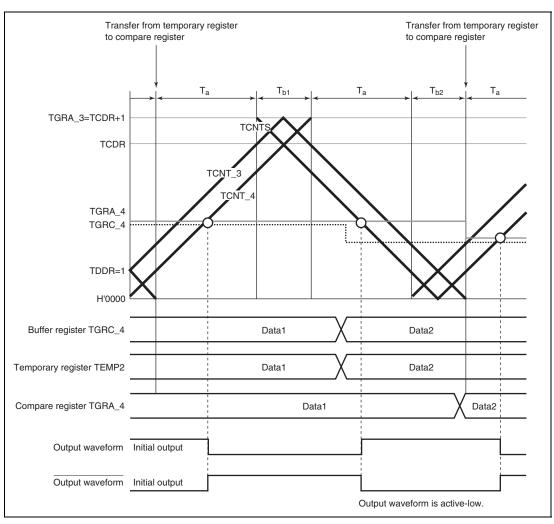


Figure 11.41 Example of Operation without Dead Time

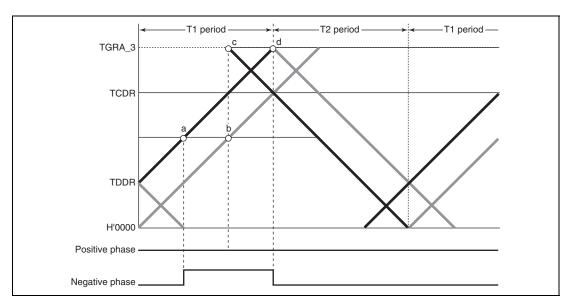


Figure 11.51 Example of Complementary PWM Mode 0% and 100% Waveform Output (3)

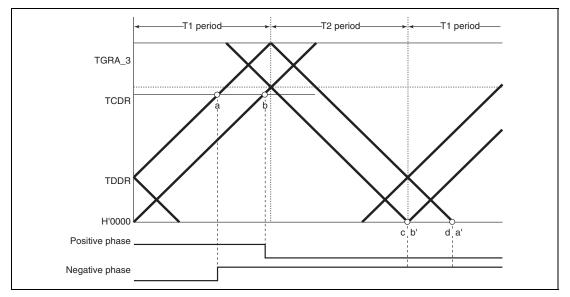


Figure 11.52 Example of Complementary PWM Mode 0% and 100% Waveform Output (4)

of the DMAC transfer may be generated even if the activation sources are cleared. Also, when transferring DMAC burst by MTU2, the setting of bus function extension register (BSCEHR) is required. See section 9.4.8, Bus Function Extending Register (BSCEHR), for details.

11.5.3 A/D Converter Activation

The A/D converter can be activated by one of the following three methods in the MTU2. Table 11.58 shows the relationship between interrupt sources and A/D converter start request signals.

(1) A/D Converter Activation by TGRA Input Capture/Compare Match or at TCNT_4 Trough in Complementary PWM Mode

The A/D converter can be activated by the occurrence of a TGRA input capture/compare match in each channel. In addition, if complementary PWM operation is performed while the TTGE2 bit in TIER_4 is set to 1, the A/D converter can be activated at the trough of TCNT_4 count (TCNT_4 = H'0000).

A/D converter start request signal TRGAN is issued to the A/D converter under either one of the following conditions.

- When the TGFA flag in TSR is set to 1 by the occurrence of a TGRA input capture/compare match on a particular channel while the TTGE bit in TIER is set to 1
- When the TCNT_4 count reaches the trough (TCNT_4 = H'0000) during complementary PWM operation while the TTGE2 bit in TIER_4 is set to 1

When either condition is satisfied, if A/D converter start signal TRGAN from the MTU2 is selected as the trigger in the A/D converter, A/D conversion will start.

(2) A/D Converter Activation by Compare Match between TCNT_0 and TGRE_0

The A/D converter can be activated by generating A/D converter start request signal TRG0N when a compare match occurs between TCNT_0 and TGRE_0 in channel 0.

When the TGFE flag in TSR2_0 is set to 1 by the occurrence of a compare match between TCNT_0 and TGRE_0 in channel 0 while the TTGE2 bit in TIER2_0 is set to 1, A/D converter start request TGR0N is issued to the A/D converter. If A/D converter start signal TGR0N from the MTU2 is selected as the trigger in the A/D converter, A/D conversion will start.

11.7.6 Contention between TGR Write and Compare Match

If a compare match occurs in the T2 state of a TGR write cycle, the TGR write is executed and the compare match signal is also generated.

Figure 11.123 shows the timing in this case.

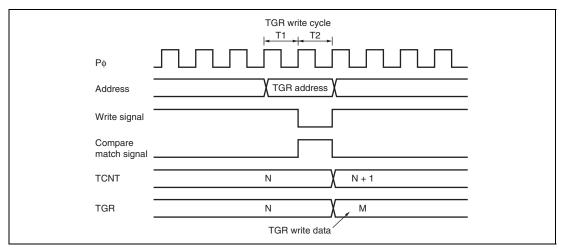
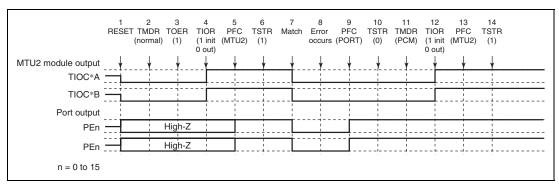



Figure 11.123 Contention between TGR Write and Compare Match

(4) Operation when Error Occurs during Normal Mode Operation, and Operation is Restarted in Phase Counting Mode

Figure 11.142 shows an explanatory diagram of the case where an error occurs in normal mode and operation is restarted in phase counting mode after re-setting.

1 to 10 are the same as in figure 11.139.

- 11. Set phase counting mode.
- 12. Initialize the pins with TIOR.
- 13. Set MTU2 output with the PFC.
- 14. Operation is restarted by TSTR.
- Note: Phase counting mode can only be set for channels 1 and 2, and therefore TOER setting is not necessary.

Register Name	Abbrevia- tion	R/W	Initial value	Address	Access Size
Timer counter U_5S	TCNTU_5S	R/W	H'0000	H'FFFE4880	16, 32
Timer general register U_5S	TGRU_5S	R/W	H'FFFF	H'FFFE4882	16
Timer control register U_5S	TCRU_5S	R/W	H'00	H'FFFE4884	8
Timer I/O control register U_5S	TIORU_5S	R/W	H'00	H'FFFE4886	8
Timer counter V_5S	TCNTV_5S	R/W	H'0000	H'FFFE4890	16, 32
Timer general register V_5S	TGRV_5S	R/W	H'FFFF	H'FFFE4892	16
Timer control register V_5S	TCRV_5S	R/W	H'00	H'FFFE4894	8
Timer I/O control register V_5S	TIORV_5S	R/W	H'00	H'FFFE4896	8
Timer counter W_5S	TCNTW_5S	R/W	H'0000	H'FFFE48A0	16, 32
Timer general register W_5S	TGRW_5S	R/W	H'FFFF	H'FFFE48A2	16
Timer control register W_5S	TCRW_5S	R/W	H'00	H'FFFE48A4	8
Timer I/O control register W_5S	TIORW_5S	R/W	H'00	H'FFFE48A6	8
Timer status register_5S	TSR_5S	R/W	H'00	H'FFFE48B0	8
Timer interrupt enable register_5S	TIER_5S	R/W	H'00	H'FFFE48B2	8
Timer start register_5S	TSTR_5S	R/W	H'00	H'FFFE48B4	8
Timer compare match clear register S	TCNTCMPCLRS	R/W	H'00	H'FFFE48B6	8

Note: * For detailed register descriptions, refer to section 11.3.9, Timer Synchronous Clear Register S (TSYCRS), and figure 11.85 in section 11, Multi-Function Timer Pulse Unit 2 (MTU2).

18.2 Input/Output Pins

Table 18.1 shows the SSU pin configuration.

Table 18.1 Pin Configuration

Symbol	I/O	Function
SSCK	I/O	SSU clock input/output
SSI	I/O	SSU data input/output
SSO	I/O	SSU data input/output
SCS	I/O	SSU chip select input/output

When RCAN-ET recognises the end of the Arbitration field while receiving a message, it starts comparing the received identifier to the identifiers set in the Mailboxes, starting from Mailbox-15 down to Mailbox-0. It first checks the MBC if it is configured as a receive box, and reads LAFM, and reads the CAN-ID of Mailbox-15 (if configured as receive) to finally compare them to the received ID. If it does not match, the same check takes place at Mailbox-14 (if configured as receive). Once RCAN-ET finds a matching identifier, it stores the number of Mailbox-[N] into an internal buffer, stops the search, and goes back to idle state, waiting for the EndOfFrame (EOF) to come. When the 6^{th} bit of EOF is notified by the CAN Interface logic, the received message is written or abandoned, depending on the NMC bit. No modification of configuration during communication is allowed. Entering Halt Mode is one of ways to modify configuration. If it is written into the corresponding Mailbox, including the CAN-ID, i.e., there is a possibility that the CAN-ID is overwritten by a different CAN-ID of the received message due to the LAFM used. This also implies that, if the identifier of a received message matches to ID + LAFM of 2 or more Mailboxes, the higher numbered Mailbox will always store the relevant messages and the lower numbered Mailbox will never receive messages. Therefore, the settings of the identifiers and LAFMs need to be carefully selected.

With regards to the reception of data and remote frames described in the above flow diagram the clearing of the UMSR flag after the reading of IRR is to detect situations where a message is overwritten by a new incoming message stored in the same mailbox while the interrupt service routine is running. If during the final check of UMSR a overwrite condition is detected the message needs to be discarded and read again.

In case UMSR is set and the Mailbox is configured for overrun (NMC = 0) the message is still valid, however it is obsolete as it is not reflecting the latest message monitored on the CAN Bus. Please access the full Mailbox content before clearing the related RXPR/RFPR flag.

Please note that in the case a received remote frame is overwritten by a data frame, both the remote frame request interrupt (IRR2) and data frame received interrupt (IRR1) and also the Receive Flags (RXPR and RFPR) are set. In an analogous way, the overwriting of a data frame by a remote frame, leads to setting both IRR2 and IRR1.

In the Overrun Mode (NMC = '0'), only the first Mailbox will cause the flags to be asserted. So, if a Data Frame is initially received, then RXPR and IRR1 are both asserted. If a Remote Frame is then received before the Data Frame has been read, then RFPR and IRR2 are NOT set. In this case UMSR of the corresponding Mailbox will still be set.

• Port A Control Register L1 (PACRL1)

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[-	P	A3MD[2:	0]	-	P	A2MD[2:	0]	-	P	A1MD[2:	0]	-	P	A0MD[2:	0]
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R/W	R/W	R/W	R	R/W	R/W	R/W	R	R/W	R/W	R/W	R	R/W	R/W	R/W

		Initial		
Bit	Bit Name	Value	R/W	Description
15		0	R	Reserved
				This bit is always read as 0. The write value should always be 0.
14 to 12	PA3MD[2:0]	000	R/W	PA3 Mode
				Select the function of the PA3/ $\overline{CS3}$ /RXD1/SSI/TMS pin. When using E10A ($\overline{ASEMD0} = L$), these bits are fixed to TMS input.
				000: PA3 I/O (port)
				001: CS3 output (BSC)
				010: Setting prohibited
				011: Setting prohibited
				100: Setting prohibited
				101: RXD1 input (SCI)
				110: Setting prohibited
				111: SSI I/O (SSU)
11	_	0	R	Reserved
				This bit is always read as 0. The write value should always be 0.

Bit	Bit Name	Initial Value	R/W	Description
10 to 8	PB6MD[2:0]	000*	R/W	PB6 Mode
				Select the function of the PB6/A18/BACK/IRQ5/POE3/RXD0 pin.
				000: PB6 I/O (port)
				001: A18 output (BSC)
				010: BACK input (BSC)
				011: IRQ5 input (INTC)
				100: POE3 I/O (POE2)
				101: RXD0 input (SCI)
				110: Setting prohibited
				111: Setting prohibited
7 to 0	_	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.

Note: * The initial value is 1 during the on-chip ROM disabled external extension mode.

• Port B Control Register L1 (PBCRL1)

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-	Р	B3MD[2:	0]	-	P	B2MD[2:	0]	-	Р	B1MD[2:	0]	-	P	B0MD[2:	0]
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0*	0	0	0	0*
R/W:	R	R/W	R/W	R/W	R	R/W	R/W	R/W	R	R/W	R/W	R/W	R	R/W	R/W	R/W

Note: * The initial value is 1 during the on-chip ROM disabled external extension mode.

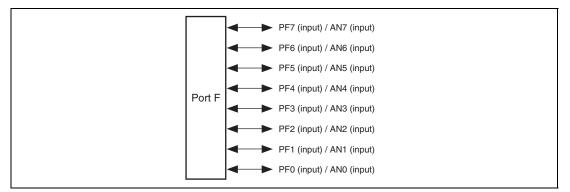
Bit	Bit Name	Initial Value	R/W	Description
15	—	0	R	Reserved
				This bit is always read as 0. The write value should always be 0.

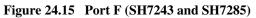
Bit	Bit Name	Initial Value	R/W	Description
7		0	R	Reserved
				This bit is always read as 0. The write value should always be 0.
6 to 4	PC5MD[2:0]	000*	R/W	PC5 Mode
				Select the function of the PC5/A5 pin.
				000: PC5 I/O (port)
				001: A5 output (BSC)
				010: Setting prohibited
				011: Setting prohibited
				100: Setting prohibited
				101: Setting prohibited
				110: Setting prohibited
				111: Setting prohibited
3		0	R	Reserved
				This bit is always read as 0. The write value should always be 0.
2 to 0	PC4MD[2:0]	000*	R/W	PC4 Mode
				Select the function of the PC4/A4 pin.
				000: PC4 I/O (port)
				001: A4 output (BSC)
				010: Setting prohibited
				011: Setting prohibited
				100: Setting prohibited
				101: Setting prohibited
				110: Setting prohibited
				111: Setting prohibited

Note: * The initial value is 1 during the on-chip ROM disabled external extension mode.

PBPRL (SH7285) . Bit: 15 7 14 13 12 10 9 8 6 5 3 2 1 0 11 4 PB12 PB11 PR PB10 PB9 PR PB8 PR PB7 PB6 PB3 PR PB2 PR PB1 PB0 --_ _ _ PR PR PR PR PR PR 0 0 0 0 0 Initial value: * * * * * * * * * * * R/W: R R R R R R R R R R R R R R R R Initial Bit Bit Name Value R/W Description 15 to 13 All 0 R Reserved These bits are always read as 0 and cannot be modified. 12 PB12PR Pin state R The pin state is returned regardless of the PFC setting. These bits cannot be modified. 11 PB11PR Pin state R 10 PB10PR Pin state R 9 R PB9PR Pin state 8 Pin state R PB8PR 7 PB7PR Pin state R 6 PB6PR Pin state R 5,4 ____ All 0 R Reserved These bits are always read as 0 and cannot be modified. З PB3PR Pin state R The pin state is returned regardless of the PFC setting. These bits cannot be modified. 2 PB2PR Pin state R 1 PB1PR Pin state R 0 PB0PR Pin state R

24.5.3 Port E Port Register L (PEPRL)


PEPRL is a 16-bit read-only register, which always return the states of the pins regardless of the PFC setting. In SH7243, SH7285 and SH7286, bits PE15PR to PE0PR correspond to pins PE15 to PE0 respectively (description of multiplexed functions are abbreviated here).


Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	PE15 PR	PE14 PR	PE13 PR	PE12 PR	PE11 PR	PE10 PR	PE9 PR	PE8 PR	PE7 PR	PE6 PR	PE5 PR	PE4 PR	PE3 PR	PE2 PR	PE1 PR	PE0 PR
Initial value:	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
R/W:	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

		Initial		
Bit	Bit Name	Value	R/W	Description
15	PE15PR	Pin state	R	The pin state is returned regardless of the PFC setting.
14	PE14PR	Pin state	R	These bits cannot be modified.
13	PE13PR	Pin state	R	-
12	PE12PR	Pin state	R	-
11	PE11PR	Pin state	R	-
10	PE10PR	Pin state	R	-
9	PE9PR	Pin state	R	-
8	PE8PR	Pin state	R	-
7	PE7PR	Pin state	R	
6	PE6PR	Pin state	R	_
5	PE5PR	Pin state	R	-
4	PE4PR	Pin state	R	-
3	PE3PR	Pin state	R	-
2	PE2PR	Pin state	R	-
1	PE1PR	Pin state	R	-
0	PE0PR	Pin state	R	-

24.6 Port F

Port F in SH7243 and SH7285 is an I/O port with 8 pins shown in figure 24.15.

Port F in SH7286 is an I/O port with 12 pins shown in figure 24.16.

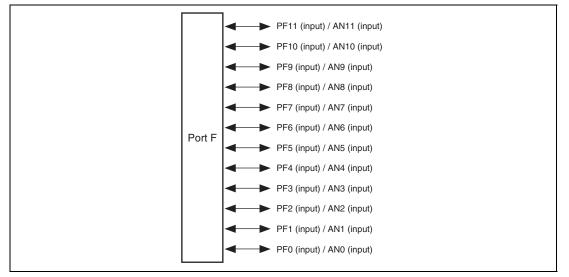


Figure 24.16 Port F (SH7286)

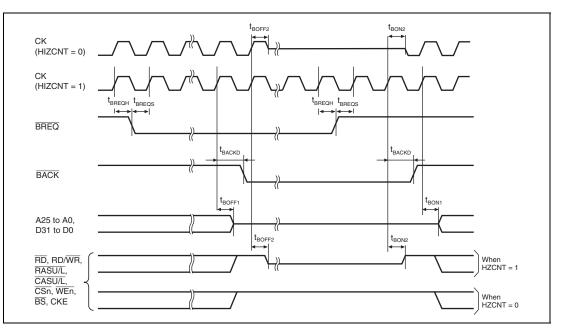


Figure 31.8 Bus Release Timing

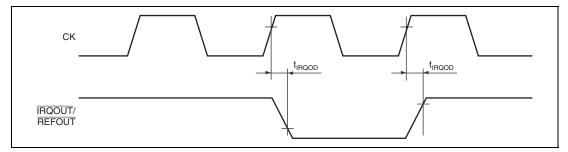
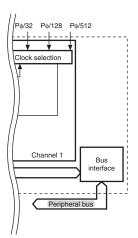



Figure 31.9 Interrupt Signal Output Timing

Page Revision (See Manual for Details)

Figure 14.1 Block Diagram of 733 Amended CMT

Table 14.2 Interrupt Sources	740	Added		
Figure 15.1 Block Diagram of WDT	746	Amended Bus interface Peripheral bus		
15.3.2 Watchdog Timer Control/Status Register (WTCSR)	749	Added WTCSR is initialized to H'18 by a power-on reset caused by the RES pin, an internal reset caused by the WDT, or in software standby mode.		
15.4.2 Using Watchdog Timer Mode	756	 Added 7. Since WTCSR is initialized by an internal reset caused by the WDT, the TME bit in WTCSR is cleared to 0. This makes the counter stop (be initialized). To use the WDT in watchdog timer mode again, after clearing the WOVF flag in WRCSR, set watchdog timer mode again. 		
15.5 Interrupt Source	759	Added		