E·X Renesas Electronics America Inc - <u>R7FS124763A01CFL#AA0 Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	CANbus, I ² C, SCI, SPI, UART/USART, USB
Peripherals	LVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 14x14b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LFQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r7fs124763a01cfl-aa0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RENESAS

S124 Microcontroller Group

Datasheet

Ultra-low power 32-MHz Arm[®] Cortex[®]-M0+ microcontroller, 128-KB code flash memory, 16-KB SRAM, Capacitive Touch Sensing Unit, 14-bit A/D Converter, 12-bit D/A Converter, security and safety features.

Features

Arm Cortex-M0+ Core

- Armv6-M architecture
- Maximum operating frequency: 32 MHz
- Debug and Trace: DWT, BPU, CoreSight™ MTB-M0+
- CoreSight Debug Port: SW-DP

Memory

- 128-KB code flash memory
- 4-KB data flash memory (100,000 erase/write cycles)
- Up to 16-KB SRAM
- 128-bit unique ID

Connectivity

- USB 2.0 Full-Speed Module (USBFS)
- On-chip transceiver with voltage regulator
 Compliant with USB Battery Charging Specification 1.2
- Serial Communications Interface (SCI) × 3
 - UART
 - Simple IIC
 - Simple SPI
- Serial Peripheral Interface (SPI) $\times 2$
- I²C bus interface (IIC) \times 2
- CAN module (CAN)

Analog

- 14-Bit A/D Converter (ADC14)
- 12-Bit D/A Converter (DAC12)
- Low-Power Analog Comparator (ACMPLP) × 2
- Temperature Sensor (TSN)

Timers

- General PWM Timer 32-Bit (GPT32)
- General PWM Timer 16-Bit (GPT16) \times 6
- Asynchronous General-Purpose Timer (AGT) $\times\,2$
- Watchdog Timer (WDT)

Safety

- SRAM Parity Error Check
- Flash Area Protection
- ADC self-diagnosis function
- Clock Frequency Accuracy Measurement Circuit (CAC)
- Cyclic Redundancy Check (CRC) Calculator
- Data Operation Circuit (DOC)
- Port Output Enable for GPT (POEG)
- Independent Watchdog Timer (IWDT)
- GPIO Readback Level Detection
- Register Write Protection
- Main Oscillator Stop Detection

System and Power Management

- Low-power modes
- Realtime Clock (RTC)
- Event Link Controller (ELC)Data Transfer Controller (DTC)
- Key Interrupt Function (KINT)
- Power-on reset
- Low Voltage Detection with voltage settings

Security and Encryption

- AES128/256
- True Random Number Generator (TRNG)
- Human Machine Interface (HMI)
- Capacitive Touch Sensing Unit (CTSU)
- Multiple Clock Sources
 Main clock oscillator (MOSC)
 - Main clock oscillator (MOSC)
 (1 to 20 MHz when VCC = 2.4 to 5.5 V)
 (1 to 8 MHz when VCC = 1.8 to 5.5 V)
 (1 to 4 MHz when VCC = 1.6 to 5.5 V)
 - Sub-clock oscillator (SOSC) (32.768 kHz)
 - High-speed on-chip oscillator (HOCO)
 - (24, 32, 48, 64 MHz when VCC = 2.4 to 5.5 V) (24, 32, 48 MHz when VCC = 1.8 to 5.5 V) (24, 32 MHz when VCC = 1.6 to 5.5 V)
- Middle-speed on-chip oscillator (MOCO) (8 MHz)
- Low-speed on-chip oscillator (LOCO) (32.768 kHz)
- Independent watchdog timer OCO (15 kHz)
- Clock trim function for HOCO/MOCO/LOCOClock out support

- General Purpose I/O Ports
 - Up to 51 input/output pins - Up to 3 CMOS input
 - Up to 48 CMOS input/output
 - Up to 6 input/output 5 V tolerant
 - Up to 16 pins high current (20 mA)

Operating Voltage

VCC: 1.6 to 5.5 V

- Operating Temperature and Packages
- Ta = -40° C to $+85^{\circ}$ C
- 36-pin LGA (4 mm \times 4 mm, 0.5 mm pitch)
- $Ta = -40^{\circ}C \text{ to } +105^{\circ}C$
- 64-pin LQFP (10 mm \times 10 mm, 0.5 mm pitch)
- 48-pin LQFP (7 mm × 7 mm, 0.5 mm pitch)
- 64-pin QFN (8 mm × 8 mm, 0.4 mm pitch) - 48-pin QFN (7 mm × 7 mm, 0.5 mm pitch)
- 40-pin QFN (6 mm \times 6 mm, 0.5 mm pitch)

1. Overview

The MCU integrates multiple series of software- and pin-compatible Arm[®]-based 32-bit MCUs that share a common set of Renesas peripherals to facilitate design scalability and efficient platform-based product development.

Based on the energy-efficient Arm Cortex[®]-M0+ core, the MCU is particularly well suited for cost-sensitive and low-power applications with the following features:

- 128-KB code flash memory
- 16-KB SRAM
- Capacitive Touch Sensing Unit (CTSU)
- 14-bit A/D Converter (ADC14)
- 12-bit D/A Converter (DAC12)
- Security features.

1.1 Function Outline

Table 1.1 Arm core

Feature	Functional description
Arm Cortex-M0+	 Maximum operating frequency: up to 32 MHz Arm Cortex-M0+: Revision: r0p1-00rel0 Armv6-M architecture profile Single-cycle integer multiplier. SysTick timer Driven by SYSTICCLK (LOCO) or ICLK.

Table 1.2 N	lemory
-------------	--------

Feature	Functional description		
Code flash memory	Maximum 128 KB code flash memory. See section 37, Flash Memory in User's Manual.		
Data flash memory	4 KB data flash memory. See section 37, Flash Memory in User's Manual.		
Option-setting memory	The option-setting memory determines the state of the MCU after a reset. See section 6, Option-Setting Memory in User's Manual.		
SRAM	On-chip high-speed SRAM with even parity bit. See section 36, SRAM in User's Manual.		

Table 1.3 System (1 of 2)

Feature	Functional description		
Operating mode	Two operating modes: • Single-chip mode • SCI boot mode. See section 3, Operating Modes in User's Manual.		
Reset	9 types of resets: • RES pin reset • Power-on reset • Independent watchdog timer reset • Watchdog timer reset • Voltage monitor 0 reset • Voltage monitor 1 reset • Voltage monitor 1 reset • Voltage monitor 2 reset • SRAM parity error reset • Software reset. • Software reset.		
Low Voltage Detection (LVD)	The Low Voltage Detection (LVD) monitors the voltage level input to the VCC pin and the detection level can be selected using a software program. See section 7, Low Voltage Detection (LVD) in User's Manual.		

Feature	Functional description
USB 2.0 Full-Speed Module (USBFS)	The MCU incorporates a USB 2.0 Full-Speed module (USBFS). The USBFS is a USB controller that is equipped to operate as a device controller. The module supports full-speed and low-speed transfer as defined in the Universal Serial Bus Specification 2.0. The module has an internal USB transceiver and supports all of the transfer types defined in the Universal Serial Bus Specification 2.0. The USB has buffer memory for data transfer, providing a maximum of 5 pipes. PIPE0 and PIPE4 to PIPE7 can be assigned any endpoint number based on the peripheral devices used for communication or based on the user system. The MCU supports revision 1.2 of the battery charging specification. Because the MCU can be powered at 5 V, the USB LDO regulator provides the internal USB transceiver power supply 3.3 V. See section 24, USB 2.0 Full-Speed Module (USBFS) in User's Manual.

Table 1.7Communication interfaces (2 of 2)

Table 1.8 Analog

Feature	Functional description	
14-bit A/D Converter (ADC14)	The MCU incorporates up to one unit of a 14-bit successive approximation A/D converter. Up to 18 analog input channels are selectable. Temperature sensor output and internal reference voltage are selectable for conversion. The A/D conversion accuracy is selectable from 12-bit and 14-bit conversion making it possible to optimize the tradeoff between speed and resolution in generating a digital value. See section 30, 14-Bit A/D Converter (ADC14) in User's Manual.	
12-bit D/A Converter (DAC12)	The MCU includes a 12-bit D/A converter with an output amplifier. See section 31, 12-Bit D/A Converter (DAC12) in User's Manual.	
Temperature Sensor (TSN)	The on-chip Temperature Sensor can be used to determine and monitor the die temperature for reliable operation of the device. The sensor outputs a voltage directly proportional to the die temperature, and the relationship between the die temperature and the output voltage is linear. The output voltage is provided to the ADC14 for conversion and can be further used by the end application. See section 32, Temperature Sensor (TSN) in User's Manual.	
Low-Power Analog Comparator (ACMPLP)	Analog comparators can be used to compare a reference input voltage and analog input voltage. The comparison result can be read by software and also be output externally. The reference input voltage can be selected from either an input to the CMPREFi (i = 0, 1) pin or from the internal reference voltage (Vref) generated internally in the MCU. The ACMPLP response speed can be set before starting an operation. Setting high-speed mode decreases the response delay time, but increases current consumption. Sete section 33, Low-Power Analog Comparator (ACMPLP) in User's Manual.	

Table 1.9 Human machine interfaces

Feature	Functional description
Capacitive Touch Sensing Unit (CTSU)	The Capacitive Touch Sensing Unit (CTSU) measures the electrostatic capacitance of the touch sensor. Changes in the electrostatic capacitance are determined by software, which enables the CTSU to detect whether a finger is in contact with the touch sensor. The electrode surface of the touch sensor is usually enclosed with an electrical insulator so that a finger does not come into direct contact with the electrode. See section 34, Capacitive Touch Sensing Unit (CTSU) in User's Manual.

Table 1.10 Data processing

Feature	Functional description
Cyclic Redundancy Check (CRC) Calculator	The Cyclic Redundancy Check (CRC) calculator generates CRC codes to detect errors in the data. The bit order of CRC calculation results can be switched for LSB first or MSB first communication. Additionally, various CRC generation polynomials are available. The snoop function allows monitoring reads from and writes to specific addresses. This function is useful in applications that require CRC code to be generated automatically in certain events, such as monitoring writes to the serial transmit buffer and reads from the serial receive buffer. See section 29, Cyclic Redundancy Check (CRC) Calculator in User's Manual.
Data Operation Circuit (DOC)	The Data Operation Circuit (DOC) is used to compare, add, and subtract 16-bit data. See section 35, Data Operation Circuit (DOC) in User's Manual.

Feature	Functional description
AES	See section 38, AES Engine in User's Manual
True Random Number Generator (TRNG)	See section 39, True Random Number Generator (TRNG) in User's Manual

1.2 Block Diagram

Figure 1.1 shows the block diagram of the MCU superset. Individual devices within the group may have a subset of the features.

Figure 1.1 Block diagram

1.3 Part Numbering

Figure 1.2 shows how to read the product part number, memory capacity, and package types. Table 1.12 shows a list of products.

1.4 Function Comparison

Table 1.13 Function comparison

Parts number		R7FS124773A01CFM/ R7FS124763A01CFM/ R7FS124773A01CNB/	R7FS124773A01CFL/ R7FS124763A01CFL/ R7FS124773A01CNE	R7FS124773A01CNF	R7FS124772A01CLM/ R7FS124762A01CLM	
Pin count		64	48	40	36	
Package		LQFP/QFN	LQFP/QFN	QFN	LGA	
Code flash memor	Code flash memory		128/6	64 KB		
Data flash memory	Data flash memory		4 KB			
SRAM			16	KB		
	Parity		4 KB			
System	CPU clock		32 1	MHz		
	ICU	Yes				
	KINT	8	5	5	4	
Event link	ELC	Yes				
DMA	DTC	Yes				
Timers	GPT32		1			
	GPT16	6	6	4	4	
	AGT	2	2	2	2	
	RTC	Yes				
	WDT/IWDT	Yes				
Communication	SCI	3				
	IIC	2				
	SPI	2				
	CAN	Yes				
	USBFS	Yes				
Analog	ADC14	18	14	12	11	
	DAC12	1				
	ACMPLP	2				
	TSN	Yes				
HMI	CTSU	31	23	17	13	
	KINT	8	5	5	4	
Data processing	CRC	Yes				
	DOC	Yes				
Security	Security AES and TRNG					

Figure 1.4 Pin assignment for QFN 64-pin (top view)

		Pin numbe	r					Tin	ners		Co	ommunicati	ion Interfac	es	Ana	logs	н	м
LQFP64, QFN64	LQFP48	QFN48	QFN40	LGA36	Power, System, Clock, Debug, CAC	I/O ports	AGT	GPT_OPS, POEG	СРТ	RTC	USBFS,CAN	sci	IIC	IdS	ADC14	DAC12, ACMPLP	CTSU	Interrupt
35	27	27	23	D5		P110		_A	_A		CRX0_A	CTS0_RT S0_C/ SS0_C/ RXD9_B/ MISO9_B/ SCL9_B		MISOB_B		VCOUT	TS11	IRQ3
36	28	28	24	D6		P111			GTIOC3A _A			SCK0_C/ SCK9_B		RSPCKB_ B			TS12	IRQ4
37	29	29	25	C6		P112			GTIOC3B _A			TXD0_C/ MOSI0_C/ SDA0_C					TSCAP_C	
38	-	-	-	-		P113												
39	30	30	-	-	VCC													
40	31	31	-	-	VSS													
41	-	-	-	-		P107			GTIOC0A _B									KR07
42	-	-	-	-		P106			GTIOC0B B					SSLA3_A				KR06
43	-	-	-	-		P105		GTETRG	-					SSLA2_A				KR05/
44	32	32	26	-		P104		GTETRG B_B				RXD0_C/ MISO0_C/ SCL0_C		SSLA1_A			TS13	KR04/ IRQ1
45	33	33	27	C3		P103		GTOWUP _A	GTIOC2A _A		CTX0_C	CTS0_RT S0_A/ SS0_A		SSLA0_A	AN019	CMPREF 1	TS14	KR03
46	34	34	28	C4		P102	AGTO0	GTOWLO _A	GTIOC2B _A		CRX0_C	SCK0_A		RSPCKA_ A	AN020/ ADTRG0_ A	CMPIN1	TS15	KR02
47	35	35	29	C5		P101	AGTEE0	GTETRG B_A	GTIOC5A _A			TXD0_A/ MOSI0_A/ SDA0_A/ CTS1_RT S1_A/ SS1_A	SDA1_B	MOSIA_A	AN021	CMPREF 0	TS16	KR01/ IRQ1
48	36	36	30	B6		P100	AGTIO0_ A	GTETRG A_A	GTIOC5B _A			RXD0_A/ MISO0_A/ SCL0_A/ SCK1_A	SCL1_B	MISOA_A	AN022	CMPIN0	TS26	KR00/ IRQ2
49	37	37	-	-		P500	AGTOA0	GTIU_B	GTIOC2A			_			AN016		TS27	
50	-	-	-	-		P501	AGTOB0	GTIV_B	GTIOC2B						AN017			
51	-	-	-	-		P502		GTIW_B	GTIOC3B						AN018			
52	38	38	31	A6		P015			_0						AN010		TS28	IRQ7
53	39	39	32	A5		P014									AN009	DA0		
54	40	40	33	B5		P013									AN008			
55	41	41	34	B4		P012									AN007			
56	42	42	35	A4	AVCC0													
57	43	43	36	A3	AVSS0													
58	44	44	37	B3	VREFL0	P011									AN006		TS31	
59	45	45	38	A2	VREFH0	P010					1	1			AN005		TS30	
60	-	-	-	-		P004						1			AN004		TS25	IRQ3
61	-	-	-	-		P003						1			AN003		TS24	
62	46	46	-	-		P002						1			AN002		TS23	IRQ2
63	47	47	39	-		P001						1			AN001		TS22	IRQ7
64	48	48	40	B2		P000									AN000		TS21	IRQ6

Note: Several pin names have the added suffix of _A, _B, _C, and _D. The suffix can be ignored when assigning functionality.

2.2 DC Characteristics

2.2.1 Tj/Ta Definition

Table 2.3DC characteristics

Conditions: Products with operating temperature (T_a) –40 to +105°C

Parameter	Symbol	Тур	Max	Unit	Test conditions
Permissible junction temperature	Tj	-	125	°C	High-speed mode
			105* ¹		Middle-speed mode
					Low-speed mode Subosc-speed mode

Note: Make sure that $Tj = T_a + \theta ja \times total power consumption (W)$, where total power consumption = (VCC - V_{OH}) × $\Sigma I_{OH} + V_{OL} \times \Sigma I_{OL} + I_{CC}max \times VCC$.

Note 1. The upper limit of operating temperature is 85°C or 105°C, depending on the product. For details, see section 1.3, Part Numbering. If the part number shows the operation temperature at 85°C, then the maximum value of Tj is 105°C, otherwise, it is 125°C.

2.2.2 I/O V_{IH}, V_{IL}

Table 2.4 I/O V_{IH}, V_{IL} (1) Conditions: VCC = AVCC0 = 2.7 to 5.5 V

Parameter		Symbol	Min	Тур	Мах	Unit	Test Conditions
Schmitt trigger	IIC (except for SMBus)*1	V _{IH}	VCC × 0.7	-	5.8	V	-
input voltage		V _{IL}	-	-	VCC × 0.3		
		ΔV_T	VCC × 0.05	-	-		
	RES, NMI	V _{IH}	VCC × 0.8	-	-		
	Other peripheral input pins excluding IIC	V _{IL}	-	-	VCC × 0.2		
		ΔV_T	VCC × 0.1	-	-		
Input voltage (except for	IIC (SMBus)*2	V _{IH}	2.2	-	-	-	VCC = 3.6 to 5.5 V
Schmitt trigger input pin)		V _{IH}	2.0	-	-		VCC =2.7 to 3.6 V
		V _{IL}	-	-	0.8		-
	5V-tolerant ports*3	V _{IH}	VCC × 0.8	-	5.8		
		V _{IL}	-	-	VCC × 0.2		
	P000 to P004	V _{IH}	AVCC0 × 0.8	-	-	-	
	P010 to P015	V _{IL}	-	-	AVCC0 × 0.2		
	EXTAL	V _{IH}	VCC × 0.8	-	-		
	Input ports pins except for P000 to P004, P010 to P015	V _{IL}	-	-	VCC × 0.2		

Note 1. SCL0_A, SDA0_A, SDA0_B, SCL1_A, SDA1_A (total 5 pins)

Note 2. SCL0_A, SDA0_A, SCL0_B, SDA0_B, SCL1_A, SDA1_A, SCL1_B, SDA1_B (total 8 pins)

Note 3. P205, P206, P400, P401, P407 (total 5pins)

Figure 2.4 V_{OH}/V_{OL} and I_{OH}/I_{OL} temperature characteristics at VCC = 2.7 V when low drive output is selected (reference data)

Figure 2.5 V_{OH}/V_{OL} and I_{OH}/I_{OL} temperature characteristics at VCC = 3.3 V when low drive output is selected (reference data)

2.2.9 Operating and Standby Current

Table 2.11Operating and standby current (1) (1 of 2)Conditions: VCC = AVCC0 = 1.6 to 5.5 V

Parameter					Symbol	Typ* ⁹	Мах	Unit	Test Conditions
Supply	High-speed	Normal mode	All peripheral clock	ICLK = 32 MHz	I _{CC}	3.6	-	mA	*7
current*1	mode*2		disabled, while (1) code executing from flash*5	ICLK = 16 MHz		2.4	-		
				ICLK = 8 MHz		1.7	-		
			All peripheral clock	ICLK = 32 MHz		5.6	-		
			disabled, CoreMark code executing from flash*5	ICLK = 16 MHz		3.5	-		
			U U	ICLK = 8 MHz		2.4	-		
			All peripheral clock	ICLK = 32 MHz		9.5	-		*8
			enabled, while (1) code executing from flash*5	ICLK = 16 MHz		5.4	-		
			U U	ICLK = 8 MHz		3.3	-		
			All peripheral clock enabled, code executing from flash* ⁵	ICLK = 32 MHz		-	21.0		
		Sleep mode	All peripheral clock	ICLK = 32 MHz		1.5	-		*7
			disabled*5	ICLK = 16 MHz		1.1	-		
				ICLK = 8 MHz		0.9	-		
			All peripheral clock	ICLK = 32 MHz		7.2	-		*8
			enabled*5	ICLK = 16 MHz		4.0	-		
				ICLK = 8 MHz		2.4	-		
		Increase during	BGO operation*6	•		2.5	-		-
	Middle-speed	Normal mode	All peripheral clock	ICLK = 12 MHz	I _{CC}	1.7	-	mA	*7
	mode*2		disabled, while (1) code executing from flash* ⁵	ICLK = 8 MHz		1.5	-		
			All peripheral clock	ICLK = 12 MHz		2.7	-		
			executing from flash*5	ICLK = 8 MHz		1.9	-		
			All peripheral clock	ICLK = 12 MHz		3.9	-	_	*8
			enabled, while (1) code executing from flash* ⁵	ICLK = 8 MHz		3.0	-	-	
			All peripheral clock enabled, code executing from flash* ⁵	ICLK = 12 MHz		-	8.0		
		Sleep mode	All peripheral clock	ICLK = 12 MHz		0.8	-		*7
			disabled*5	ICLK = 8 MHz		0.8	-		
			All peripheral clock	ICLK = 12 MHz		2.9	-		*8
			enabled*5	ICLK = 8 MHz		2.2	-		
		Increase during	BGO operation*6			2.5	-		-
	Low-speed mode*3	Normal mode	All peripheral clock disabled, while (1) code executing from flash*5	ICLK = 1 MHz	I _{CC}	0.2	-	mA	*7
			All peripheral clock disabled, CoreMark code executing from flash*5	ICLK = 1 MHz		0.3	-		
			All peripheral clock enabled, while (1) code executing from flash*5	ICLK = 1 MHz		0.4	-		*8
			All peripheral clock enabled, code executing from flash* ⁵	ICLK = 1 MHz		-	2.0		
		Sleep mode A	All peripheral clock disabled*5	ICLK = 1 MHz		0.2	-		*7
			All peripheral clock enabled* ⁵	ICLK = 1 MHz]	0.3	-	1	*8

Figure 2.17 Voltage dependency in high-speed operating mode (reference data)

Figure 2.18 Voltage dependency in middle-speed operating mode (reference data)

RENESAS

Table 2.18 Operation frequency in low-speed mode

Conditions: VCC = AVCC0 = 1.8 to 5.5 V

Parameter		Symbol	Min	Тур	Max*5	Unit	
Operation	System clock (ICLK)*1, *2, *4	1.8 to 5.5 V	f	0.032768	-	1	MHz
frequency	Peripheral module clock (PCLKB)*4	1.8 to 5.5 V		-	-	1	
	Peripheral module clock (PCLKD)*3, *4	1.8 to 5.5 V		-	-	1	

Note 1. The lower-limit frequency of ICLK is 1 MHz while programming or erasing the flash memory.

Note 2. The frequency accuracy of ICLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

Note 3. The lower-limit frequency of PCLKD is 1 MHz when the A/D converter is in use.

- Note 4. See section 8, Clock Generation Circuit in User's Manual for the relationship of frequencies between ICLK, PCLKB, and PCLKD.
- Note 5. The maximum value of operation frequency does not include internal oscillator errors. For details on the range of guaranteed operation, see Table 2.21, Clock timing.

Table 2.19 Operation frequency in low-voltage mode

Conditions: VCC = AVCC0 = 1.6 to 5.5 V

Parameter		Symbol	Min	Тур	Max*5	Unit	
Operation	System clock (ICLK)*1, *2, *4	1.6 to 5.5 V	f	0.032768	-	4	MHz
frequency	Peripheral module clock (PCLKB)*4	1.6 to 5.5 V		-	-	4	
	Peripheral module clock (PCLKD)*3, *4	1.6 to 5.5 V		-	-	4	

Note 1. The lower-limit frequency of ICLK is 1 MHz while programming or erasing the flash memory. When using ICLK for programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

- Note 2. The frequency accuracy of ICLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.
- Note 3. The lower-limit frequency of PCLKD is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the 14-bit A/D converter is in use.
- Note 4. See section 8, Clock Generation Circuit in User's Manual for the relationship of frequencies between ICLK, PCLKB, and PCLKD.
- Note 5. The maximum value of operation frequency does not include internal oscillator errors. For details on the range of guaranteed operation, see Table 2.21, Clock timing.

Table 2.20 Operation frequency in Subosc-speed mode

Conditions: VCC = AVCC0 = 1.8 to 5.5 V

Parameter		Symbol	Min	Тур	Max	Unit	
Operation	System clock (ICLK)*1, *3	1.8 to 5.5 V	f	27.8528	32.768	37.6832	kHz
frequency	Peripheral module clock (PCLKB)*3	1.8 to 5.5 V		-	-	37.6832	
	Peripheral module clock (PCLKD)* ^{2, *3}	1.8 to 5.5 V		-	-	37.6832	

Note 1. Programming and erasing the flash memory is not possible.

Note 2. The 14-bit A/D converter cannot be used.

Note 3. See section 8, Clock Generation Circuit in User's Manual for the relationship between ICLK, PCLKB, and PCLKD frequencies.

Figure 2.31 Software Standby mode cancellation timing

Parameter	Parameter			Тур	Max	Unit	Test conditions	
Recovery time from Software Standby	High-speed mode System clock source is HOCO	t _{SNZ}	-	36	45	μs	Figure 2.32	
mode to Snooze mode	Middle-speed mode System clock source is MOCO	t _{SNZ}	-	1.3	3.6	μs		
	Low-speed mode System clock source is MOCO	t _{SNZ}	-	10	13	μs		
	Low-voltage mode System clock source is HOCO	t _{SNZ}	-	87	110	μs		

Figure 2.32 Recovery timing from Software Standby mode to Snooze mode

Table 2.35 SPI timing (2 of 2)

aranne	eter			Symbol	Min	Max	Unit ^{*1}	Test conditions
ΡI	Data output delay	Master	2.7V or above	t _{OD}	-	14	ns	Figure 2.50 to
			2.4V or above		-	20		Figure 2.55
			1.8V or above		-	25		С – ЗОрг
			1.6V or above		-	30		
		Slave	2.7V or above		-	50		
			2.4V or above		-	60		
			1.8V or above		-	85		
			1.6V or above		-	110		
	Data output hold	Master		t _{OH}	0	-	ns	
	time	Slave			0	-		
	Successive transmission delay	Master		t _{TD}	t _{SPcyc} + 2 × t _{Pcyc}	8 × t _{SPcyc} + 2 × t _{Pcyc}	ns	
		Slave			6 × t _{Pcyc}	-		
	MOSI and MISO	Output	2.7V or above	t _{Dr,} t _{Df}	-	10	ns	
	rise and fall time		2.4V or above		-	15		
			1.8V or above		-	20		
			1.6V or above		-	30		
	Input		·		-	1	μs	-
	SSL rise and fall	Output	2.7V or above	t _{SSLr,} t _{SSLf}	-	10	ns	-
	time		2.4V or above		-	15		
			1.8V or above		-	20		
			1.6V or above		-	30		
		Input			-	1	μs	
	Slave access time		2.4V or above	t _{SA}	-	2 × t _{Pcyc} +100	ns	Figure 2.54 and Figure 2.55 C = 30 _P F
			1.8V or above		-	2 × t _{Pcyc} +140		
			1.6V or above		-	2 × t _{Pcyc} +180		
	Slave output release	time	2.4V or above	t _{REL}	-	2 × t _{Pcyc} +100	ns	
			1.8V or above		-	2 × t _{Pcyc} +140		
			1.6V or above		-	2 × t _{Pcyc} +180		

Note 1. t_{Pcyc}: PCLKB cycle.

Note 2. N is set as an integer from 1 to 8 by the SPCKD register.

Note 3. N is set as an integer from 1 to 8 by the SSLND register.

Table 2.44 A/D conversion characteristics (5) in low-power A/D conversion mode (2 of 2)

Conditions: VCC = AVCC0 = 2.4 to 5.5 V, VREFH0 = 2.4 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter		Min	Тур	Max	Unit	Test Conditions
Full-scale error		-	±0.75	±4.5	LSB	High-precision channel
				±6.0	LSB	Other than above
Quantization error		-	±0.5	-	LSB	-
Absolute accuracy		-	±1.25	±5.0	LSB	High-precision channel
				±8.0	LSB	Other than above
DNL differential nonlinear	rity error	-	±1.0	-	LSB	-
INL integral nonlinearity e	INL integral nonlinearity error		±1.0	±3.0	LSB	-
14-bit mode				1		
Resolution		-	-	14	Bit	-
Conversion time*1 (Operation at PCLKD = 16 MHz)	Permissible signal source impedance Max. = 2.2 kΩ	3.75	-	-	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh
		5.44	-	-	μs	Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h
Offset error		-	±2.0	±18	LSB	High-precision channel
				±24.0	LSB	Other than above
Full-scale error		-	±3.0	±18	LSB	High-precision channel
				±24.0	LSB	Other than above
Quantization error		-	±0.5	-	LSB	-
Absolute accuracy		-	±5.0	±20	LSB	High-precision channel
				±32.0	LSB	Other than above
DNL differential nonlinear	rity error	-	±4.0	-	LSB	-
INL integral nonlinearity e	error	-	±4.0	±12.0	LSB	-

Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Note 2. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics.

Note 3. Reference data.

Table 2.45 A/D conversion characteristics (6) in low-power A/D conversion mode (1 of 2)

Conditions: VCC = AVCC0 = 1.8 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.8 to 5.5 V, VSS = AVSS0 = VREFL0 = 0 V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter		Min	Тур	Мах	Unit	Test Conditions
Frequency		1	-	8	MHz	-
Analog input capacitance*2	Cs	-	-	8* ³	pF	High-precision channel
		-	-	9* ³	pF	Normal-precision channel
Analog input resistance	Rs	-	-	3.8* ³	kΩ	High-precision channel
		-	-	8.2*3	kΩ	Normal-precision channel
Analog input voltage range	Ain	0	-	VREFH0	V	-
12-bit mode						
Resolution	-	-	12	Bit	-	

Figure 2.70 Voltage detection circuit timing (V_{det2})

2.10 CTSU Characteristics

Table 2.54 CTSU characteristics

Conditions: VCC = AVCC0 = 1.8 to 5.5 V

Parameter	Symbol	Min	Тур	Мах	Unit	Test conditions
External capacitance connected to TSCAP pin	C _{tscap}	9	10	11	nF	-
TS pin capacitive load	C _{base}	-	-	50	pF	-
Permissible output high current	ΣΙοΗ	-	-	-24	mA	When the mutual capacitance method is applied

Figure 1.6 QFN 40-pin

S124 Microcontroller Group Datasheet

Publication Date: Rev.1.30 Feb 5, 2018

Published by: Renesas Electronics Corporation

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws
 or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or
 transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

(Rev.4.0-1 November 2017)

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information Renesas Electronics America Inc. 1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A Tel: +1-408-432-8888, Fax: +1-408-434-5351 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tei: +1-905-237-2004 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-651-700, Fax: +44-1628-651-804 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China Tel: +86-21-222-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tei + 3552-256-5688, Fax: +8552 2868-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60.3-7955-5390, Pax: +60-3-7955-9510 Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India Tei: +91-80-67208700, Fax: +91-80-67208777 Renesas Electronics Korea Co., Ltd. 17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea Tel: +82-2-558-3737, Fax: +82-2-558-5338