E·X Renesas Electronics America Inc - <u>R7FS124763A01CFL#AA1 Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	CANbus, I ² C, SCI, SPI, UART/USART, USB
Peripherals	LVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 14x14b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LFQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r7fs124763a01cfl-aa1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.4 Function Comparison

Table 1.13 Function comparison

Parts number		R7FS124773A01CFM/ R7FS124763A01CFM/ R7FS124773A01CNB/	R7FS124773A01CFL/ R7FS124763A01CFL/ R7FS124773A01CNE	R7FS124773A01CNF	R7FS124772A01CLM/ R7FS124762A01CLM					
Pin count		64	48	40	36					
Package		LQFP/QFN	LQFP/QFN	QFN	LGA					
Code flash memor	у		128/6	64 KB						
Data flash memory	/		4	KB						
SRAM			16	KB						
	Parity		4	KB						
System	CPU clock		32 1	MHz						
	ICU		Ye	es						
	KINT	8	5	5	4					
Event link	ELC		Ye	es						
DMA	DTC		Ye	es						
Timers	GPT32	1								
	GPT16	6	6	4	4					
	AGT	2	2	2	2					
	RTC	Yes								
	WDT/IWDT	Yes								
Communication	SCI	3								
	IIC		2							
	SPI			2						
	CAN		Ye	es						
	USBFS		Ye	es						
Analog	ADC14	18	14	12	11					
	DAC12			1	·					
	ACMPLP			2						
	TSN		Ye	es						
HMI	CTSU	31	23	17	13					
	KINT	8	8 5 5							
Data processing	es									
	DOC	Yes								
Security			AES an	d TRNG						

1.6 Pin Assignments

Figure 1.3 to Figure 1.8 show the pin assignments.

Figure 1.3 Pin assignment for LQFP 64-pin (top view)

2. Electrical Characteristics

Unless otherwise specified, the electrical characteristics of the MCU are defined under the following conditions:

 $VCC^{*1} = AVCC0 = VCC_USB^{*2} = VCC_USB_LDO^{*2} = 1.6$ to 5.5V, VREFH0 = 1.6 to AVCC0,

 $VSS = AVSS0 = VREFL0 = VSS_USB = 0 V, Ta = T_{opr}$

Note 1. The typical condition is set to VCC = 3.3V.

Note 2. When USBFS is not used.

Figure 2.1 shows the timing conditions.

Figure 2.1 Input or output timing measurement conditions

The measurement conditions of timing specification in each peripherals are recommended for the best peripheral operation. However, make sure to adjust driving abilities of each pins to meet your conditions.

Each function pin used for the same function must select the same drive ability. If I/O drive ability of each function is mixed, the AC specification of the function is not guaranteed.

Table 2.5 I/O V_{IH}, V_{IL} (2) Conditions: VCC = AVCC0 = 1.6 to 2.7 V

Parameter		Symbol	Min	Тур	Max	Unit	Test Conditions
Schmitt trigger	RES, NMI Peripheral input pins	V _{IH}	VCC × 0.8	-	-	V	-
input voltage		V _{IL}	-	-	VCC × 0.2		
		ΔV _T	VCC × 0.01	-	-		
Input voltage	5V-tolerant ports*1	V _{IH}	VCC × 0.8	-	5.8		
(except for Schmitt trigger		V _{IL}	-	-	VCC × 0.2		
input pin)	P000 to P004	V _{IH}	AVCC0 × 0.8	-	-		
	P010 to P015	V _{IL}	-	-	AVCC0 × 0.2		
	EXTAL Input ports pins except for P000 to P004, P010 to P015	V _{IH}	VCC × 0.8	-	-		
		V _{IL}	-	-	VCC × 0.2		

Note 1. P205, P206, P400, P401, P407 (total 5pins)

I/O I_{OH}, I_{OL} 2.2.3

Table 2.6 I/O I _{OH} , I Conditions: VCC = AVCC0	OL = 1.6 to 5.5 V						
Parameter			Symbol	Min	Тур	Max	Unit
Permissible output current	Ports P000 to P004,	-	I _{ОН}	-	-	-4.0	mA
(average value per pin)	P010 to P015, P212, P213		I _{OL}	-	-	4.0	mA
	Ports P408, P409	Low drive*1	I _{OH}	-	-	-4.0	mA
			I _{OL}	-	-	4.0	mA
		Middle drive* ²	I _{ОН}	-	-	-8.0	mA
		VCC = 2.7 to 3.0 V	I _{OL}	-	-	8.0	mA
		Middle drive* ²	I _{OH}	-	-	-20.0	mA
		VCC - 3.0 to 5.5 V	I _{OL}	-	-	20.0	mA
	Other output pins*3	Low drive*1	I _{OH}	-	-	-4.0	mA
			I _{OL}	-	-	4.0	mA
		Middle drive*2	I _{ОН}	-	-	-8.0	mA
			I _{OL}	-	-	8.0	mA
Permissible output current (max value per pin)	Ports P000 to P004, P010 to P015, P212, P213	-	I _{ОН}	-	-	-4.0	mA
			I _{OL}	-	-	4.0	mA
	Ports P408, P409	Low drive*1	I _{OH}	-	-	-4.0	mA
			I _{OL}	-	-	4.0	mA
		Middle drive ^{*2}	I _{OH}	-	-	-8.0	mA
		VCC - 2.7 10 3.0 V	I _{OL}	-	-	8.0	mA
		Middle drive ^{*2}	I _{ОН}	-	-	-20.0	mA
		VCC - 5.0 to 5.5 V	I _{OL}	-	-	20.0	mA
	Other output pins*3	Low drive*1	I _{ОН}	-	-	-4.0	mA
			I _{OL}	-	-	4.0	mA
		Middle drive*2	I _{OH}	-	-	-8.0	mA
			I _{OL}	-	-	8.0	mA
Permissible output current	Total of ports P000 to P004, P0	10 to P015	ΣI _{OH (max)}	-	-	-30	mA
			ΣI _{OL (max)}	-	-	30	mA
	Total of all output pin		ΣΙ _{ΟΗ (max)}	-	-	-60	mA
			ΣI _{OL (max)}	-	-	60	mA

Caution: To protect the reliability of the MCU, the output current values should not exceed the values in this table. The average output current indicates the average value of current measured during 100 µs.

Note 1. This is the value when low driving ability is selected with the Port Drive Capability bit in the PmnPFS register. Note 2. This is the value when middle driving ability is selected with the Port Drive Capability bit in the register.

Note 3. Except for Ports P200, P214, P215, which are input ports.

Figure 2.10 V_{OH}/V_{OL} and I_{OH}/I_{OL} temperature characteristics at VCC = 3.3 V when middle drive output is selected (reference data)

Figure 2.11 V_{OH}/V_{OL} and I_{OH}/I_{OL} temperature characteristics at VCC = 5.5 V when middle drive output is selected (reference data)

RENESAS

2.2.7 P408, P409 I/O Pin Output Characteristics of Middle Drive Capacity

Figure 2.12 V_{OH}/V_{OL} and I_{OH}/I_{OL} voltage characteristics at Ta = 25°C when middle drive output is selected (reference data)

Figure 2.13 V_{OH}/V_{OL} and I_{OH}/I_{OL} temperature characteristics at VCC = 2.7 V when middle drive output is selected (reference data)

2.2.8 IIC I/O Pin Output Characteristics

Figure 2.16 V_{OH}/V_{OL} and I_{OH}/I_{OL} voltage characteristics at Ta = 25°C

Figure 2.21 Voltage dependency in subosc-speed operating mode (reference data)

Table 2.12Operating and standby current (2)

Conditions: VCC = AVCC0 = 1.6 to 5.5 V

Parameter			Symbol	Typ* ³	Max	Unit	Test conditions
Supply	Software Standby	T _a = 25°C	I _{CC}	0.4	1.5	μΑ	-
current"	mode*4	T _a = 55°C		0.6	5.5		
		T _a = 85°C		1.2	10.0		
		T _a = 105°C		2.6	40.0		
	Increment for RTC operation with low-speed on-chip oscillator*4		-	0.4	-		-
	Increment for RTC sub-clock oscillator	operation with *4	-	0.5	-		SOMCR.SODRV[1:0] are 11b (Low power mode 3)
				1.3	-		SOMCR.SODRV[1:0] are 00b (normal mode)

Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOS transistors are in the off state.

Note 2. The IWDT and LVD are not operating.

Note 3. VCC = 3.3 V.

Note 4. Includes the current of low-speed on-chip oscillator or sub-oscillation circuit.

2.2.10 VCC Rise and Fall Gradient and Ripple Frequency

Table 2.14 Rise and fall gradient characteristics

Conditions: VCC = AVCC0 = 0 to 5.5 V

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
Power-on VCC	Voltage monitor 0 reset disabled at startup Voltage monitor 0 reset enabled at startup*1, *2		0.02	-	2	ms/V	-
rising gradient			0.02	-	-		
	SCI Boot mode*2		0.02	-	2		

Note 1. When OFS1.LVDAS = 0.

Note 2. At boot mode, the reset from voltage monitor 0 is disabled regardless of the value of OFS1.LVDAS bit.

Table 2.15 Rising and falling gradient and ripple frequency characteristics

Conditions: VCC = AVCC0 = 1.6 to 5.5 V

The ripple voltage must meet the allowable ripple frequency $f_{r(VCC)}$ within the range between the VCC upper limit (5.5 V) and lower limit (1.6 V).

When the VCC change exceeds VCC ±10%, the allowable voltage change rising and falling gradient dt/dVCC must be met.

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Allowable ripple frequency	f _{r (VCC)}	-	-	10	kHz	Figure 2.24 $V_{r (VCC)} \leq VCC \times 0.2$
		-	-	1	MHz	Figure 2.24 $V_{r (VCC)} \leq VCC \times 0.08$
		-	-	10	MHz	Figure 2.24 $V_{r (VCC)} \le VCC \times 0.06$
Allowable voltage change rising and falling gradient	dt/dVCC	1.0	-	-	ms/V	When VCC change exceeds VCC ±10%

Figure 2.24 Ripple waveform

2.3.2 Clock Timing

Table 2.21Clock timing (1 of 2)

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
EXTAL external clock input cycle	time	t _{Xcyc}	50	-	-	ns	Figure 2.25
EXTAL external clock input high p	ulse width	t _{XH}	20	-	-	ns	_
EXTAL external clock input low pu	Ilse width	t _{XL}	20	-	-	ns	_
EXTAL external clock rising time		t _{Xr}	-	-	5	ns	-
EXTAL external clock falling time	EXTAL external clock falling time		-	-	5	ns	_
EXTAL external clock input wait ti	me* ¹	t _{EXWT}	0.3	-	-	μs	-
EXTAL external clock input freque	ency	f _{EXTAL}	-	-	20	MHz	2.4 ≤ VCC ≤ 5.5
			-	-	8		1.8 ≤ VCC < 2.4
			-	-	1		1.6 ≤ VCC < 1.8
Main clock oscillator oscillation fre	equency	f _{MAIN}	1	-	20	MHz	2.4 ≤ VCC ≤ 5.5
			1	-	8		1.8 ≤ VCC < 2.4
			1	-	4		1.6 ≤ VCC < 1.8
LOCO clock oscillation frequency		f _{LOCO}	27.8528	32.768	37.6832	kHz	-
LOCO clock oscillation stabilization	n time	t _{LOCO}	-	-	100	μs	Figure 2.26
IWDT-dedicated clock oscillation f	requency	f _{ILOCO}	12.75	15	17.25	kHz	-
MOCO clock oscillation frequency	,	f _{MOCO}	6.8	8	9.2	MHz	-
MOCO clock oscillation stabilization	on time	t _{MOCO}	-	-	1	μs	-
HOCO clock oscillation frequency		f _{HOCO24}	23.64	24	24.36	MHz	Ta = -40 to -20°C 1.8 ≤ VCC ≤ 5.5
			22.68	24	25.32		Ta = -40 to 85°C 1.6 ≤ VCC < 1.8
			23.76	24	24.24		Ta = -20 to 85°C 1.8 ≤ VCC ≤ 5.5
			23.52	24	24.48		Ta = 85 to 105°C 2.4 ≤ VCC ≤ 5.5
		f _{HOCO32}	31.52	32	32.48		Ta = -40 to -20°C 1.8 ≤ VCC ≤ 5.5
			30.24	32	33.76		Ta = -40 to 85°C 1.6 ≤ VCC < 1.8
			31.68	32	32.32		Ta = -20 to 85°C 1.8 ≤ VCC ≤ 5.5
			31.36	32	32.64		Ta = 85 to 105°C 2.4 ≤ VCC ≤ 5.5
		f _{HOCO48*} 3	47.28	48	48.72		Ta = -40 to -20°C 1.8 ≤ VCC ≤ 5.5
			47.52	48	48.48		Ta = -20 to 85°C 1.8 ≤ VCC ≤ 5.5
			47.04	48	48.96		Ta = 85 to 105°C 2.4 ≤ VCC ≤ 5.5
		f _{HOCO64*} 4	63.04	64	64.96		Ta = -40 to -20°C 2.4 ≤ VCC ≤ 5.5
			63.36	64	64.64		Ta = −20 to 85°C 2.4 ≤ VCC ≤ 5.5
			62.72	64	65.28		Ta = 85 to 105°C 2.4 ≤ VCC ≤ 5.5
HOCO clock oscillation stabilization time* ^{5, *6}	Except low- voltage mode	t _{HOCO24} t _{HOCO32}	-	-	37.1	μs	Figure 2.27
		t _{HOCO48}	-	-	43.3		
		t _{HOCO64}	-	-	80.6		
	Low-voltage mode	t _{HOCO24} t _{HOCO32} t _{HOCO48} t _{HOCO64}	-	-	100.9		
Sub-clock oscillator oscillation free	quency	f _{SUB}	-	32.768	-	kHz	-

2.3.4 Wakeup Time

Table 2.23	Timing of recovery from low power modes (1)
------------	---

Parameter				Symbol	Min	Тур	Max	Unit	Test conditions
Recovery time from Software Standby mode*1	High-speed mode	Crystal resonator connected to main clock oscillator	System clock source is main clock oscillator (20 MHz) ^{*2}	t _{SBYMC}	-	2	3	ms	Figure 2.31
		External clock input to main clock oscillator	System clock source is main clock oscillator (20 MHz) ^{*3}	t _{SBYEX}	-	14	25	μs	
		System clock source is HOCO ^{*4} (HOCO clock is 32 MHz)		t _{SBYHO}	-	43	52	μs	
		System clock source is HOCO ^{*4} (HOCO clock is 48 MHz)		t _{SBYHO}	-	44	52	μs	
	System clock source is HOCO ^{*5} (HOCO clock is 64 MHz)		t _{SBYHO}	-	82	110	μs		
		System clock sou	urce is MOCO	t _{SBYMO}	-	16	25	μs	

Note 1. The division ratio of ICK and PCKx is the minimum division ratio within the allowable frequency range. The recovery time is determined by the system clock source.

Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h.

Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h.

Note 4. The HOCO clock wait control register (HOCOWTCR) is set to 05h.

Note 5. The HOCO clock wait control register (HOCOWTCR) is set to 06h.

Table 2.24Timing of recovery from low power modes (2)

Parameter				Symbol	Min	Тур	Max	Unit	Test conditions
Recovery time from Software Standby mode*1	Middle-speed mode	Crystal resonator connected to main clock oscillator	System clock source is main clock oscillator (12 MHz)* ²	t _{SBYMC}	-	2	3	ms	Figure 2.31
		External clock input to main clock oscillator	System clock source is main clock oscillator (12 MHz)* ³	t _{SBYEX}	-	2.9	10	μs	
		System clock source is HOCO*4		t _{SBYHO}	-	38	50	μs	
		System clock sou	urce is MOCO	t _{SBYMO}	-	3.5	5.5	μs	

Note 1. The division ratio of ICK and PCKx is the minimum division ratio within the allowable frequency range. The recovery time is determined by the system clock source.

Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h.

Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h.

Note 4. The system clock is 12 MHz.

Table 2.34SCI timing (3)Conditions: VCC = AVCC0 = 2.7 to 5.5 V

Parameter	Symbol	Min	Мах	Unit	Test conditions	
Simple IIC	SDA input rise time	t _{Sr}	-	1000	ns	Figure 2.48
(Standard mode)	SDA input fall time	t _{Sf}	-	300	ns	
	SDA input spike pulse removal time	t _{SP}	0	4 × t _{IICcyc}	ns	
	Data input setup time	t _{SDAS}	250	-	ns	
	Data input hold time	t _{SDAH}	0	-	ns	
	SCL, SDA capacitive load	C _b *1	-	400	pF	
Simple IIC*2	SDA input rise time	t _{Sr}	-	300	ns	Figure 2.48
(Fast mode)	SDA input fall time	t _{Sf}	-	300	ns	
	SDA input spike pulse removal time	t _{SP}	0	4 × t _{IICcyc}	ns	
	Data input setup time	t _{SDAS}	100	-	ns	
	Data input hold time	t _{SDAH}	0	-	ns	
	SCL, SDA capacitive load	C _b *1	-	400	pF	1

 $t_{\mbox{\scriptsize IICcyc}}\mbox{:}$ Clock cycle selected by the SMR.CKS[1:0] bits. Note:

Note 1. Cb indicates the total capacity of the bus line.

Note 2. Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.

Figure 2.56 I²C bus interface input/output timing

2.3.11 CLKOUT Timing

Table 2.37 CLKOUT timing

Parameter		Symbol	Min	Max	Unit*1	Test conditions	
CLKOUT	CLKOUT pin output cycle*1	VCC = 2.7 V or above	t _{Ccyc}	62.5	-	ns	Figure 2.57
		VCC = 1.8 V or above		125	-		
		VCC = 1.6 V or above		250	-		
	CLKOUT pin high pulse width*2	VCC = 2.7 V or above	t _{CH}	15	-	ns	
		VCC = 1.8 V or above		30	-		
		VCC = 1.6 V or above		150	-		
	CLKOUT pin low pulse width*2	VCC = 2.7 V or above	t _{CL}	15	-	ns	
		VCC = 1.8 V or above		30	-		
		VCC = 1.6 V or above		150	-		
	CLKOUT pin output rise time	VCC = 2.7 V or above	t _{Cr}	-	12	ns	
		VCC = 1.8 V or above		-	25		
		VCC = 1.6 V or above		-	50		
	CLKOUT pin output fall time	VCC = 2.7 V or above	t _{Cf}	-	12	ns	
		VCC = 1.8 V or above		-	25		
		VCC = 1.6 V or above		-	50		

Note 1. When the EXTAL external clock input or an oscillator is used with division by 1 (the CKOCR.CKOSEL[2:0] bits are 011b and the CKOCR.CKODIV[2:0] bits are 000b) to output from CLKOUT, the above should be satisfied with an input duty cycle of 45 to 55%.

Note 2. When the MOCO is selected as the clock output source (the CKOCR.CKOSEL[2:0] bits are 001b), set the clock output division ratio selection to be divided by 2 (the CKOCR.CKODIV[2:0] bits are 001b).

Figure 2.57 CLKOUT output timing

Table 2.42 A/D conversion characteristics (3) in high-speed A/D conversion mode (2 of 2) Conditions: VCC = AVCC0 = 2.4 to 5.5 V, VREFH0 = 2.4 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V

Reference voltage range applied to the VREFH0 and VREFL0.

Parameter	Min	Тур	Max	Unit	Test Conditions		
DNL differential nonlinea	-	±1.0	-	LSB	-		
INL integral nonlinearity	-	±1.0	±3.0	LSB	-		
14-bit mode						·	
Resolution	-	-	14	Bit	-		
Conversion time ^{*1} (Operation at PCLKD = 32 MHz)	Permissible signal source impedance Max. = 1.3 kΩ	gnal 1.59 µs ance		μs	High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0Dh		
		2.44	-	-	μs	Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 28h	
Offset error		-	±2.0	±18	LSB	High-precision channel	
			±24.0	LSB	Other than above		
Full-scale error		-	±3.0	±18	LSB	High-precision channel	
			±24.0	LSB	Other than above		
Quantization error	-	±0.5	-	LSB	-		
Absolute accuracy	-	±5.0	±20	LSB	High-precision channel		
			±32.0	LSB	Other than above		
DNL differential nonlinea	-	±4.0	-	LSB	-		
INL integral nonlinearity	-	±4.0	±12.0	LSB	-		

Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Note 2. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics.

Note 3. Reference data.

Table 2.43 A/D conversion characteristics (4) in low-power A/D conversion mode (1 of 2)

Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter	Min	Тур	Max	Unit	Test Conditions		
Frequency	1	-	24	MHz	-		
Analog input capacitance*2 Cs			-	-	8* ³	pF	High-precision channel
			-	-	9* ³	pF	Normal-precision channel
Analog input resistance Rs		-	-	2.5* ³	kΩ	High-precision channel	
			-	-	6.7* ³	kΩ	Normal-precision channel
Analog input voltage range Ain			0	-	VREFH0	V	-
12-bit mode		•	•		•	•	
Resolution			-	-	12	Bit	-
Conversion time*1 (Operation at PCLKD = 24 MHz)Permissible source imp Max. = 1.1		Permissible signal source impedance Max. = 1.1 kΩ		-	-	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh
			3.38	-	-	μs	Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h
Offset error			-	±0.5	±4.5	LSB	High-precision channel
					±6.0	LSB	Other than above
Full-scale error		-	±0.75	±4.5	LSB	High-precision channel	
					±6.0	LSB	Other than above
Quantization error			-	±0.5	-	LSB	-

Comparator Characteristics 2.11

Table 2.55ACMPLP characteristicsConditions: VCC = AVCC0 = 1.8 to 5.5 V, VSS = AVSS0 = 0 V

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions	
Reference voltage range		V _{REF}	0	-	VCC -1.4	V	-
Input voltage range	VI	0	-	VCC	V	-	
Internal reference voltage		-	1.36	1.44	1.50	V	-
Output delay	High-speed mode	T _d	-	-	1.2	μs	VCC = 3.0
	Low-speed mode		-	-	5	μs	Slew rate of input signal > 50 mV/us
	Window mode		-	-	2	μs	
Offset voltage	High-speed mode	-	-	-	50	mV	-
	Low-speed mode	-	-	-	40	mV	-
	Window mode	-	-	-	60	mV	-
Internal reference voltage for window mode		V _{RFH}	-	0.76 × VCC	-	V	-
	V _{RFL}	-	0.24 × VCC	-	V	-	
Operation stabiliza	T _{cmp}	100	-	-	μs	-	

Table 2.58 Code flash characteristics (3)

Middle-speed operating mode

Conditions: VCC = AVCC0 = 1.8 to 5.5 V, Ta = -40 to +85°C

			ICLK = 1 MHz			I	lz		
Parameter		Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Programming time	4-byte	t _{P4}	-	157	1411	-	101	966	μs
Erasure time	1-KB	t _{E1K}	-	9.10	289	-	6.10	228	ms
Blank check time	2-byte	t _{BC4}	-	-	87.7	-	-	52.5	μs
	1-KB	t _{BC1K}	-	-	1930	-	-	414	μs
Erase suspended time		t _{SED}	-	-	32.7	-	-	21.6	μs
Startup area switching setting time		t _{SAS}	-	22.8	592	-	14.2	465	ms
Access window time		t _{AWS}	-	22.8	592	-	14.2	465	ms
OCD/serial programmer ID setting time		t _{OSIS}	-	22.8	592	-	14.2	465	ms
Flash memory mode transition wait time 1		t _{DIS}	2	-	-	2	-	-	μs
Flash memory mode transition wait time 2		t _{MS}	720	-	-	720	-	-	ns

Note 1. Does not include the time until each operation of the flash memory is started after instructions are executed by the software.

Note 2. The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note 3. The frequency accuracy of ICLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

2.12.2 Data Flash Memory Characteristics

Table 2.59Data flash characteristics (1)

Parameter		Symbol	Min	Тур	Max	Unit	Conditions
Reprogramming/erasure cycle*1		N _{DPEC}	100000	1000000	-	Times	-
Data hold time	After 10000 times of N _{DPEC}	t _{DDRP}	20*2, *3	-	-	Year	Ta = +85°C
	After 100000 times of N _{DPEC}		5* ^{2, *3}	-	-	Year	
	After 1000000 times of N _{DPEC}		-	1* ^{2, *3}	-	Year	Ta = +25°C

Note 1. The reprogram/erase cycle is the number of erasure for each block. When the reprogram/erase cycle is n times (n = 100,000), erasing can be performed n times for each block. For instance, when 1-byte programming is performed 1,000 times for different addresses in 1-byte blocks, and then the entire block is erased, the reprogram/erase cycle is counted as 1. However, programming the same address for several times as one erasure is not enabled. (overwriting is prohibited.)

Note 2. Characteristics when using the flash memory programmer and the self-programming library provided by Renesas Electronics.

Note 3. These results are obtained from reliability testing.

Figure 2.72 SWD input output timing

RENESAS