E. Fenesas Electronics America Inc - <u>R7FS124763A01CFM#AA0 Datasheet</u>

Welcome to E-XFL.COM

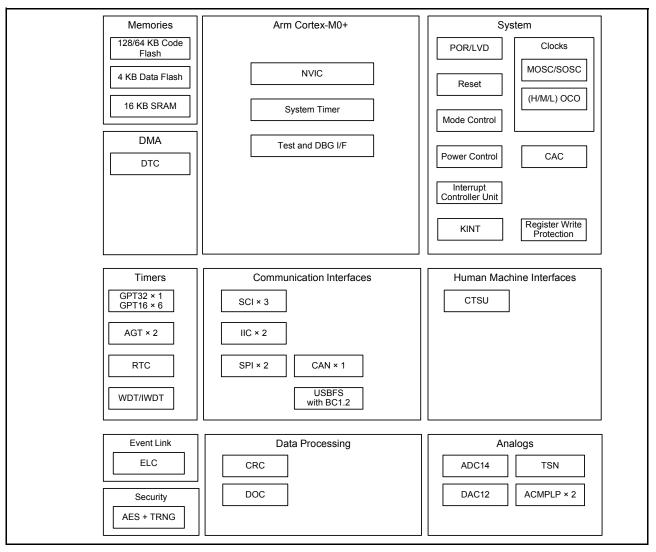
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

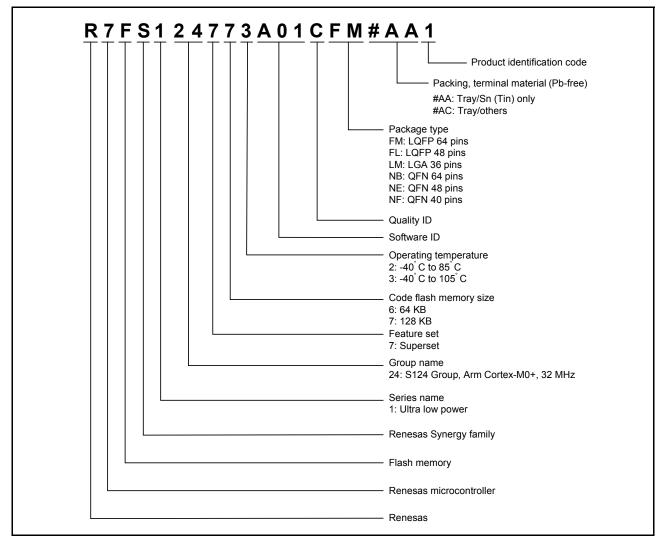
Product StatusObsoleteCore ProcessorARM® Cortex®-M0+Core Size32-Bit Single-CoreSpeed32MHzConnectivityCANbus, IPC, SCI, SPI, UART/USART, USBPeripheralsLVD, POR, PWM, WDTNumber of I/O51Program Memory Size64KB (64K x 8)Program Memory TypeFLASHEEPROM Size4K x 8RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.6V ~ 5.5VData ConvertersA/D 18x14b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case64-LPCFP (10x10)Purchase URLhttps://www.ex.fl.com/product-detail/renesas-electronics-america/r7fs124763a01cfm-aa0		
Core Size32-Bit Single-CoreSpeed32MHzConnectivityCANbus, I²C, SCI, SPI, UART/USART, USBPeripheralsLVD, POR, PWM, WDTNumber of I/O51Program Memory Size64KB (64K x 8)Program Memory TypeFLASHEEPROM Size4K x 8RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.6V ~ 5.5VData ConvertersA/D 18x14b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case64-LPGPP (10x10)	Product Status	Obsolete
Speed32MHzConnectivityCANbus, I²C, SCI, SPI, UART/USART, USBPeripheralsLVD, POR, PWM, WDTNumber of I/O51Program Memory Size64KB (64K x 8)Program Memory TypeFLASHEEPROM Size4K x 8RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.6V ~ 5.5VData ConvertersA/D 18x14b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case64-LCPFP (10x10)bttps://www.ox.fl.com/product.datail/reporce electronics.amprice/r/fs124763a01.cfm aa0	Core Processor	ARM® Cortex®-M0+
ConnectivityCANbus, I²C, SCI, SPI, UART/USART, USBPeripheralsLVD, POR, PWM, WDTNumber of I/O51Program Memory Size64KB (64K x 8)Program Memory TypeFLASHEEPROM Size4K x 8RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.6V ~ 5.5VData ConvertersA/D 18x14b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case64-LQFPSupplier Device Package64-LQFP (10x10)	Core Size	32-Bit Single-Core
PeripheralsLVD, POR, PWM, WDTNumber of I/O51Program Memory Size64KB (64K × 8)Program Memory TypeFLASHEEPROM Size4K × 8RAM Size16K × 8Voltage - Supply (Vcc/Vdd)1.6V ~ 5.5VData ConvertersA/D 18x14b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case64-LPCPP (10x10)bttps://www.exfl.com/product.detail/reporase.electronics.amorica/r7fs124768a01efm.aa0	Speed	32MHz
Number of I/O51Program Memory Size64KB (64K x 8)Program Memory TypeFLASHEEPROM Size4K x 8RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.6V ~ 5.5VData ConvertersA/D 18x14b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case64-LQFPSupplier Device Package64-LQFP (10x10)	Connectivity	CANbus, I ² C, SCI, SPI, UART/USART, USB
Program Memory Size64KB (64K × 8)Program Memory TypeFLASHEEPROM Size4K × 8RAM Size16K × 8Voltage - Supply (Vcc/Vdd)1.6V ~ 5.5VData ConvertersA/D 18x14b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case64-LQFPSupplier Device Package64-LFQFP (10x10)	Peripherals	LVD, POR, PWM, WDT
Program Memory TypeFLASHEEPROM Size4K x 8RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.6V ~ 5.5VData ConvertersA/D 18x14b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case64-LQFPSupplier Device Package64-LFQFP (10x10)	Number of I/O	51
EEPROM Size4K x 8RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.6V ~ 5.5VData ConvertersA/D 18x14b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case64-LQFPSupplier Device Package64-LFQFP (10x10)	Program Memory Size	64KB (64K x 8)
RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.6V ~ 5.5VData ConvertersA/D 18x14b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case64-LQFPSupplier Device Package64-LFQFP (10x10)	Program Memory Type	FLASH
Voltage - Supply (Vcc/Vdd)1.6V ~ 5.5VData ConvertersA/D 18x14b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case64-LQFPSupplier Device Package64-LFQFP (10x10)	EEPROM Size	4K x 8
Data Converters A/D 18x14b; D/A 1x12b Oscillator Type Internal Operating Temperature -40°C ~ 105°C (TA) Mounting Type Surface Mount Package / Case 64-LQFP Supplier Device Package 64-LFQFP (10x10)	RAM Size	16K x 8
Oscillator Type Internal Operating Temperature -40°C ~ 105°C (TA) Mounting Type Surface Mount Package / Case 64-LQFP Supplier Device Package 64-LFQFP (10x10)	Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Operating Temperature -40°C ~ 105°C (TA) Mounting Type Surface Mount Package / Case 64-LQFP Supplier Device Package 64-LFQFP (10x10)	Data Converters	A/D 18x14b; D/A 1x12b
Mounting Type Surface Mount Package / Case 64-LQFP Supplier Device Package 64-LFQFP (10x10)	Oscillator Type	Internal
Package / Case 64-LQFP Supplier Device Package 64-LFQFP (10x10) https://www.e.xfl.com/product.detail/reposes_electronics_america/r7fs124763a01cfm_aa0	Operating Temperature	-40°C ~ 105°C (TA)
Supplier Device Package 64-LFQFP (10x10)	Mounting Type	Surface Mount
https://www.a.vfl.com/product.detail/renesas.electronics.america/r7fs124763a01cfm.aa0	Package / Case	64-LQFP
Purchase URL https://www.e-xfl.com/product-detail/renesas-electronics-america/r7fs124763a01cfm-aa0	Supplier Device Package	64-LFQFP (10x10)
	Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r7fs124763a01cfm-aa0


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Feature	Functional description
AES	See section 38, AES Engine in User's Manual
True Random Number Generator (TRNG)	See section 39, True Random Number Generator (TRNG) in User's Manual

1.2 Block Diagram


Figure 1.1 shows the block diagram of the MCU superset. Individual devices within the group may have a subset of the features.

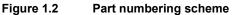


Figure 1.1 Block diagram

1.3 Part Numbering

Figure 1.2 shows how to read the product part number, memory capacity, and package types. Table 1.12 shows a list of products.

Table 1.12 Product list

Product part number	Orderable part number	Package code	Code flash	Data flash	SRAM	Operating temperature
R7FS124773A01CFM	R7FS124773A01CFM#AA1	PLQP0064KB-C	128 KB	4 KB	16 KB	–40 to +105°C
R7FS124773A01CNB	R7FS124773A01CNB#AC1	PWQN0064LA-A				-40 to +105°C
R7FS124773A01CFL	R7FS124773A01CFL#AA1	PLQP0048KB-B	1			-40 to +105°C
R7FS124773A01CNE	R7FS124773A01CNE#AC1	PWQN0048KB-A				-40 to +105°C
R7FS124773A01CNF	R7FS124773A01CNF#AC1	PWQN0040KC-A				-40 to +105°C
R7FS124772A01CLM	R7FS124772A01CLM#AC1	PWLG0036KA-A				-40 to +85°C
R7FS124763A01CFM	R7FS124763A01CFM#AA1	PLQP0064KB-C	64 KB			-40 to +105°C
R7FS124763A01CFL	R7FS124763A01CFL#AA1	PLQP0048KB-B	1			-40 to +105°C
R7FS124762A01CLM	R7FS124762A01CLM#AC1	PWLG0036KA-A	1			-40 to +85°C

Note: Earlier products with orderable part number suffix AA0 and AC0 have a restriction in AES functions. If AES functions are required for your application, refer to the products with orderable part number suffix AA1 or AC1. For details on the differences of AES functions between AA0/AC0 and AA1/AC1 products, see *Technical Update* (*TN-SY*-A024A/E*). Contact your Renesas sales representative for additional information.

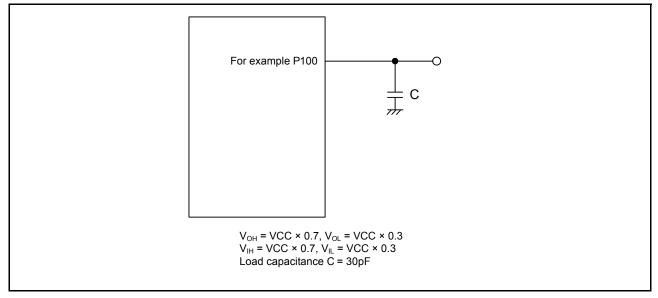
RENESAS

		Pin numbe	r					Tin	ners		C	ommunicat	ion Interfa	ces	Ana	logs	н	MI
LQFP64, QFN64	LQFP48	QFN48	QFN40	LGA36	Power, System, Clock, Debug, CAC	I/O ports	AGT	GPT_OPS, POEG	GРТ	RTC	USBFS,CAN	sci	S	IdS	ADC14	DAC12, ACMPLP	CTSU	Interrupt
35	27	27	23	D5		P110		GTOVLO _A	GTIOC1B _A		CRX0_A	CTS0_RT S0_C/ SS0_C/ RXD9_B/ MISO9_B/ SCL9_B		MISOB_B		VCOUT	TS11	IRQ3
36	28	28	24	D6		P111			GTIOC3A _A			SCK0_C/ SCK9_B		RSPCKB_ B			TS12	IRQ4
37	29	29	25	C6		P112			GTIOC3B _A			TXD0_C/ MOSI0_C/ SDA0_C					TSCAP_C	
38	-	-	-	-		P113												
39	30	30	-	-	VCC													
40	31	31	-	-	VSS													
41	-	-	-	-		P107			GTIOC0A _B									KR07
42	-	-	-	-		P106			GTIOC0B _B					SSLA3_A				KR06
43	-	-	-	-		P105		GTETRG A_C						SSLA2_A				KR05/ IRQ0
44	32	32	26	-		P104		GTETRG B_B				RXD0_C/ MISO0_C/ SCL0_C		SSLA1_A			TS13	KR04/ IRQ1
45	33	33	27	C3		P103		GTOWUP _A	_A		CTX0_C	S0_A/ SS0_A		SSLA0_A	AN019	CMPREF 1	TS14	KR03
46	34	34	28	C4		P102	AGTO0	GTOWLO _A	GTIOC2B _A		CRX0_C	SCK0_A		RSPCKA_ A	AN020/ ADTRG0_ A	CMPIN1	TS15	KR02
47	35	35	29	C5		P101	AGTEE0	GTETRG B_A	GTIOC5A _A			TXD0_A/ MOSI0_A/ SDA0_A/ CTS1_RT S1_A/ SS1_A	SDA1_B	MOSIA_A	AN021	CMPREF 0	TS16	KR01/ IRQ1
48	36	36	30	B6		P100	AGTIO0_ A	GTETRG A_A	GTIOC5B _A			RXD0_A/ MISO0_A/ SCL0_A/ SCK1_A	SCL1_B	MISOA_A	AN022	CMPIN0	TS26	KR00/ IRQ2
49	37	37	-	-		P500	AGTOA0	GTIU_B	GTIOC2A _B						AN016		TS27	
50	-	-	-	-		P501	AGTOB0	GTIV_B	GTIOC2B _B						AN017			
51	-	-	-	-		P502		GTIW_B							AN018			
52	38	38	31	A6		P015									AN010		TS28	IRQ7
53	39	39	32	A5		P014									AN009	DA0		
54	40	40	33	B5		P013									AN008			
55	41	41	34	B4		P012								1	AN007			
56	42	42	35	A4	AVCC0									1	1			
57	43	43	36	A3	AVSS0									1	1			
58	44	44	37	B3	VREFL0	P011								1	AN006		TS31	
59	45	45	38	A2	VREFH0	P010								1	AN005		TS30	
60	-	-	-	-		P004									AN004		TS25	IRQ3
61	-	-	-	-		P003									AN003		TS24	
62	46	46	-	-		P002									AN002		TS23	IRQ2
63	47	47	39	-		P001									AN001		TS22	IRQ7
64	48	48	40	B2		P000									AN000		TS21	IRQ6
					1	1	1	1	1		1	1						L

Note: Several pin names have the added suffix of _A, _B, _C, and _D. The suffix can be ignored when assigning functionality.

2. Electrical Characteristics

Unless otherwise specified, the electrical characteristics of the MCU are defined under the following conditions:


 $VCC^{*1} = AVCC0 = VCC_USB^{*2} = VCC_USB_LDO^{*2} = 1.6$ to 5.5V, VREFH0 = 1.6 to AVCC0,

 $VSS = AVSS0 = VREFL0 = VSS_USB = 0 V, Ta = T_{opr}$

Note 1. The typical condition is set to VCC = 3.3V.

Note 2. When USBFS is not used.

Figure 2.1 shows the timing conditions.

Figure 2.1 Input or output timing measurement conditions

The measurement conditions of timing specification in each peripherals are recommended for the best peripheral operation. However, make sure to adjust driving abilities of each pins to meet your conditions.

Each function pin used for the same function must select the same drive ability. If I/O drive ability of each function is mixed, the AC specification of the function is not guaranteed.

Note 2. $t_{cac}\!\!:$ CAC count clock source cycle.

2.3.8 SCI Timing

Table 2.32SCI timing (1)Conditions: VCC = AVCC0 = 1.6 to 5.5 V

-

Paran	neter			Symbol	Min	Max	Unit ^{*1}	Test conditions
SCI	Input clock cycle	Asynchro	nous	t _{Scyc}	4	-	t _{Pcyc}	Figure 2.41
		Clock syn	chronous		6	-		
	Input clock pulse wid	lth	1		0.4	0.6	t _{Scyc}	1
Input clock r	Input clock rise time			t _{SCKr}	-	20	ns	1
	Input clock fall time			t _{SCKf}	-	20	ns	
	Output clock cycle	Asynchro	nous	t _{Scyc}	6	t _{Pcyc}		
		Clock syn	ichronous		4	-		
	Output clock pulse w	ridth		t _{SCKW}	0.4	0.6	t _{Scyc}	
	Output clock rise time	е	1.8V or above		-	20	ns	
			1.6V or above		-	30		
	Output clock fall time	;	1.8V or above	t _{SCKf}	-	20	ns	
			1.6V or above		-	30		
	Transmit data delay	Clock	1.8V or above	t _{TXD}	-	40	ns	Figure 2.42
	(master)	synchro nous	1.6V or above		-	45		
	Transmit data delay	Clock synchro nous	2.7V or above	-	-	55	ns	
	(slave)		2.4V or above		-	60		
			1.8V or above		-	100		
			1.6V or above		-	125		
	Receive data setup	Clock	2.7V or above	t _{RXS}	45	-	ns	
	time (master)	synchro nous	2.4V or above		55	-		
		11000	1.8V or above		90	-		
			1.6V or above		110	-		
	Receive data setup	Clock	2.7V or above		40	-	ns	
	time (slave)	synchro nous	1.6V or above		45	-		
	Receive data hold time (master)	Clock syn	ichronous	t _{RXH}	5	-	ns	
	Receive data hold time (slave)	Clock syn	chronous	t _{RXH}	40	-	ns	1

Note 1. t_{Pcyc}: PCLKB cycle.

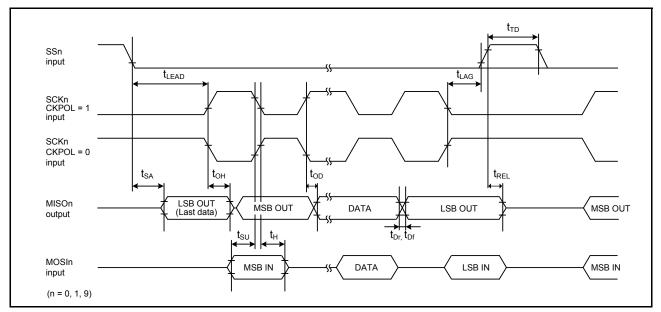


Table 2.34SCI timing (3)Conditions: VCC = AVCC0 = 2.7 to 5.5 V

Parameter		Symbol	Min	Max	Unit	Test conditions
Simple IIC	SDA input rise time	t _{Sr}	-	1000	ns	Figure 2.48
(Standard mode)	SDA input fall time	t _{Sf}	-	300	ns	
	SDA input spike pulse removal time	t _{SP}	0	4 × t _{IICcyc}	ns	_
	Data input setup time	t _{SDAS}	250	-	ns	_
	Data input hold time	t _{SDAH}	0	-	ns	_
	SCL, SDA capacitive load	C _b *1	-	400	pF	_
Simple IIC*2	SDA input rise time	t _{Sr}	-	300	ns	Figure 2.48
(Fast mode)	SDA input fall time	t _{Sf}	-	300	ns	_
	SDA input spike pulse removal time	t _{SP}	0	4 × t _{IICcyc}	ns	
	Data input setup time	t _{SDAS}	100	-	ns	_
	Data input hold time	t _{SDAH}	0	-	ns	
	SCL, SDA capacitive load	C _b *1	-	400	pF	

 $t_{\mbox{\scriptsize IICcyc}}\mbox{:}$ Clock cycle selected by the SMR.CKS[1:0] bits. Note:

Note 1. Cb indicates the total capacity of the bus line.

Note 2. Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.

Table 2.35 SPI timing (2 of 2)

Param	eter			Symbol	Min	Max	Unit ^{*1}	Test conditions
SPI	Data output delay	Master	2.7V or above	t _{OD}	-	14	ns	Figure 2.50 to
			2.4V or above		-	20		Figure 2.55 C = 30_PF
			1.8V or above		-	25		C = 30pi
			1.6V or above		-	30		
		Slave	2.7V or above		-	50		
			2.4V or above		-	60		
			1.8V or above		-	85		
			1.6V or above		-	110		
	Data output hold	Master	-	t _{OH}	0	-	ns	-
	time	Slave			0	-		_
	Successive transmission delay	Master		t _{TD}	t _{SPcyc} + 2 × t _{Pcyc}	8 × t _{SPcyc} + 2 × t _{Pcyc}	ns	
	Slave			6 × t _{Pcyc}	-			
MOSI and MISO rise and fall time		Output	2.7V or above	t _{Dr,} t _{Df}	-	10	ns	
		2.4V or above		-	15			
			1.8V or above		-	20		
			1.6V or above		-	30		
		Input			-	1	μs	
	SSL rise and fall	Output	2.7V or above	t _{SSLr,} t _{SSLf}	-	10	ns	
	time		2.4V or above		-	15		
			1.8V or above		-	20		
			1.6V or above		-	30		
		Input			-	1	μs	
	Slave access time		2.4V or above	t _{SA}	-	2 × t _{Pcyc} +100	ns	Figure 2.54 and Figure 2.55 $C = 30_PF$
			1.8V or above		-	2 × t _{Pcyc} +140		
			1.6V or above		-	2 × t _{Pcyc} +180		
	Slave output release	time	2.4V or above	t _{REL}	-	2 × t _{Pcyc} +100	ns	
			1.8V or above		-	2 × t _{Pcyc} +140		
			1.6V or above		-	2 × t _{Pcyc} +180		

Note 1. t_{Pcyc}: PCLKB cycle.

Note 2. N is set as an integer from 1 to 8 by the SPCKD register.

Note 3. N is set as an integer from 1 to 8 by the SSLND register.

2.3.11 CLKOUT Timing

Table 2.37 CLKOUT timing

Parameter			Symbol	Min	Max	Unit*1	Test conditions
CLKOUT	CLKOUT pin output cycle*1	VCC = 2.7 V or above	t _{Ccyc}	62.5	-	ns	Figure 2.57
		VCC = 1.8 V or above		125	-		
		VCC = 1.6 V or above		250	-		
	CLKOUT pin high pulse width*2	VCC = 2.7 V or above	t _{CH}	15	-	ns	
		VCC = 1.8 V or above		30	-		
		VCC = 1.6 V or above		150	-		
	CLKOUT pin low pulse width*2	VCC = 2.7 V or above	t _{CL}	15	-	ns	
		VCC = 1.8 V or above		30	-		
		VCC = 1.6 V or above		150	-		
	CLKOUT pin output rise time	VCC = 2.7 V or above	t _{Cr}	-	12	ns	
		VCC = 1.8 V or above		-	25		
		VCC = 1.6 V or above		-	50		
	CLKOUT pin output fall time	VCC = 2.7 V or above	t _{Cf}	-	12	ns]
		VCC = 1.8 V or above	1	-	25		
		VCC = 1.6 V or above		-	50		

Note 1. When the EXTAL external clock input or an oscillator is used with division by 1 (the CKOCR.CKOSEL[2:0] bits are 011b and the CKOCR.CKODIV[2:0] bits are 000b) to output from CLKOUT, the above should be satisfied with an input duty cycle of 45 to 55%.

Note 2. When the MOCO is selected as the clock output source (the CKOCR.CKOSEL[2:0] bits are 001b), set the clock output division ratio selection to be divided by 2 (the CKOCR.CKODIV[2:0] bits are 001b).

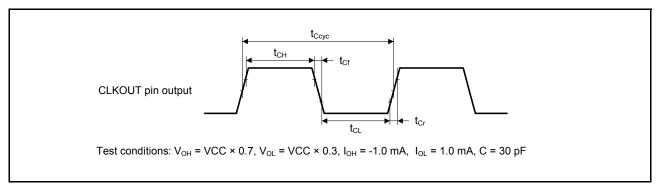


Figure 2.57 CLKOUT output timing

Table 2.42 A/D conversion characteristics (3) in high-speed A/D conversion mode (2 of 2) Conditions: VCC = AVCC0 = 2.4 to 5.5 V, VREFH0 = 2.4 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V

Reference voltage range applied to the VREFH0 and VREFL0.

Parameter		Min	Тур	Max	Unit	Test Conditions
DNL differential nonline	earity error	-	±1.0	-	LSB	-
INL integral nonlinearity	y error	-	±1.0	±3.0	LSB	-
14-bit mode				1		
Resolution		-	-	14	Bit	-
Conversion time*1 (Operation at PCLKD = 32 MHz)	Permissible signal source impedance Max. = 1.3 kΩ	1.59	-	-	μs	High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0Dh
		2.44	-	-	μs	Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 28h
Offset error		-	±2.0	±18	LSB	High-precision channel
				±24.0	LSB	Other than above
Full-scale error		-	±3.0	±18	LSB	High-precision channel
				±24.0	LSB	Other than above
Quantization error		-	±0.5	-	LSB	-
Absolute accuracy		-	±5.0	±20	LSB	High-precision channel
				±32.0	LSB	Other than above
DNL differential nonline	earity error	-	±4.0	-	LSB	-
INL integral nonlinearity error		-	±4.0	±12.0	LSB	-

Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Note 2. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics.

Note 3. Reference data.

Table 2.43 A/D conversion characteristics (4) in low-power A/D conversion mode (1 of 2)

Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter			Min	Тур	Max	Unit	Test Conditions	
Frequency			1	-	24	MHz	-	
Analog input capacitan	ce*2	Cs	-	-	8* ³	pF	High-precision channel	
			-	-	9* ³	pF	Normal-precision channel	
Analog input resistance	9	Rs	-	-	2.5* ³	kΩ	High-precision channel	
			-	-	6.7* ³	kΩ	Normal-precision channel	
Analog input voltage ra	inge	Ain	0	-	VREFH0	V	-	
12-bit mode		•			•			
Resolution			-	-	12	Bit	-	
Conversion time ^{*1} (Operation at PCLKD = 24 MHz)		ible signal mpedance 1.1 kΩ	2.25	-	-	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh	
			3.38	-	-	μs	Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h	
Offset error			-	±0.5	±4.5	LSB	High-precision channel	
				±6.0	LSB	Other than above		
Full-scale error			-	±0.75	±4.5	LSB	High-precision channel	
					±6.0	LSB	Other than above	
Quantization error			-	±0.5	-	LSB	-	

Table 2.44 A/D conversion characteristics (5) in low-power A/D conversion mode (2 of 2)

Conditions: VCC = AVCC0 = 2.4 to 5.5 V, VREFH0 = 2.4 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter		Min	Тур	Max	Unit	Test Conditions
Full-scale error		-	±0.75	±4.5	LSB	High-precision channel
				±6.0	LSB	Other than above
Quantization error		-	±0.5	-	LSB	-
Absolute accuracy		-	±1.25	±5.0	LSB	High-precision channel
				±8.0	LSB	Other than above
DNL differential nonline	earity error	-	±1.0	-	LSB	-
INL integral nonlinearity	y error	-	±1.0	±3.0	LSB	-
14-bit mode		•	I	I	I	
Resolution		-	-	14	Bit	-
Conversion time*1 (Operation at PCLKD = 16 MHz)	Permissible signal source impedance Max. = 2.2 kΩ	3.75	-	-	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh
		5.44	-	-	μs	Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h
Offset error		-	±2.0	±18	LSB	High-precision channel
				±24.0	LSB	Other than above
Full-scale error		-	±3.0	±18	LSB	High-precision channel
				±24.0	LSB	Other than above
Quantization error		-	±0.5	-	LSB	-
Absolute accuracy		-	±5.0	±20	LSB	High-precision channel
				±32.0	LSB	Other than above
DNL differential nonline	earity error	-	±4.0	-	LSB	-
INL integral nonlinearity	y error	-	±4.0	±12.0	LSB	-

Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Note 2. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics.

Note 3. Reference data.

Table 2.45 A/D conversion characteristics (6) in low-power A/D conversion mode (1 of 2)

Conditions: VCC = AVCC0 = 1.8 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.8 to 5.5 V, VSS = AVSS0 = VREFL0 = 0 V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter			Тур	Max	Unit	Test Conditions
Frequency		1	-	8	MHz	-
Analog input capacitance*2	Cs	-	-	8* ³	pF	High-precision channel
		-	-	9* ³	pF	Normal-precision channel
Analog input resistance	Rs	-	-	3.8* ³	kΩ	High-precision channel
		-	-	8.2*3	kΩ	Normal-precision channel
Analog input voltage range	Ain	0	-	VREFH0	V	-
12-bit mode	•	·	•	•	•	
Resolution		-	-	12	Bit	-

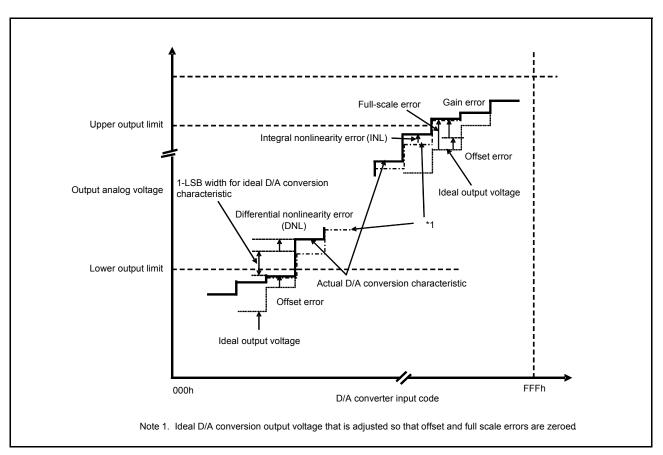

2.6 DAC12 Characteristics

Table 2.49 D/A conversion characteristics

Conditions: VCC = AVCC0 = 1.8 to 5.5 V

Reference voltage = AVCC0 or AVSS0 selected

Parameter	Min	Тур	Max	Unit	Test conditions
Resolution	-	-	12	bit	-
Resistive load	30	-	-	kΩ	-
Capacitive load	-	-	50	pF	-
Output voltage range	0.35	-	AVCC0 - 0.47	V	-
DNL differential nonlinearity error	-	±0.5	±2.0	LSB	-
INL integral nonlinearity error	-	±2.0	±8.0	LSB	-
Offset error	-	-	±30	mV	-
Full-scale error	-	-	±30	mV	-
Output impedance	-	5	-	Ω	-
Conversion time	-	-	30	μs	-

Integral nonlinearity error (INL)

Integral nonlinearity error is the maximum deviation between the ideal output voltage based on the ideal conversion characteristic when the measured offset and full-scale errors are zeroed, and the actual output voltage.

Differential nonlinearity error (DNL)

Differential nonlinearity error is the difference between 1-LSB voltage width based on the ideal D/A conversion characteristics and the width of the actual output voltage.

RENESAS

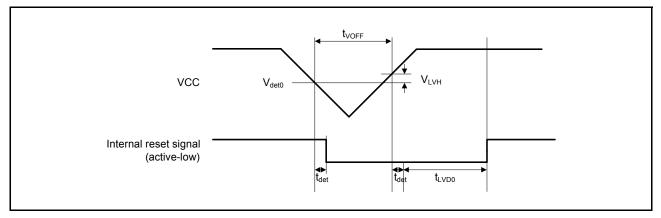


Figure 2.68 Voltage detection circuit timing (V_{det0})

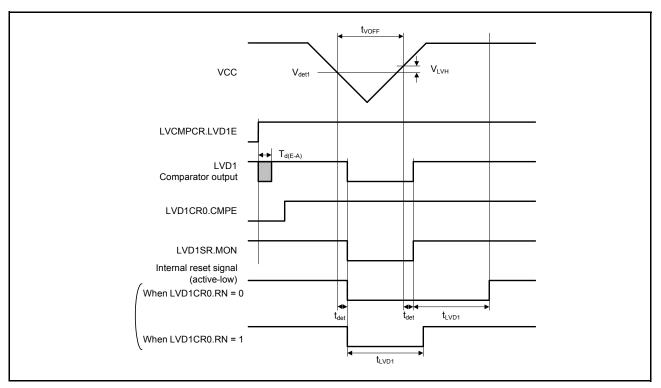


Figure 2.69 Voltage detection circuit timing (V_{det1})

Comparator Characteristics 2.11

Table 2.55ACMPLP characteristicsConditions: VCC = AVCC0 = 1.8 to 5.5 V, VSS = AVSS0 = 0 V

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions	
Reference voltage range		V _{REF}	0	-	VCC -1.4	V	-	
Input voltage rang	e	VI	0	-	VCC	V	-	
Internal reference	voltage	-	1.36	1.44	1.50	V	-	
Output delay High-speed mode		Т _d	-	-	1.2	μs	VCC = 3.0	
	Low-speed mode		-	-	5	μs	Slew rate of input signal > 50 mV/µs	
	Window mode		-	-	2	μs		
Offset voltage	High-speed mode	-	-	-	50	mV	-	
	Low-speed mode	-	-	-	40	mV	-	
	Window mode	-	-	-	60	mV	-	
Internal reference voltage for window mode		V _{RFH}	-	0.76 × VCC	-	V	-	
		V _{RFL}	-	0.24 × VCC	-	V	-	
Operation stabilization	ation wait time	T _{cmp}	100	-	-	μs	-	

2.12 Flash Memory Characteristics

2.12.1 Code Flash Memory Characteristics

Table 2.56 Code flash characteristics (1)

Parameter		Symbol	Min	Тур	Max	Unit	Conditions
Reprogramming/erasure cycle*1		N _{PEC}	1000	-	-	Times	-
Data hold time After 1000 times N _{PEC}		t _{DRP}	20*2, *3	-	-	Year	T _a = +85°C

Note 1. The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 1,000), erasing can be performed n times for each block. For instance, when 4-byte programming is performed 256 times for different addresses in 1-KB blocks, and then the entire block is erased, the reprogram/ erase cycle is counted as 1. However, programming the same address for several times as one erasure is not enabled. (overwriting is prohibited.)

Note 2. Characteristic when using the flash memory programmer and the self-programming library provided by Renesas Electronics.

Note 3. This result is obtained from reliability testing.

Table 2.57 Code flash characteristics (2)

High-speed operating mode Conditions: VCC = AVCC0 = 2.7 to 5.5 V

				ICLK = 1	MHz		ICLK = 32	MHz	
Parameter		Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Programming time	4-byte	t _{P4}	-	116	998	-	54	506	μs
Erasure time	1-KB	t _{E1K}	-	9.03	287	-	5.67	222	ms
Blank check time	4-byte	t _{BC4}	-	-	56.8	-	-	16.6	μs
	1-KB	t _{BC1K}	-	-	1899	-	-	140	μs
Erase suspended time		t _{SED}	-	-	22.5	-	-	10.7	μs
Startup area switching	setting time	t _{SAS}	-	21.9	585	-	12.1	447	ms
Access window time		t _{AWS}	-	21.9	585	-	12.1	447	ms
OCD/serial programme	r ID setting time	t _{OSIS}	-	21.9	585	-	12.1	447	ms
Flash memory mode tra time 1	ansition wait	t _{DIS}	2	-	-	2	-	-	μs
Flash memory mode tra time 2	ansition wait	t _{MS}	5	-	-	5	-	-	μs

Note 1. Does not include the time until each operation of the flash memory is started after instructions are executed by the software.

Note 2. The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note 3. The frequency accuracy of ICLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

Table 2.58 Code flash characteristics (3)

Middle-speed operating mode

Conditions: VCC = AVCC0 = 1.8 to 5.5 V, Ta = -40 to +85°C

				ICLK = 1 I	MHz		ICLK = 8	MHz	
Parameter		Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Programming time	4-byte	t _{P4}	-	157	1411	-	101	966	μs
Erasure time	1-KB	t _{E1K}	-	9.10	289	-	6.10	228	ms
Blank check time	2-byte	t _{BC4}	-	-	87.7	-	-	52.5	μs
	1-KB	t _{BC1K}	-	-	1930	-	-	414	μs
Erase suspended time		t _{SED}	-	-	32.7	-	-	21.6	μs
Startup area switching s	etting time	t _{SAS}	-	22.8	592	-	14.2	465	ms
Access window time		t _{AWS}	-	22.8	592	-	14.2	465	ms
OCD/serial programmer	ID setting time	t _{OSIS}	-	22.8	592	-	14.2	465	ms
Flash memory mode tra time 1	nsition wait	t _{DIS}	2	-	-	2	-	-	μs
Flash memory mode tra time 2	nsition wait	t _{MS}	720	-	-	720	-	-	ns

Note 1. Does not include the time until each operation of the flash memory is started after instructions are executed by the software.

Note 2. The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note 3. The frequency accuracy of ICLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

2.12.2 Data Flash Memory Characteristics

Table 2.59Data flash characteristics (1)

Parameter		Symbol	Min	Тур	Мах	Unit	Conditions
Reprogramming/	erasure cycle*1	N _{DPEC}	100000	1000000	-	Times	-
Data hold time	After 10000 times of N _{DPEC}	t _{DDRP}	20*2, *3	-	-	Year	Ta = +85°C
	After 100000 times of N _{DPEC}		5* ^{2, *3}	-	-	Year	
	After 1000000 times of N _{DPEC}		-	1* ^{2, *3}	-	Year	Ta = +25°C

Note 1. The reprogram/erase cycle is the number of erasure for each block. When the reprogram/erase cycle is n times (n = 100,000), erasing can be performed n times for each block. For instance, when 1-byte programming is performed 1,000 times for different addresses in 1-byte blocks, and then the entire block is erased, the reprogram/erase cycle is counted as 1. However, programming the same address for several times as one erasure is not enabled. (overwriting is prohibited.)

Note 2. Characteristics when using the flash memory programmer and the self-programming library provided by Renesas Electronics.

Note 3. These results are obtained from reliability testing.

Table 2.60 Data flash characteristics (2)

High-speed operating mode

Conditions: VCC = AVCC0 = 2.7 to 5.5 V

			ICLK = 4 MHz				ICLK = 32 MHz			
Parameter		Symbol	Min	Min Typ	Max	Min	Тур	Max	Unit	
Programming time	1-byte	t _{DP1}	-	52.4	463	-	42.1	387	μs	
Erasure time	1-KB	t _{DE1K}	-	8.98	286	-	6.42	237	ms	
Blank check time	1-byte	t _{DBC1}	-	-	24.3	-	-	16.6	μs	
	1-KB	t _{DBC1K}	-	-	1872	-	-	512	μs	
Suspended time durin	ig erasing	t _{DSED}	-	-	13.0	-	-	10.7	μs	
Data flash STOP reco	very time	t _{DSTOP}	5	-	-	5	-	-	μs	

Note 1. Does not include the time until each operation of the flash memory is started after instructions are executed by the software.

Note 2. The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note 3. The frequency accuracy of ICLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

Table 2.61 Data flash characteristics (3)

Middle-speed operating mode Conditions: VCC = AVCC0 = 1.8 to 5.5 V, Ta = -40 to +85°C

			ICLK = 4 MHz				ICLK = 8 MHz			
Parameter		Symbol	Min	Тур	Max	Min	Тур	Мах	Unit	
Programming time	1-byte	t _{DP1}	-	94.7	886	-	89.3	849	μs	
Erasure time	1-KB	t _{DE1K}	-	9.59	299	-	8.29	273	ms	
Blank check time	1-byte	t _{DBC1}	-	-	56.2	-	-	52.5	μs	
	1-KB	t _{DBC1K}	-	-	2.17	-	-	1.51	ms	
Suspended time durin	ig erasing	t _{DSED}	-	-	23.0	-	-	21.7	μs	
Data flash STOP reco	very time	t _{DSTOP}	720	-	-	720	-	-	ns	

Note 1. Does not include the time until each operation of the flash memory is started after instructions are executed by the software.

Note 2. The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note 3. The frequency accuracy of ICLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

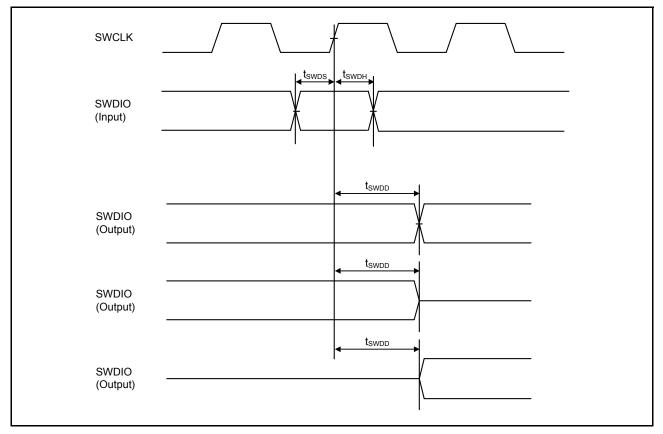
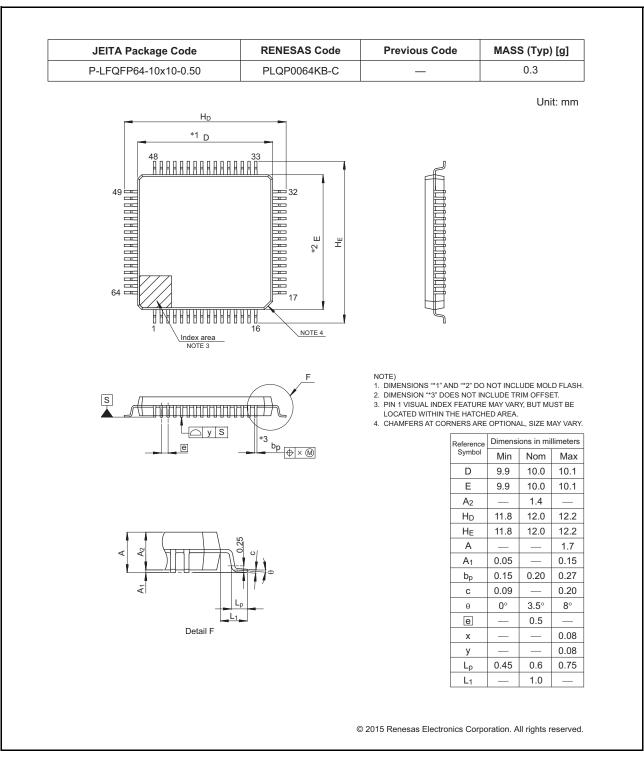



Figure 2.72 SWD input output timing

Appendix 1. Package Dimensions

Information on the latest version of the package dimensions or mountings is displayed in "Packages" on the Renesas Electronics Corporation website.

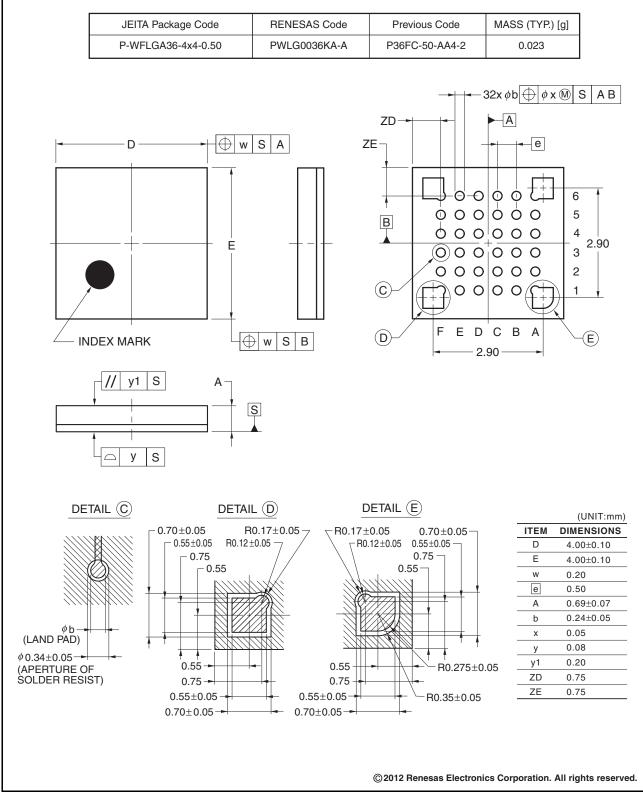


Figure 1.3 LGA 36-pin

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws
 or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or
 transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

Refer to "http://www.renesas.com/" for the latest and detailed information

(Rev.4.0-1 November 2017)

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A Tel: +1-408-432-8888, Fax: +1-408-434-5351 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tei: +1-905-237-2004 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-651-700, Fax: +44-1628-651-804 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China Tel: +86-21-222-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tei + 3552-256-5688, Fax: +8552 2868-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60.3-7955-5390, Pax: +60-3-7955-9510 Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India Tei: +91-80-67208700, Fax: +91-80-67208777 Renesas Electronics Korea Co., Ltd. 17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea Tel: +82-2-558-3737, Fax: +82-2-558-5338