E. Kenesas Electronics America Inc - <u>R7FS124763A01CFM#AA1 Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	CANbus, I ² C, SCI, SPI, UART/USART, USB
Peripherals	LVD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 18x14b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r7fs124763a01cfm-aa1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RENESAS

S124 Microcontroller Group

Datasheet

Ultra-low power 32-MHz Arm[®] Cortex[®]-M0+ microcontroller, 128-KB code flash memory, 16-KB SRAM, Capacitive Touch Sensing Unit, 14-bit A/D Converter, 12-bit D/A Converter, security and safety features.

Features

Arm Cortex-M0+ Core

- Armv6-M architecture
- Maximum operating frequency: 32 MHz
- Debug and Trace: DWT, BPU, CoreSight™ MTB-M0+
- CoreSight Debug Port: SW-DP

Memory

- 128-KB code flash memory
- 4-KB data flash memory (100,000 erase/write cycles)
- Up to 16-KB SRAM
- 128-bit unique ID

Connectivity

- USB 2.0 Full-Speed Module (USBFS)
- On-chip transceiver with voltage regulator
 Compliant with USB Battery Charging Specification 1.2
- Serial Communications Interface (SCI) × 3
 - UART
 - Simple IIC
 - Simple SPI
- Serial Peripheral Interface (SPI) $\times 2$
- I²C bus interface (IIC) \times 2
- CAN module (CAN)

Analog

- 14-Bit A/D Converter (ADC14)
- 12-Bit D/A Converter (DAC12)
- Low-Power Analog Comparator (ACMPLP) × 2
- Temperature Sensor (TSN)

Timers

- General PWM Timer 32-Bit (GPT32)
- General PWM Timer 16-Bit (GPT16) \times 6
- Asynchronous General-Purpose Timer (AGT) $\times\,2$
- Watchdog Timer (WDT)

Safety

- SRAM Parity Error Check
- Flash Area Protection
- ADC self-diagnosis function
- Clock Frequency Accuracy Measurement Circuit (CAC)
- Cyclic Redundancy Check (CRC) Calculator
- Data Operation Circuit (DOC)
- Port Output Enable for GPT (POEG)
- Independent Watchdog Timer (IWDT)
- GPIO Readback Level Detection
- Register Write Protection
- Main Oscillator Stop Detection

System and Power Management

- Low-power modes
- Realtime Clock (RTC)
- Event Link Controller (ELC)Data Transfer Controller (DTC)
- Key Interrupt Function (KINT)
- Power-on reset
- Low Voltage Detection with voltage settings

Security and Encryption

- AES128/256
- True Random Number Generator (TRNG)
- Human Machine Interface (HMI)
- Capacitive Touch Sensing Unit (CTSU)
- Capacitive Fouch Sensing Onit (
- Multiple Clock Sources
 Main clock oscillator (MOSC)
 - Main clock oscillator (MOSC)
 (1 to 20 MHz when VCC = 2.4 to 5.5 V)
 (1 to 8 MHz when VCC = 1.8 to 5.5 V)
 (1 to 4 MHz when VCC = 1.6 to 5.5 V)
 - Sub-clock oscillator (SOSC) (32.768 kHz)
 - High-speed on-chip oscillator (HOCO)
 - (24, 32, 48, 64 MHz when VCC = 2.4 to 5.5 V) (24, 32, 48 MHz when VCC = 1.8 to 5.5 V) (24, 32 MHz when VCC = 1.6 to 5.5 V)
- Middle-speed on-chip oscillator (MOCO) (8 MHz)
- Low-speed on-chip oscillator (LOCO) (32.768 kHz)
- Independent watchdog timer OCO (15 kHz)
- Clock trim function for HOCO/MOCO/LOCOClock out support

- General Purpose I/O Ports
 - Up to 51 input/output pins - Up to 3 CMOS input
 - Up to 48 CMOS input/output
 - Up to 6 input/output 5 V tolerant
 - Up to 16 pins high current (20 mA)

Operating Voltage

VCC: 1.6 to 5.5 V

- Operating Temperature and Packages
- Ta = -40° C to $+85^{\circ}$ C
- 36-pin LGA (4 mm \times 4 mm, 0.5 mm pitch)
- $Ta = -40^{\circ}C \text{ to } +105^{\circ}C$
- 64-pin LQFP (10 mm \times 10 mm, 0.5 mm pitch)
- 48-pin LQFP (7 mm × 7 mm, 0.5 mm pitch)
- 64-pin QFN (8 mm × 8 mm, 0.4 mm pitch) - 48-pin QFN (7 mm × 7 mm, 0.5 mm pitch)
- 40-pin QFN (6 mm \times 6 mm, 0.5 mm pitch)

1. Overview

The MCU integrates multiple series of software- and pin-compatible Arm[®]-based 32-bit MCUs that share a common set of Renesas peripherals to facilitate design scalability and efficient platform-based product development.

Based on the energy-efficient Arm Cortex[®]-M0+ core, the MCU is particularly well suited for cost-sensitive and low-power applications with the following features:

- 128-KB code flash memory
- 16-KB SRAM
- Capacitive Touch Sensing Unit (CTSU)
- 14-bit A/D Converter (ADC14)
- 12-bit D/A Converter (DAC12)
- Security features.

1.1 Function Outline

Table 1.1 Arm core

Feature	Functional description
Arm Cortex-M0+	 Maximum operating frequency: up to 32 MHz Arm Cortex-M0+: Revision: r0p1-00rel0 Armv6-M architecture profile Single-cycle integer multiplier. SysTick timer Driven by SYSTICCLK (LOCO) or ICLK.

Feature	Functional description
Code flash memory	Maximum 128 KB code flash memory. See section 37, Flash Memory in User's Manual.
Data flash memory	4 KB data flash memory. See section 37, Flash Memory in User's Manual.
Option-setting memory	The option-setting memory determines the state of the MCU after a reset. See section 6, Option-Setting Memory in User's Manual.
SRAM	On-chip high-speed SRAM with even parity bit. See section 36, SRAM in User's Manual.

Table 1.3 System (1 of 2)

Feature	Functional description
Operating mode	Two operating modes: • Single-chip mode • SCI boot mode. See section 3, Operating Modes in User's Manual.
Reset	 9 types of resets: RES pin reset Power-on reset Independent watchdog timer reset Watchdog timer reset Voltage monitor 0 reset Voltage monitor 1 reset Voltage monitor 2 reset SRAM parity error reset Software reset. See section 5, Resets in User's Manual.
Low Voltage Detection (LVD)	The Low Voltage Detection (LVD) monitors the voltage level input to the VCC pin and the detection level can be selected using a software program. See section 7, Low Voltage Detection (LVD) in User's Manual.

Feature	Functional description
Clock	 Main clock oscillator (MOSC) Sub-clock oscillator (SOSC) High-speed on-chip oscillator (HOCO) Middle-speed on-chip oscillator (MOCO) Low-speed on-chip oscillator (LOCO) Independent watchdog timer on-chip oscillator Clock out support. See section 8, Clock Generation Circuit in User's Manual.
Clock Frequency Accuracy Measurement Circuit (CAC)	The Clock Frequency Accuracy Measurement Circuit (CAC) is used to check the system clock frequency with a reference clock signal by counting the number of pulses of the system clock to be measured. The reference clock can be provided externally through a CACREF pin or internally from various on-chip oscillators. Event signals can be generated when the clock does not match or measurement ends. This feature is particularly useful in implementing a fail-safe mechanism for home and industrial automation applications. See section 9, Clock Frequency Accuracy Measurement Circuit (CAC) in User's Manual.
Interrupt Controller Unit (ICU)	The Interrupt Controller Unit (ICU) controls which event signals are linked to the NVIC/DTC module and DMAC module. The ICU also controls NMI interrupts. See section 12, Interrupt Controller Unit (ICU) in User's Manual.
Key interrupt function (KINT)	A key interrupt can be generated by setting the Key Return Mode register (KRM) and inputting a rising or falling edge to the key interrupt input pins. See section 17, Key Interrupt Function (KINT) in User's Manual.
Low Power Mode	Power consumption can be reduced in multiple ways, including setting clock dividers, stopping modules, selecting power control mode in normal operation, and transitioning to low power modes. See section 10, Low Power Modes in User's Manual.
Register Write Protection	The Register Write Protection function protects important registers from being overwritten due to software errors. See section 11, Register Write Protection in User's Manual.
Watchdog Timer (WDT)	The Watchdog Timer (WDT) is a 14-bit down-counter. It can be used to reset the MCU when the counter underflows because the system has run out of control and is unable to refresh the WDT. In addition, a non-maskable interrupt or interrupt can be generated by an underflow. The refresh-permitted period can be set to refresh the counter and used as the condition to detect when the system runs out of control. See section 22, Watchdog Timer (WDT) in User's Manual.
Independent Watchdog Timer (IWDT)	The Independent Watchdog Timer (IWDT) consists of a 14-bit down-counter that must be serviced periodically to prevent counter underflow. The IWDT provides functionality to reset the MCU or to generate a non-maskable interrupt/interrupt for a timer underflow. Because the timer operates with an independent, dedicated clock source, it is particularly useful in returning the MCU to a known state as a fail safe mechanism when the system runs out of control. The watchdog timer can be triggered automatically on reset, underflow, or refresh error, or by a refresh of the count value in the registers. See section 23, Independent Watchdog Timer (IWDT) in User's Manual.

Table 1.4 Event Link

Feature	Functional description
Event Link Controller (ELC)	The Event Link Controller (ELC) uses the interrupt requests generated by various peripheral modules as event signals to connect them to different modules, enabling direct interaction between the modules without CPU intervention. See section 15, Event Link Controller (ELC) in User's Manual.

Table 1.5 Direct memory access

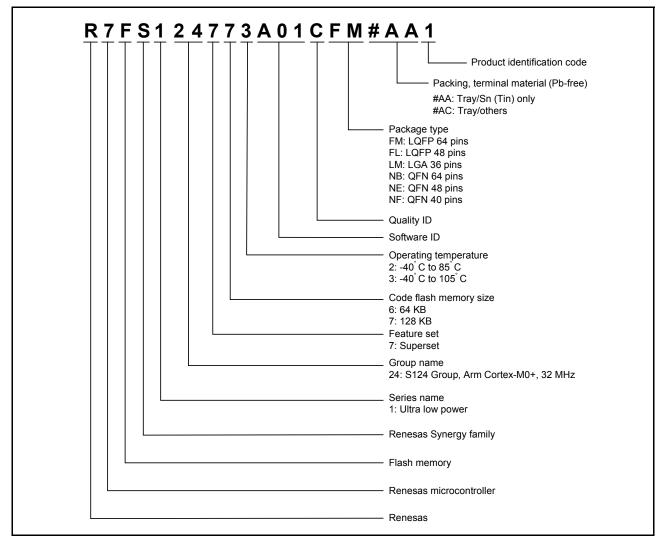
Feature	Functional description
Data Transfer Controller (DTC)	The MCU incorporates a Data Transfer Controller (DTC) that performs data transfers when activated by an interrupt request. See section 14, Data Transfer Controller (DTC) in User's Manual.

Feature	Functional description
USB 2.0 Full-Speed Module (USBFS)	The MCU incorporates a USB 2.0 Full-Speed module (USBFS). The USBFS is a USB controller that is equipped to operate as a device controller. The module supports full-speed and low-speed transfer as defined in the Universal Serial Bus Specification 2.0. The module has an internal USB transceiver and supports all of the transfer types defined in the Universal Serial Bus Specification 2.0. The USB has buffer memory for data transfer, providing a maximum of 5 pipes. PIPE0 and PIPE4 to PIPE7 can be assigned any endpoint number based on the peripheral devices used for communication or based on the user system. The MCU supports revision 1.2 of the battery charging specification. Because the MCU can be powered at 5 V, the USB LDO regulator provides the internal USB transceiver power supply 3.3 V. See section 24, USB 2.0 Full-Speed Module (USBFS) in User's Manual.

Table 1.7Communication interfaces (2 of 2)

Table 1.8 Analog

Feature	Functional description
14-bit A/D Converter (ADC14)	The MCU incorporates up to one unit of a 14-bit successive approximation A/D converter. Up to 18 analog input channels are selectable. Temperature sensor output and internal reference voltage are selectable for conversion. The A/D conversion accuracy is selectable from 12-bit and 14-bit conversion making it possible to optimize the tradeoff between speed and resolution in generating a digital value. See section 30, 14-Bit A/D Converter (ADC14) in User's Manual.
12-bit D/A Converter (DAC12)	The MCU includes a 12-bit D/A converter with an output amplifier. See section 31, 12-Bit D/A Converter (DAC12) in User's Manual.
Temperature Sensor (TSN)	The on-chip Temperature Sensor can be used to determine and monitor the die temperature for reliable operation of the device. The sensor outputs a voltage directly proportional to the die temperature, and the relationship between the die temperature and the output voltage is linear. The output voltage is provided to the ADC14 for conversion and can be further used by the end application. See section 32, Temperature Sensor (TSN) in User's Manual.
Low-Power Analog Comparator (ACMPLP)	Analog comparators can be used to compare a reference input voltage and analog input voltage. The comparison result can be read by software and also be output externally. The reference input voltage can be selected from either an input to the CMPREFi (i = 0, 1) pin or from the internal reference voltage (Vref) generated internally in the MCU. The ACMPLP response speed can be set before starting an operation. Setting high-speed mode decreases the response delay time, but increases current consumption. Sete section 33, Low-Power Analog Comparator (ACMPLP) in User's Manual.


Table 1.9 Human machine interfaces

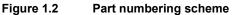

Feature	Functional description
Capacitive Touch Sensing Unit (CTSU)	The Capacitive Touch Sensing Unit (CTSU) measures the electrostatic capacitance of the touch sensor. Changes in the electrostatic capacitance are determined by software, which enables the CTSU to detect whether a finger is in contact with the touch sensor. The electrode surface of the touch sensor is usually enclosed with an electrical insulator so that a finger does not come into direct contact with the electrode. See section 34, Capacitive Touch Sensing Unit (CTSU) in User's Manual.

Table 1.10 Data processing

Feature	Functional description
Cyclic Redundancy Check (CRC) Calculator	The Cyclic Redundancy Check (CRC) calculator generates CRC codes to detect errors in the data. The bit order of CRC calculation results can be switched for LSB first or MSB first communication. Additionally, various CRC generation polynomials are available. The snoop function allows monitoring reads from and writes to specific addresses. This function is useful in applications that require CRC code to be generated automatically in certain events, such as monitoring writes to the serial transmit buffer and reads from the serial receive buffer. See section 29, Cyclic Redundancy Check (CRC) Calculator in User's Manual.
Data Operation Circuit (DOC)	The Data Operation Circuit (DOC) is used to compare, add, and subtract 16-bit data. See section 35, Data Operation Circuit (DOC) in User's Manual.

Table 1.12 Product list

Product part number	Orderable part number	Package code	Code flash	Data flash	SRAM	Operating temperature
R7FS124773A01CFM	R7FS124773A01CFM#AA1	PLQP0064KB-C	128 KB	4 KB	16 KB	–40 to +105°C
R7FS124773A01CNB	R7FS124773A01CNB#AC1	PWQN0064LA-A				-40 to +105°C
R7FS124773A01CFL	R7FS124773A01CFL#AA1	PLQP0048KB-B	1			-40 to +105°C
R7FS124773A01CNE	R7FS124773A01CNE#AC1	PWQN0048KB-A				-40 to +105°C
R7FS124773A01CNF	R7FS124773A01CNF#AC1	PWQN0040KC-A				-40 to +105°C
R7FS124772A01CLM	R7FS124772A01CLM#AC1	PWLG0036KA-A				-40 to +85°C
R7FS124763A01CFM	R7FS124763A01CFM#AA1	PLQP0064KB-C	64 KB			-40 to +105°C
R7FS124763A01CFL	R7FS124763A01CFL#AA1	PLQP0048KB-B	1			-40 to +105°C
R7FS124762A01CLM	R7FS124762A01CLM#AC1	PWLG0036KA-A	1			-40 to +85°C

Note: Earlier products with orderable part number suffix AA0 and AC0 have a restriction in AES functions. If AES functions are required for your application, refer to the products with orderable part number suffix AA1 or AC1. For details on the differences of AES functions between AA0/AC0 and AA1/AC1 products, see *Technical Update* (*TN-SY*-A024A/E*). Contact your Renesas sales representative for additional information.

RENESAS

1.5 Pin Functions

Function	Signal	I/O	Description
Power supply	VCC	Input	Power supply pin. Connect it to the system power supply. Connect this pin to VSS by a $0.1-\mu$ F capacitor. The capacitor should be placed close to the pin.
	VCL	Input	Connect this pin to the VSS pin by the smoothing capacitor used to stabilize the internal power supply. Place the capacitor close to the pin.
	VSS	Input	Ground pin. Connect it to the system power supply (0 V).
Clock	XTAL	Output	Pins for a crystal resonator. An external clock signal can be input through
	EXTAL	Input	the EXTAL pin.
	XCIN	Input	Input/output pins for the sub-clock oscillator. Connect a crystal resonator
	XCOUT	Output	between XCOUT and XCIN.
	CLKOUT	Output	Clock output pin.
Operating mode control	MD	Input	Pins for setting the operating mode. The signal levels on these pins must not be changed during operation mode transition at the time of release from the reset state.
System control	RES	Input	Reset signal input pin. The MCU enters the reset state when this signal goes low.
CAC	CACREF	Input	Measurement reference clock input pin.
On-chip debug	SWDIO	I/O	Serial Wire debug Data Input/Output pin.
	SWCLK	Input	Serial Wire Clock pin.
Interrupt	NMI	Input	Non-maskable interrupt request pin.
	IRQ0 to IRQ7	Input	Maskable interrupt request pins.
GPT	GTETRGA, GTETRGB	Input	External trigger input pin.
	GTIOC0A to GTIOC6A, GTIOC0B to GTIOC6B	I/O	Input capture, Output Compare, or PWM output pin.
	GTIU	Input	Hall sensor input pin U.
	GTIV	Input	Hall sensor input pin V.
	GTIW	Input	Hall sensor input pin W.
	GTOUUP	Output	Three-phase PWM output for BLDC motor control (positive U phase).
	GTOULO	Output	Three-phase PWM output for BLDC motor control (negative U phase).
	GTOVUP	Output	Three-phase PWM output for BLDC motor control (positive V phase).
	GTOVLO	Output	Three-phase PWM output for BLDC motor control (negative V phase).
	GTOWUP	Output	Three-phase PWM output for BLDC motor control (positive W phase).
	GTOWLO	Output	Three-phase PWM output for BLDC motor control (negative W phase).
AGT	AGTEE0, AGTEE1	Input	External event input enable.
	AGTIO0, AGTIO1	I/O	External event input and pulse output.
	AGTO0, AGTO1	Output	Pulse output.
	AGTOA0, AGTOA1	Output	Output compare match A output.
	AGTOB0, AGTOB1	Output	Output compare match B output.
RTC	RTCOUT	Output	Output pin for 1-Hz/64-Hz clock.

1.6 Pin Assignments

Figure 1.3 to Figure 1.8 show the pin assignments.

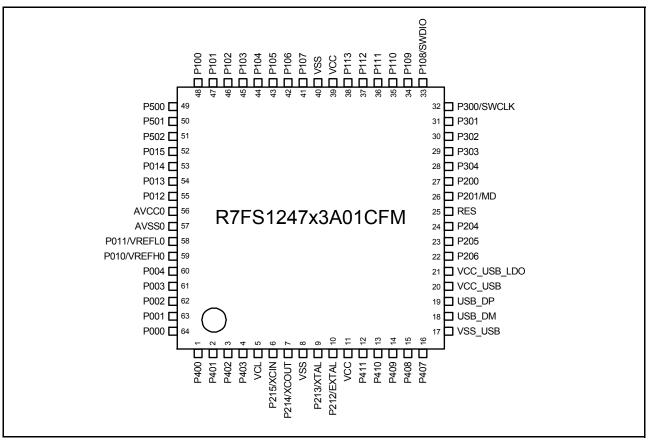


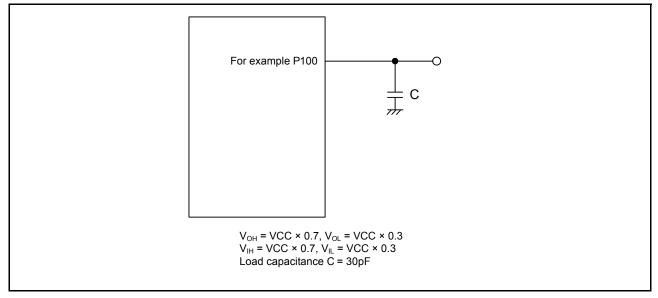
Figure 1.3 Pin assignment for LQFP 64-pin (top view)

		Pin numbe	r					Tin	ners		C	ommunicat	ion Interfa	ces	Ana	logs	н	MI
LQFP64, QFN64	LQFP48	QFN48	QFN40	LGA36	Power, System, Clock, Debug, CAC	I/O ports	AGT	GPT_OPS, POEG	GРТ	RTC	USBFS,CAN	sci	S	SPI	ADC14	DAC12, ACMPLP	CTSU	Interrupt
35	27	27	23	D5		P110		GTOVLO _A	GTIOC1B _A		CRX0_A	CTS0_RT S0_C/ SS0_C/ RXD9_B/ MISO9_B/ SCL9_B		MISOB_B		VCOUT	TS11	IRQ3
36	28	28	24	D6		P111			GTIOC3A _A			SCK0_C/ SCK9_B		RSPCKB_ B			TS12	IRQ4
37	29	29	25	C6		P112			GTIOC3B _A			TXD0_C/ MOSI0_C/ SDA0_C					TSCAP_C	
38	-	-	-	-		P113												
39	30	30	-	-	VCC													
40	31	31	-	-	VSS													
41	-	-	-	-		P107			GTIOC0A _B									KR07
42	-	-	-	-		P106			GTIOC0B _B					SSLA3_A				KR06
43	-	-	-	-		P105		GTETRG A_C						SSLA2_A				KR05/ IRQ0
44	32	32	26	-		P104		GTETRG B_B				RXD0_C/ MISO0_C/ SCL0_C		SSLA1_A			TS13	KR04/ IRQ1
45	33	33	27	C3		P103		GTOWUP _A	_A		CTX0_C	S0_A/ SS0_A		SSLA0_A	AN019	CMPREF 1	TS14	KR03
46	34	34	28	C4		P102	AGTO0	GTOWLO _A	GTIOC2B _A		CRX0_C	SCK0_A		RSPCKA_ A	AN020/ ADTRG0_ A	CMPIN1	TS15	KR02
47	35	35	29	C5		P101	AGTEE0	GTETRG B_A	GTIOC5A _A			TXD0_A/ MOSI0_A/ SDA0_A/ CTS1_RT S1_A/ SS1_A	SDA1_B	MOSIA_A	AN021	CMPREF 0	TS16	KR01/ IRQ1
48	36	36	30	B6		P100	AGTIO0_ A	GTETRG A_A	GTIOC5B _A			RXD0_A/ MISO0_A/ SCL0_A/ SCK1_A	SCL1_B	MISOA_A	AN022	CMPIN0	TS26	KR00/ IRQ2
49	37	37	-	-		P500	AGTOA0	GTIU_B	GTIOC2A _B						AN016		TS27	
50	-	-	-	-		P501	AGTOB0	GTIV_B	GTIOC2B _B						AN017			
51	-	-	-	-		P502		GTIW_B							AN018			
52	38	38	31	A6		P015									AN010		TS28	IRQ7
53	39	39	32	A5		P014									AN009	DA0		
54	40	40	33	B5		P013									AN008			
55	41	41	34	B4		P012								1	AN007			
56	42	42	35	A4	AVCC0									1	1			
57	43	43	36	A3	AVSS0									1	1			
58	44	44	37	B3	VREFL0	P011								1	AN006		TS31	
59	45	45	38	A2	VREFH0	P010								1	AN005		TS30	
60	-	-	-	-		P004									AN004		TS25	IRQ3
61	-	-	-	-		P003									AN003		TS24	
62	46	46	-	-		P002									AN002		TS23	IRQ2
63	47	47	39	-		P001									AN001		TS22	IRQ7
64	48	48	40	B2		P000									AN000		TS21	IRQ6
					1	1	1	1	1		1	1						L

Note: Several pin names have the added suffix of _A, _B, _C, and _D. The suffix can be ignored when assigning functionality.

2. Electrical Characteristics

Unless otherwise specified, the electrical characteristics of the MCU are defined under the following conditions:


 $VCC^{*1} = AVCC0 = VCC_USB^{*2} = VCC_USB_LDO^{*2} = 1.6$ to 5.5V, VREFH0 = 1.6 to AVCC0,

 $VSS = AVSS0 = VREFL0 = VSS_USB = 0 V, Ta = T_{opr}$

Note 1. The typical condition is set to VCC = 3.3V.

Note 2. When USBFS is not used.

Figure 2.1 shows the timing conditions.

Figure 2.1 Input or output timing measurement conditions

The measurement conditions of timing specification in each peripherals are recommended for the best peripheral operation. However, make sure to adjust driving abilities of each pins to meet your conditions.

Each function pin used for the same function must select the same drive ability. If I/O drive ability of each function is mixed, the AC specification of the function is not guaranteed.

2.2 DC Characteristics

2.2.1 Tj/Ta Definition

Table 2.3DC characteristics

Conditions: Products with operating temperature (T_a) –40 to +105°C

Parameter	Symbol	Тур	Max	Unit	Test conditions
Permissible junction temperature	Tj	-	125	°C	High-speed mode
			105* ¹		Middle-speed mode Low-voltage mode Low-speed mode
					Subosc-speed mode

Note: Make sure that $Tj = T_a + \theta ja \times total power consumption (W)$, where total power consumption = (VCC - V_{OH}) × $\Sigma I_{OH} + V_{OL} \times \Sigma I_{OL} + I_{CC}max \times VCC$.

Note 1. The upper limit of operating temperature is 85°C or 105°C, depending on the product. For details, see section 1.3, Part Numbering. If the part number shows the operation temperature at 85°C, then the maximum value of Tj is 105°C, otherwise, it is 125°C.

2.2.2 I/O V_{IH}, V_{IL}

Table 2.4 I/O V_{IH}, V_{IL} (1) Conditions: VCC = AVCC0 = 2.7 to 5.5 V

Parameter		Symbol	Min	Тур	Мах	Unit	Test Conditions		
Schmitt trigger	IIC (except for SMBus)*1	V _{IH}	VCC × 0.7	-	5.8	V	-		
input voltage		V _{IL}	-	-	VCC × 0.3				
		ΔV_T	VCC × 0.05	-	-				
	RES, NMI	V _{IH}	VCC × 0.8	-	-				
	Other peripheral input pins	V _{IL}	-	-	VCC × 0.2				
	excluding IIC	ΔV_T	VCC × 0.1	-	-				
Input voltage (except for	IIC (SMBus)*2	V _{IH}	2.2	-	-	-	VCC = 3.6 to 5.5 V		
Schmitt trigger input pin)		V _{IH}	2.0	-	-		VCC =2.7 to 3.6 V		
		V _{IL}	-	-	0.8		-		
	5V-tolerant ports*3	V _{IH}	VCC × 0.8	-	5.8	1			
		V _{IL}	-	-	VCC × 0.2				
	P000 to P004	V _{IH}	AVCC0 × 0.8	-	-				
	P010 to P015	V _{IL}	-	-	AVCC0 × 0.2	1			
	EXTAL	V _{IH}	VCC × 0.8	-	-	1			
	Input ports pins except for P000 to P004, P010 to P015	V _{IL}	-	-	VCC × 0.2	1			

Note 1. SCL0_A, SDA0_A, SDA0_B, SCL1_A, SDA1_A (total 5 pins)

Note 2. SCL0_A, SDA0_A, SCL0_B, SDA0_B, SCL1_A, SDA1_A, SCL1_B, SDA1_B (total 8 pins)

Note 3. P205, P206, P400, P401, P407 (total 5pins)

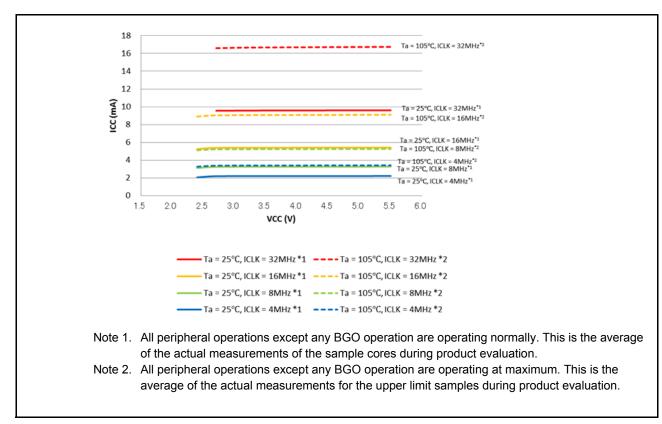


Figure 2.17 Voltage dependency in high-speed operating mode (reference data)

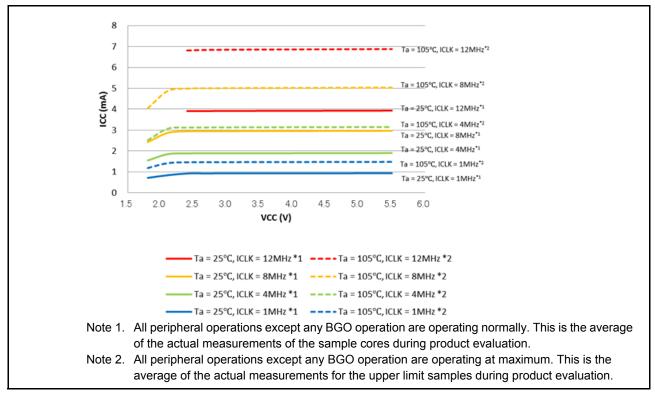


Figure 2.18 Voltage dependency in middle-speed operating mode (reference data)

RENESAS

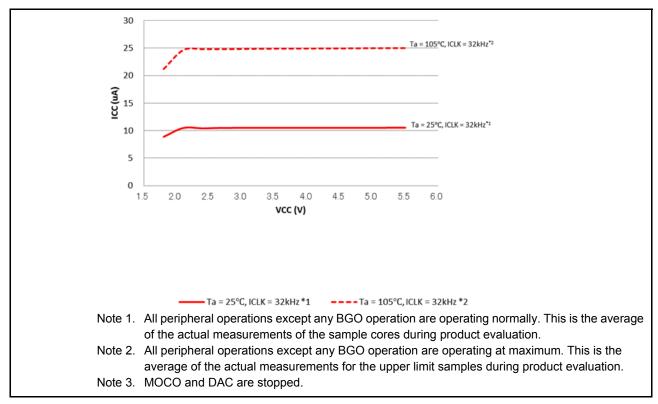


Figure 2.21 Voltage dependency in subosc-speed operating mode (reference data)

Table 2.12Operating and standby current (2)

Conditions: VCC = AVCC0 = 1.6 to 5.5 V

Parameter	Parameter			Typ* ³	Max	Unit	Test conditions
Supply Software Standb		T _a = 25°C	I _{CC}	0.4	1.5	μA	-
current*1	mode*2	T _a = 55°C		0.6	5.5		
		T _a = 85°C		1.2	10.0		
		T _a = 105°C		2.6	40.0		
	Increment for RTC low-speed on-chip	•		0.4	-		-
	Increment for RTC sub-clock oscillator	rement for RTC operation with -clock oscillator*4		0.5	-		SOMCR.SODRV[1:0] are 11b (Low power mode 3)
				1.3	-	1	SOMCR.SODRV[1:0] are 00b (normal mode)

Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOS transistors are in the off state.

Note 2. The IWDT and LVD are not operating.

Note 3. VCC = 3.3 V.

Note 4. Includes the current of low-speed on-chip oscillator or sub-oscillation circuit.

Table 2.18 Operation frequency in low-speed mode

Conditions: VCC = AVCC0 = 1.8 to 5.5 V

Parameter				Min	Тур	Max*5	Unit
Operation	System clock (ICLK)*1, *2, *4	1.8 to 5.5 V	f	0.032768	-	1	MHz
frequency	Peripheral module clock (PCLKB)*4	1.8 to 5.5 V		-	-	1	
	Peripheral module clock (PCLKD)*3, *4	1.8 to 5.5 V		-	-	1	

Note 1. The lower-limit frequency of ICLK is 1 MHz while programming or erasing the flash memory.

Note 2. The frequency accuracy of ICLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

Note 3. The lower-limit frequency of PCLKD is 1 MHz when the A/D converter is in use.

- Note 4. See section 8, Clock Generation Circuit in User's Manual for the relationship of frequencies between ICLK, PCLKB, and PCLKD.
- Note 5. The maximum value of operation frequency does not include internal oscillator errors. For details on the range of guaranteed operation, see Table 2.21, Clock timing.

Table 2.19 Operation frequency in low-voltage mode

Conditions: VCC = AVCC0 = 1.6 to 5.5 V

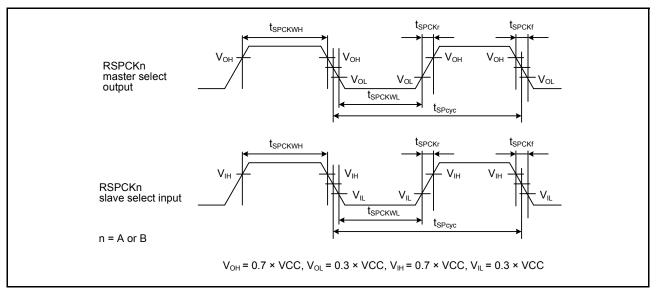
Parameter				Min	Тур	Max*5	Unit
Operation	System clock (ICLK)*1, *2, *4	1.6 to 5.5 V	f	0.032768	-	4	MHz
frequency	Peripheral module clock (PCLKB)*4	1.6 to 5.5 V		-	-	4	
	Peripheral module clock (PCLKD)*3, *4	1.6 to 5.5 V]	-	-	4	1

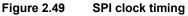
Note 1. The lower-limit frequency of ICLK is 1 MHz while programming or erasing the flash memory. When using ICLK for programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

- Note 2. The frequency accuracy of ICLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.
- Note 3. The lower-limit frequency of PCLKD is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the 14-bit A/D converter is in use.
- Note 4. See section 8, Clock Generation Circuit in User's Manual for the relationship of frequencies between ICLK, PCLKB, and PCLKD.
- Note 5. The maximum value of operation frequency does not include internal oscillator errors. For details on the range of guaranteed operation, see Table 2.21, Clock timing.

Table 2.20 Operation frequency in Subosc-speed mode

Conditions: VCC = AVCC0 = 1.8 to 5.5 V


Parameter				Min	Тур	Max	Unit
Operation	System clock (ICLK)*1, *3	1.8 to 5.5 V	f	27.8528	32.768	37.6832	kHz
frequency	Peripheral module clock (PCLKB)*3	1.8 to 5.5 V		-	-	37.6832	
	Peripheral module clock (PCLKD)*2, *3	1.8 to 5.5 V		-	-	37.6832	


Note 1. Programming and erasing the flash memory is not possible.

Note 2. The 14-bit A/D converter cannot be used.

Note 3. See section 8, Clock Generation Circuit in User's Manual for the relationship between ICLK, PCLKB, and PCLKD frequencies.

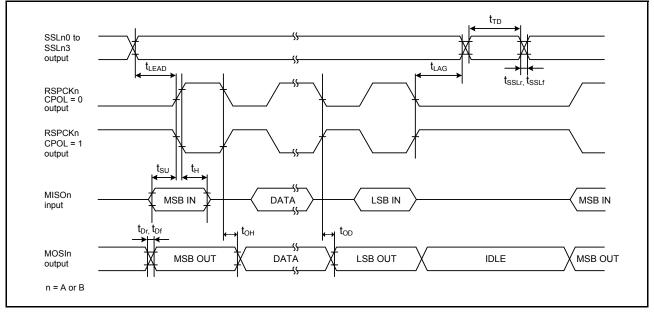


Figure 2.50 SPI timing (master, CPHA = 0) (bit rate: PCLKB division ratio is set to any value other than 1/2)

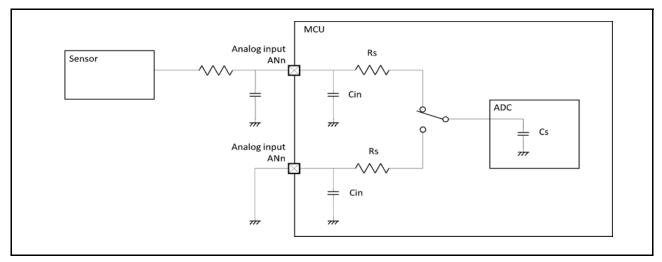
Table 2.41A/D conversion characteristics (2) in high-speed A/D conversion mode (2 of 2)Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V

Reference voltage range applied to the VREFH0 and VREFL0.

Parameter		Min	Тур	Max	Unit	Test Conditions
14-bit mode		•				
Resolution		-	-	14	Bit	-
Conversion time ^{*1} (Operation at PCLKD = 48 MHz)	Permissible signal source impedance Max. = 0.3 kΩ	1.06	-	-	μs	High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0Dh
		1.63	-	-	μs	Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 28h
Offset error		-	±2.0	±18	LSB	High-precision channel
				±24.0	LSB	Other than above
Full-scale error		-	±3.0	±18	LSB	High-precision channel
				±24.0	LSB	Other than above
Quantization error		-	±0.5	-	LSB	-
Absolute accuracy		-	±5.0	±20	LSB	High-precision channel
				±32.0	LSB	Other than above
DNL differential nonline	earity error	-	±4.0	-	LSB	-
INL integral nonlinearit	y error	-	±4.0	±12.0	LSB	-

Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.


Note 2. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics.

Note 3. Reference data.

Table 2.42 A/D conversion characteristics (3) in high-speed A/D conversion mode (1 of 2) Conditions: VCC = AVCC0 = 2.4 to 5.5 V, VREFH0 = 2.4 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter			Min	Тур	Max	Unit	Test Conditions
Frequency			1	-	32	MHz	-
Analog input capacitan	ce*2	Cs	-	-	8* ³	pF	High-precision channel
			-	-	9*3	pF	Normal-precision channel
Analog input resistance	Э	Rs	-	-	2.5* ³	kΩ	High-precision channel
			-	-	6.7* ³	kΩ	Normal-precision channel
Analog input voltage ra	inge	Ain	0	-	VREFH0	V	-
12-bit mode		•	•	•	1		
Resolution			-	-	12	Bit	-
Conversion time ^{*1} (Operation at PCLKD = 32 MHz)	Permissib source im Max. = 1.3	pedance	1.41	-	-	μs	High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0Dh
			2.25	-	-	μs	Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 28h
Offset error	•		-	±0.5	±4.5	LSB	High-precision channel
					±6.0	LSB	Other than above
Full-scale error			-	±0.75	±4.5	LSB	High-precision channel
					±6.0	LSB	Other than above
Quantization error			-	±0.5	-	LSB	-
Absolute accuracy			-	±1.25	±5.0	LSB	High-precision channel
					±8.0	LSB	Other than above

Figure 2.62 Equivalent circuit for analog input

Classification	Channel	Conditions	Remarks		
High-precision channel AN000 to AN010		AVCC0 = 1.6 to 5.5 V	Pins AN000 to AN010 cannot be used		
Normal-precision channel	AN016 to AN022		as general I/O, TS transmission, when the A/D converter is in use.		
Internal reference voltage Internal reference voltage input channel		AVCC0 = 2.0 to 5.5 V	-		
Temperature sensor input channel Temperature sensor output		AVCC0 = 2.0 to 5.5 V	-		

Table 2.48 A/D internal reference voltage characteristics

Conditions: VCC = AVCC0 = VREFH0 = 2.0 to 5.5 V*1

Parameter	Min	Тур	Max	Unit	Test conditions
Internal reference voltage input channel* ²	1.36	1.43	1.50	V	-
Frequency	1	-	2	MHz	-
Sampling time	5.0	-	-	μs	-

Note 1. The internal reference voltage cannot be selected for input channels when AVCC0 < 2.0 V.

Note 2. The 14-bit A/D internal reference voltage indicates the voltage when the internal reference voltage is input to the 14-bit A/D converter.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Power-on reset enable time	t _{W (POR)}	1	-	-	ms	Figure 2.67, VCC = below 1.0 V
LVD operation stabilization time (after LVD is enabled)	T _{d (E-A)}	-	-	300	μs	Figure 2.69, Figure 2.70
Hysteresis width (POR)	V _{PORH}	-	110	-	mV	-
Hysteresis width (LVD0, LVD1, and LVD2)	V _{LVH}	-	60	-	mV	LVD0 selected
		-	100	-		V_{det1_0} to V_{det1_2} selected.
		-	60	-		V _{det1_3} to V _{det1_9} selected.
		-	50	-		V_{det1_A} to V_{det1_B} selected.
		-	40	-		V _{det1_C} to V _{det1_F} selected.
		-	60	-		LVD2 selected

Note 1. When OFS1.LVDAS = 0

Note 2. When OFS1.LVDAS = 1

Note 3. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels V_{POR} , V_{det0} , V_{det1} , and V_{det2} for the POR/LVD.

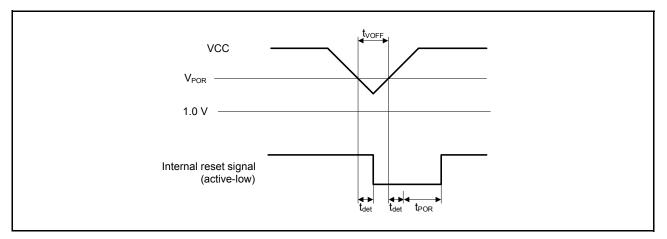


Figure 2.66 Voltage detection reset timing

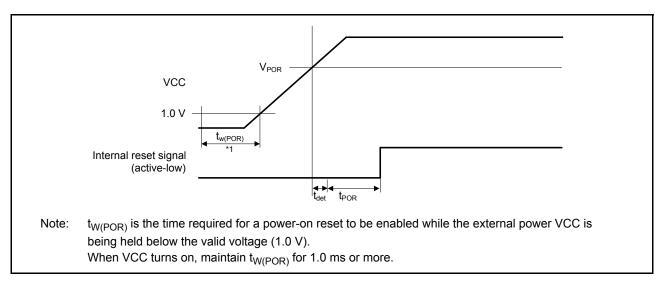


Figure 2.67 Power-on reset timing

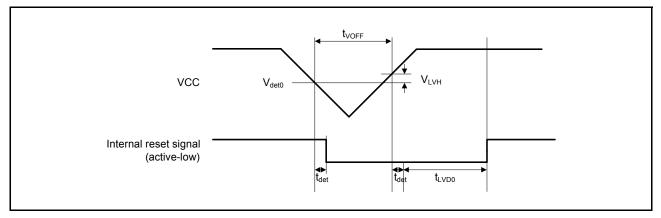


Figure 2.68 Voltage detection circuit timing (V_{det0})

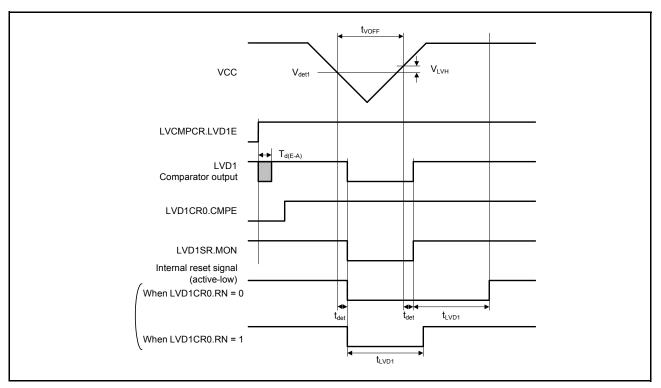


Figure 2.69 Voltage detection circuit timing (V_{det1})

Comparator Characteristics 2.11

Table 2.55ACMPLP characteristicsConditions: VCC = AVCC0 = 1.8 to 5.5 V, VSS = AVSS0 = 0 V

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
Reference voltage range		V _{REF}	0	-	VCC -1.4	V	-
Input voltage range		VI	0	-	VCC	V	-
Internal reference voltage		-	1.36	1.44	1.50	V	-
Output delay	High-speed mode	T _d	-	-	1.2	μs	VCC = 3.0 Slew rate of input signal > 50 mV/µs
	Low-speed mode		-	-	5	μs	
	Window mode		-	-	2	μs	
Offset voltage	High-speed mode	-	-	-	50	mV	-
	Low-speed mode	-	-	-	40	mV	-
	Window mode	-	-	-	60	mV	-
Internal reference voltage for window mode		V _{RFH}	-	0.76 × VCC	-	V	-
		V _{RFL}	-	0.24 × VCC	-	V	-
Operation stabilization wait time		T _{cmp}	100	-	-	μs	-

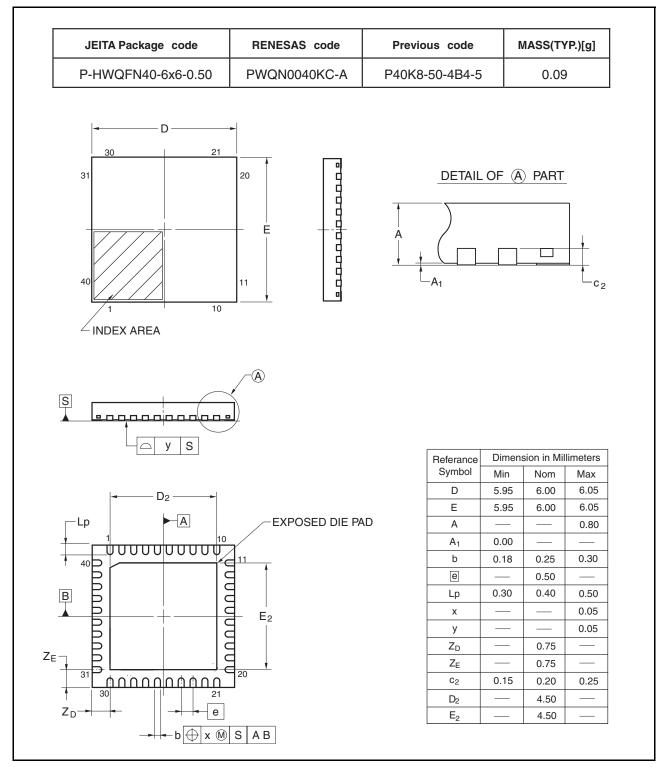


Figure 1.6 QFN 40-pin

