
E. Kenesas Electronics America Inc - <u>R7FS124763A01CNB#AC0 Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product StatusObsoleteCore ProcessorARM Cortex@-M04Core Size32HS ingle-CoreSpeed32MEzConnectivityCANbus, PC, SCI, SPI, UART/USART, USBPripheralsLVD, POR, PWM, WDTNumber of I/O51Program Memory Size64KB (64K x 8)Program Memory TypeFLASHERROM Size16K x 8Nutser of Size16K x 8Voltage - Supply (Voc/Vd)1.6V ~ 5.5VPortaint TypeJenaldOperating TypeJenaldOperating Type1.6V ~ 0.5VScillator TypeJenaldOperating TypeJenaldMuting TypeSuface ConstructionMuting Type64WFQFN Exposed PadSupplier Device Package64-WQFN (Ras)Purchase URLInstruct-self-self-self-self-self-self-self-self		
Core Size32-Bit Single-CoreSpeed32MHzConnectivityCANbus, I²C, SCI, SPI, UART/USART, USBPeripheralsLVD, POR, PWM, WDTNumber of I/O51Program Memory Size64KB (64K x 8)Program Memory TypeFLASHEEPROM Size4K x 8RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.6V ~ 5.5VData ConvertersA/D 18x14b; D/A 1x12bOscillator TypeInternalOperating Temperature64-0°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case64-HWQFN (8x8)	Product Status	Obsolete
Speed32MHzConnectivityCANbus, PC, SCI, SPI, UART/USART, USBPeripheralsLVD, POR, PWM, WDTNumber of I/O51Program Memory Size64KB (64K x 8)Program Memory TypeFLASHEEPROM Size4K x 8RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.6V ~ 5.5VData ConvertersA/D 18x14b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case64-WVQFN (8x8)	Core Processor	ARM® Cortex®-M0+
ConnectivityCANbus, I²C, SCI, SPI, UART/USART, USBPeripheralsLVD, POR, PWM, WDTNumber of I/O51Program Memory Size64KB (64K x 8)Program Memory TypeFLASHEEPROM Size4K x 8RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.6V ~ 5.5VData ConvertersA/D 18x14b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case64-HWQFN (8x8)	Core Size	32-Bit Single-Core
PeripheralsLVD, POR, PWM, WDTNumber of I/O51Program Memory Size64KB (64K x 8)Program Memory TypeFLASHEEPROM Size4K x 8RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.6V ~ 5.5VData ConvertersA/D 18x14b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case64-HWQFN (8x8)bttps://www.o.xfl.com/oreduct.detail/conocas.electropics.america/r5fc124763a01cph.ac0	Speed	32MHz
Number of I/O51Program Memory Size64KB (64K x 8)Program Memory TypeFLASHEEPROM Size4K x 8RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.6V ~ 5.5VData ConvertersA/D 18x14b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case64-WFQFN Exposed PadSupplier Device Package64-HWQFN (8x8)	Connectivity	CANbus, I ² C, SCI, SPI, UART/USART, USB
Program Memory Size64KB (64K x 8)Program Memory TypeFLASHEEPROM Size4K x 8RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.6V ~ 5.5VData ConvertersA/D 18x14b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case64-WFQFN Exposed PadSupplier Device Package64-HWQFN (8x8)	Peripherals	LVD, POR, PWM, WDT
Program Memory TypeFLASHEEPROM Size4K x 8RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.6V ~ 5.5VData ConvertersA/D 18x14b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case64-WFQFN Exposed PadSupplier Device Package64-HWQFN (8x8)	Number of I/O	51
EEPROM Size4K x 8RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.6V ~ 5.5VData ConvertersA/D 18x14b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case64-WFQFN Exposed PadSupplier Device Package64-HWQFN (8x8)	Program Memory Size	64KB (64K x 8)
RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.6V ~ 5.5VData ConvertersA/D 18x14b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case64-WFQFN Exposed PadSupplier Device Package64-HWQFN (8x8)	Program Memory Type	FLASH
Voltage - Supply (Vcc/Vdd)1.6V ~ 5.5VData ConvertersA/D 18x14b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case64-WFQFN Exposed PadSupplier Device Package64-HWQFN (8x8)	EEPROM Size	4K x 8
Data Converters A/D 18x14b; D/A 1x12b Oscillator Type Internal Operating Temperature -40°C ~ 105°C (TA) Mounting Type Surface Mount Package / Case 64-WFQFN Exposed Pad Supplier Device Package 64-HWQFN (8x8)	RAM Size	16K x 8
Oscillator Type Internal Operating Temperature -40°C ~ 105°C (TA) Mounting Type Surface Mount Package / Case 64-WFQFN Exposed Pad Supplier Device Package 64-HWQFN (8x8)	Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Operating Temperature -40°C ~ 105°C (TA) Mounting Type Surface Mount Package / Case 64-WFQFN Exposed Pad Supplier Device Package 64-HWQFN (8x8)	Data Converters	A/D 18x14b; D/A 1x12b
Mounting Type Surface Mount Package / Case 64-WFQFN Exposed Pad Supplier Device Package 64-HWQFN (8x8)	Oscillator Type	Internal
Package / Case 64-WFQFN Exposed Pad Supplier Device Package 64-HWQFN (8x8) https://wwww.e.xfl.com/product.detail/repacas.electronics.america/r7fc124763a01cph.ac0	Operating Temperature	-40°C ~ 105°C (TA)
Supplier Device Package 64-HWQFN (8x8)	Mounting Type	Surface Mount
https://www.e.vfl.com/product.detail/renesas.electronics.america/r7fs124763a01cph.ac0	Package / Case	64-WFQFN Exposed Pad
Purchase URL https://www.e-xfl.com/product-detail/renesas-electronics-america/r7fs124763a01cnb-ac0	Supplier Device Package	64-HWQFN (8x8)
	Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r7fs124763a01cnb-ac0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RENESAS

S124 Microcontroller Group

Datasheet

Ultra-low power 32-MHz Arm[®] Cortex[®]-M0+ microcontroller, 128-KB code flash memory, 16-KB SRAM, Capacitive Touch Sensing Unit, 14-bit A/D Converter, 12-bit D/A Converter, security and safety features.

Features

Arm Cortex-M0+ Core

- Armv6-M architecture
- Maximum operating frequency: 32 MHz
- Debug and Trace: DWT, BPU, CoreSight™ MTB-M0+
- CoreSight Debug Port: SW-DP

Memory

- 128-KB code flash memory
- 4-KB data flash memory (100,000 erase/write cycles)
- Up to 16-KB SRAM
- 128-bit unique ID

Connectivity

- USB 2.0 Full-Speed Module (USBFS)
- On-chip transceiver with voltage regulator
 Compliant with USB Battery Charging Specification 1.2
- Serial Communications Interface (SCI) × 3
 - UART
 - Simple IIC
 - Simple SPI
- Serial Peripheral Interface (SPI) $\times 2$
- I²C bus interface (IIC) \times 2
- CAN module (CAN)

Analog

- 14-Bit A/D Converter (ADC14)
- 12-Bit D/A Converter (DAC12)
- Low-Power Analog Comparator (ACMPLP) × 2
- Temperature Sensor (TSN)

Timers

- General PWM Timer 32-Bit (GPT32)
- General PWM Timer 16-Bit (GPT16) \times 6
- Asynchronous General-Purpose Timer (AGT) $\times\,2$
- Watchdog Timer (WDT)

Safety

- SRAM Parity Error Check
- Flash Area Protection
- ADC self-diagnosis function
- Clock Frequency Accuracy Measurement Circuit (CAC)
- Cyclic Redundancy Check (CRC) Calculator
- Data Operation Circuit (DOC)
- Port Output Enable for GPT (POEG)
- Independent Watchdog Timer (IWDT)
- GPIO Readback Level Detection
- Register Write Protection
- Main Oscillator Stop Detection

System and Power Management

- Low-power modes
- Realtime Clock (RTC)
- Event Link Controller (ELC)Data Transfer Controller (DTC)
- Key Interrupt Function (KINT)
- Power-on reset
- Low Voltage Detection with voltage settings

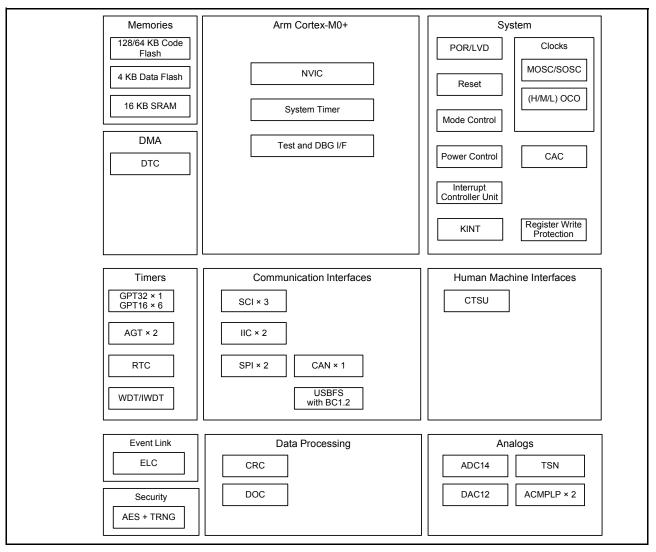
Security and Encryption

- AES128/256
- True Random Number Generator (TRNG)
- Human Machine Interface (HMI)
- Capacitive Touch Sensing Unit (CTSU)
- Capacitive Fouch Sensing Onit (
- Multiple Clock Sources
 Main clock oscillator (MOSC)
 - Main clock oscillator (MOSC)
 (1 to 20 MHz when VCC = 2.4 to 5.5 V)
 (1 to 8 MHz when VCC = 1.8 to 5.5 V)
 (1 to 4 MHz when VCC = 1.6 to 5.5 V)
 - Sub-clock oscillator (SOSC) (32.768 kHz)
 - High-speed on-chip oscillator (HOCO)
 - (24, 32, 48, 64 MHz when VCC = 2.4 to 5.5 V) (24, 32, 48 MHz when VCC = 1.8 to 5.5 V) (24, 32 MHz when VCC = 1.6 to 5.5 V)
- Middle-speed on-chip oscillator (MOCO) (8 MHz)
- Low-speed on-chip oscillator (LOCO) (32.768 kHz)
- Independent watchdog timer OCO (15 kHz)
- Clock trim function for HOCO/MOCO/LOCOClock out support

- General Purpose I/O Ports
 - Up to 51 input/output pins - Up to 3 CMOS input
 - Up to 48 CMOS input/output
 - Up to 6 input/output 5 V tolerant
 - Up to 16 pins high current (20 mA)

Operating Voltage

VCC: 1.6 to 5.5 V


- Operating Temperature and Packages
- Ta = -40° C to $+85^{\circ}$ C
- 36-pin LGA (4 mm \times 4 mm, 0.5 mm pitch)
- $Ta = -40^{\circ}C$ to $+105^{\circ}C$
- 64-pin LQFP (10 mm \times 10 mm, 0.5 mm pitch)
- 48-pin LQFP (7 mm × 7 mm, 0.5 mm pitch)
- 64-pin QFN (8 mm × 8 mm, 0.4 mm pitch) - 48-pin QFN (7 mm × 7 mm, 0.5 mm pitch)
- 40-pin QFN (6 mm \times 6 mm, 0.5 mm pitch)

Feature	Functional description
AES	See section 38, AES Engine in User's Manual
True Random Number Generator (TRNG)	See section 39, True Random Number Generator (TRNG) in User's Manual

1.2 Block Diagram

Figure 1.1 shows the block diagram of the MCU superset. Individual devices within the group may have a subset of the features.

Figure 1.1 Block diagram

1.3 Part Numbering

Figure 1.2 shows how to read the product part number, memory capacity, and package types. Table 1.12 shows a list of products.

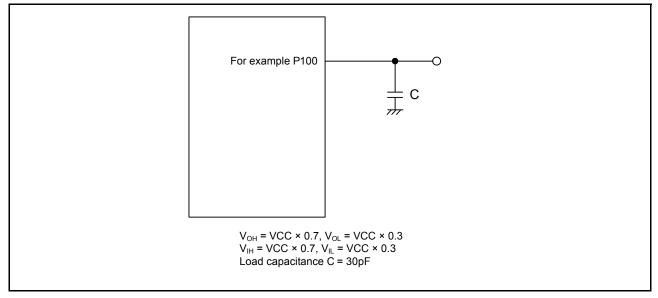
1.4 Function Comparison

Table 1.13 Function comparison

Parts number		R7FS124773A01CFM/ R7FS124763A01CFM/ R7FS124773A01CNB/	R7FS124773A01CFL/ R7FS124763A01CFL/ R7FS124773A01CNE	R7FS124773A01CNF	R7FS124772A01CLM/ R7FS124762A01CLM				
Pin count		64	48	40	36				
Package		LQFP/QFN	LQFP/QFN	QFN	LGA				
Code flash memor	у		128	/64 KB					
Data flash memory	/		4	KB					
SRAM			16	3 KB					
	Parity		4	KB					
System	CPU clock		32	MHz					
	ICU		Ň	Yes					
	KINT	8	5	5	4				
Event link	ELC		,	Yes					
DMA	DTC		Ň	ſes					
Timers	GPT32	1							
	GPT16	6	6	4	4				
	AGT	2	2	2	2				
	RTC	Yes							
	WDT/IWDT	Yes							
Communication	SCI	3							
	IIC	2							
	SPI			2					
	CAN		Ň	ſes					
	USBFS		Ň	ſes					
Analog	ADC14	18	14	12	11				
	DAC12			1					
	ACMPLP			2					
	TSN		Ň	Yes					
HMI	CTSU	31	23	17	13				
	KINT	8	5	5	4				
Data processing	CRC			Yes	·				
	DOC		Yes						
Security	•	AES and TRNG							

2. Electrical Characteristics

Unless otherwise specified, the electrical characteristics of the MCU are defined under the following conditions:


 $VCC^{*1} = AVCC0 = VCC_USB^{*2} = VCC_USB_LDO^{*2} = 1.6$ to 5.5V, VREFH0 = 1.6 to AVCC0,

 $VSS = AVSS0 = VREFL0 = VSS_USB = 0 V, Ta = T_{opr}$

Note 1. The typical condition is set to VCC = 3.3V.

Note 2. When USBFS is not used.

Figure 2.1 shows the timing conditions.

Figure 2.1 Input or output timing measurement conditions

The measurement conditions of timing specification in each peripherals are recommended for the best peripheral operation. However, make sure to adjust driving abilities of each pins to meet your conditions.

Each function pin used for the same function must select the same drive ability. If I/O drive ability of each function is mixed, the AC specification of the function is not guaranteed.

I/O I_{OH}, I_{OL} 2.2.3

Parameter			Symbol	Min	Тур	Max	Unit
Permissible output current	Ports P000 to P004,	-	I _{ОН}	-	-	-4.0	mA
(average value per pin)	P010 to P015, P212, P213		I _{OL}	-	-	4.0	mA
	Ports P408, P409	Low drive*1	I _{ОН}	-	-	-4.0	mA
			I _{OL}	-	-	4.0	mA
		Middle drive*2 VCC = 2.7 to 3.0 V	I _{OH}	-	-	-8.0	mA
		VCC = 2.7 to 3.0 V	I _{OL}	-	-	8.0	mA
		Middle drive*2 VCC = 3.0 to 5.5 V	I _{OH}	-	-	-20.0	mA
		VCC = 3.0 to 5.5 V	I _{OL}	-	-	20.0	mA
	Other output pins*3	Low drive*1	I _{OH}	-	-	-4.0	mA
			I _{OL}	-	-	4.0	mA
		Middle drive*2	I _{ОН}	-	-	-8.0	mA
			I _{OL}	-	-	8.0	mA
Permissible output current (max value per pin)	Ports P000 to P004, P010 to P015, P212, P213	-	I _{ОН}	-	-	-4.0	mA
			I _{OL}	-	-	4.0	mA
	Ports P408, P409	Low drive*1	I _{OH}	-	-	-4.0	mA
			I _{OL}	-	-	4.0	mA
		Middle drive*2 VCC = 2.7 to 3.0 V	I _{OH}	-	-	-8.0	mA
		VCC - 2.7 to 3.0 V	I _{OL}	-	-	8.0	mA
		Middle drive*2 VCC = 3.0 to 5.5 V	I _{ОН}	-	-	-20.0	mA
		VCC - 3.0 to 5.5 V	I _{OL}	-	-	20.0	mA
	Other output pins*3	Low drive*1	I _{OH}	-	-	-4.0	mA
			I _{OL}	-	-	4.0	mA
		Middle drive*2	I _{OH}	-	-	-8.0	mA
			I _{OL}	-	-	8.0	mA
Permissible output current	Total of ports P000 to P004, P07	10 to P015	ΣI _{OH (max)}	-	-	-30	mA
(max value total pins)			Σl _{OL (max)}	-	-	30	mA
	Total of all output pin		ΣI _{OH (max)}	-	-	-60	mA
			ΣI _{OL (max)}	-	-	60	mA

Caution: To protect the reliability of the MCU, the output current values should not exceed the values in this table. The average output current indicates the average value of current measured during 100 µs.

Note 1. This is the value when low driving ability is selected with the Port Drive Capability bit in the PmnPFS register. Note 2. This is the value when middle driving ability is selected with the Port Drive Capability bit in the register.

Note 3. Except for Ports P200, P214, P215, which are input ports.

I/O V_{OH} , V_{OL} , and Other Characteristics 2.2.4

Table 2.7 I/O V_{OH}, V_{OL} (1) Conditions: VCC = AVCC0 = 4.0 to 5.5 V

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions		
Output voltage	IIC*1, *2	V _{OL}	-	-	0.4	V	I _{OL} = 3.0 mA	
			V _{OL}	-	-	0.6		I _{OL} = 6.0 mA
	Ports P408, P409*2, *3		V _{OH}	VCC - 1.0	-	-		I _{OH} = –20 mA
			V _{OL}	-	-	1.0		I _{OL} = 20 mA
	Ports P000 to P004 P010 to P015	Low drive	V _{OH}	AVCC0 – 0.8	-			I _{OH} = -2.0 mA
			V _{OL}	-	-	0.8		I _{OL} = 2.0 mA
		Middle drive	V _{OH}	AVCC0 – 0.8	-			I _{OH} = -4.0 mA
			V _{OL}	-	-	0.8		I _{OL} = 4.0 mA
	Other output pins*4	Low drive	V _{OH}	VCC - 0.8	-	-		I _{OH} = -2.0 mA
			V _{OL}	-	-	0.8		I _{OL} = 2.0 mA
		Middle	V _{OH}	VCC - 0.8	-	-		I _{OH} = -4.0 mA
		drive*5	V _{OL}	-	-	0.8		I _{OL} = 4.0 mA

Note 1. SCL0_A, SDA0_A, SCL0_B, SDA0_B, SCL1_A, SDA1_A, SCL1_B, SDA1_B (total 8 pins).

Note 2. This is the value when middle driving ability is selected with the Port Drive Capability bit in the PmnPFS register.

Note 3. Based on characterization data, not tested in production.

Note 4. Except for Ports P200, P214, and P215, which are input ports.

Note 5. Except for P212, P213.

Table 2.8 I/O V_{OH}, V_{OL} (2) Conditions: VCC = AVCC0 = 2.7 to 4.0 V

Parameter			Symbol	Min	Тур	Max	Unit	Test conditions
Output voltage	IIC*1, *2	V _{OL}	-	-	0.4	V	I _{OL} = 3.0 mA	
			V _{OL}	-	-	0.6		I _{OL} = 6.0 mA
	Ports P408, P409*2, *3		V _{OH}	VCC – 1.0	-	-		I _{OH} = -20 mA VCC = 3.3 V
			V _{OL}	-	-	1.0		I _{OL} = 20 mA VCC = 3.3 V
	Ports P000 to P004 P010 to P015	Low drive	V _{OH}	AVCC0 – 0.5	-	-		I _{OH} = -1.0 mA
			V _{OL}	-	-	0.5		I _{OL} = 1.0 mA
		Middle drive	V _{OH}	AVCC0 – 0.5	-	-		I _{OH} = -2.0 mA
			V _{OL}	-	-	0.5		I _{OL} = 2.0 mA
	Other output pins*4	Low drive	V _{OH}	VCC - 0.5	-	-		I _{OH} = -1.0 mA
			V _{OL}	-	-	0.5		I _{OL} = 1.0 mA
		Middle	V _{OH}	VCC - 0.5	-	-		I _{OH} = -2.0 mA
		drive*5	V _{OL}	-	-	0.5		I _{OL} = 2.0 mA

Note 1. SCL0_A, SDA0_A, SCL0_B, SDA0_B, SCL1_A, SDA1_A, SCL1_B, SDA1_B (total 8 pins).

Note 2. This is the value when middle driving ability is selected with the Port Drive Capability bit in the PmnPFS register.

Note 3. Based on characterization data, not tested in production.

Note 4. Except for Ports P200, P214, P215, which are input ports.

Note 5. Except for P212, P213.

Table 2.9 I/O V_{OH}, V_{OL} (3)

Conditions: VCC = AVC	CO =	1.6 to 2.7 V

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions	
Output voltage	Ports P000 to P004 P010 to P015	Low drive	V _{OH}	AVCC0 – 0.3	-	-		I _{OH} = -0.5 mA
			V _{OL}	-	-	0.3		I _{OL} = 0.5 mA
		Middle drive	V _{OH}	AVCC0 – 0.3	-	-		I _{OH} = -1.0 mA
			V _{OL}	-	-	0.3		I _{OL} = 1.0 mA
	Other output pins*1	Low drive	V _{OH}	VCC - 0.3	-	-	V	I _{OH} = -0.5 mA
			V _{OL}	-	-	0.3		I _{OL} = 0.5 mA
		Middle drive*2	V _{OH}	VCC - 0.3	-	-		I _{OH} = -1.0 mA
			V _{OL}	-	-	0.3		I _{OL} = 1.0 mA

Note 1. Except for Ports P200, P214, P215, which are input ports.

Note 2. Except for P212, P213.

Table 2.10I/O other characteristics

Conditions: VCC = AVCC0 = 1.6 to 5.5 V

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
Input leakage current RES, Ports P200, P214, P215		I _{in}	-	-	1.0	μA	V _{in} = 0 V V _{in} = VCC
Three-state leakage current (off state)	5V-tolerant ports	I _{TSI}	-	-	1.0	μA	V _{in} = 0 V V _{in} = 5.8 V
	Other ports		-	-	1.0		V _{in} = 0 V V _{in} = VCC
Input pull-up resistor	All ports (except for P200, P214, P215)	R _U	10	20	50	kΩ	V _{in} = 0 V
Input capacitance	USB_DP, USB_DM, P200	C _{in}	-	-	30	pF	V _{in} = 0 V
	Other input pins		-	-	15]	f = 1 MHz T _a = 25°C

2.2.5 I/O Pin Output Characteristics of Low Drive Capacity

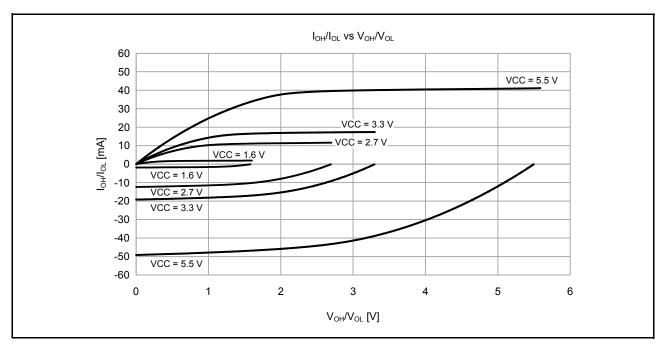


Figure 2.2 V_{OH}/V_{OL} and I_{OH}/I_{OL} voltage characteristics at Ta = 25°C when low drive output is selected (reference data)

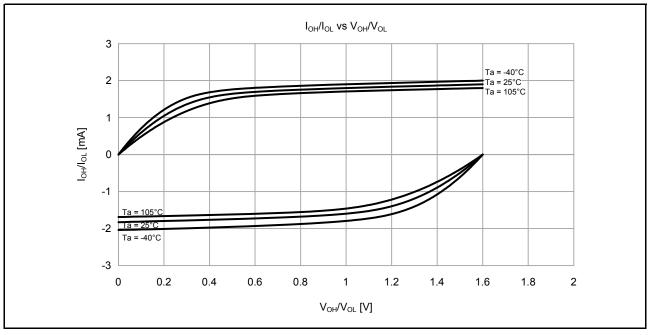


Figure 2.3 V_{OH}/V_{OL} and I_{OH}/I_{OL} temperature characteristics at VCC = 1.6 V when low drive output is selected (reference data)

2.2.9 Operating and Standby Current

Table 2.11Operating and standby current (1) (1 of 2)Conditions: VCC = AVCC0 = 1.6 to 5.5 V

Parameter					Symbol	Typ* ⁹	Max	Unit	Test Conditions
Supply	High-speed mode*2	Normal mode	All peripheral clock	ICLK = 32 MHz	I _{CC}	3.6	-	mA	*7
urrent*1	mode ²		disabled, while (1) code executing from flash*5	ICLK = 16 MHz		2.4	-		
				ICLK = 8 MHz		1.7	-		
			All peripheral clock	ICLK = 32 MHz		5.6	-		
			disabled, CoreMark code executing from flash*5	ICLK = 16 MHz		3.5	-		
			_	ICLK = 8 MHz		2.4	-		
			All peripheral clock	ICLK = 32 MHz		9.5	-		*8
			enabled, while (1) code executing from flash* ⁵	ICLK = 16 MHz		5.4	-		
				ICLK = 8 MHz		3.3	-		
			All peripheral clock enabled, code executing from flash* ⁵	ICLK = 32 MHz		-	21.0		
		Sleep mode	All peripheral clock	ICLK = 32 MHz		1.5	-		*7
			disabled*5	ICLK = 16 MHz		1.1	-		
				ICLK = 8 MHz		0.9	-	1	
			All peripheral clock	ICLK = 32 MHz		7.2	-		*8
			enabled*5	ICLK = 16 MHz		4.0	-		
				ICLK = 8 MHz		2.4	-	_	
		Increase during	BGO operation*6			2.5	-	_	-
	Middle-speed	Normal mode	All peripheral clock	ICLK = 12 MHz	I _{CC}	1.7	-	mA	*7
	mode*2		disabled, while (1) code executing from flash*5	ICLK = 8 MHz		1.5	-		
			All peripheral clock disabled, CoreMark code	ICLK = 12 MHz		2.7	-		
			executing from flash*5	ICLK = 8 MHz		1.9	-		
			All peripheral clock enabled, while (1) code executing from flash*5	ICLK = 12 MHz		3.9	-		*8
				ICLK = 8 MHz		3.0	-		
			All peripheral clock enabled, code executing from flash* ⁵	ICLK = 12 MHz		-	8.0		
		Sleep mode	All peripheral clock	ICLK = 12 MHz		0.8	-		*7
			disabled*5	ICLK = 8 MHz		0.8	-		
			All peripheral clock	ICLK = 12 MHz		2.9	-		*8
			enabled*5	ICLK = 8 MHz		2.2	-		
		Increase during	BGO operation*6			2.5	-		-
	Low-speed mode*3	Normal mode	All peripheral clock disabled, while (1) code executing from flash*5	ICLK = 1 MHz	Icc	0.2	-	mA	*7
			All peripheral clock disabled, CoreMark code executing from flash*5	ICLK = 1 MHz		0.3	-		
			All peripheral clock enabled, while (1) code executing from flash* ⁵	ICLK = 1 MHz		0.4	-		*8
			All peripheral clock enabled, code executing from flash* ⁵	ICLK = 1 MHz		-	2.0		
		Sleep mode	All peripheral clock disabled*5	ICLK = 1 MHz		0.2	-		*7
			All peripheral clock enabled*5	ICLK = 1 MHz		0.3	-		*8

Table 2.11Operating and standby current (1) (2 of 2)Conditions: VCC = AVCC0 = 1.6 to 5.5 V

Parameter					Symbol	Typ* ⁹	Max	Unit	Test Conditions
Supply current*1	Low-voltage mode*3	Normal mode	All peripheral clock disabled, while (1) code executing from flash*5	ICLK = 4 MHz	I _{CC}	1.4	-	mA	*7
			All peripheral clock disabled, CoreMark code executing from flash* ⁵	ICLK = 4 MHz		1.4	-		
			All peripheral clock enabled, while (1) code executing from flash* ⁵	ICLK = 4 MHz		2.1	-		*8
			All peripheral clock enabled, code executing from flash* ⁵	ICLK = 4 MHz		-	4.0		
		Sleep mode	All peripheral clock disabled*5	ICLK = 4 MHz		0.9	-		*7
			All peripheral clock enabled*5	ICLK = 4 MHz		1.6	-		*8
	Subosc- speed mode* ⁴	Normal mode	All peripheral clock disabled, while (1) code executing from flash* ⁵	ICLK = 32.768 kHz	I _{CC}	5.9	-	μA	*7
			All peripheral clock enabled, while (1) code executing from flash* ⁵	ICLK = 32.768 kHz		13.0	-		*8
			All peripheral clock enabled, code executing from flash* ⁵	ICLK = 32.768 kHz		-	55.0		
		Sleep mode	All peripheral clock disabled*5	ICLK = 32.768 kHz	1	3.2	-		*7
			All peripheral clock enabled*5	ICLK = 32.768 kHz		10.0	-	1	*8

Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOSs are in the off state.

Note 2. The clock source is HOCO.

Note 3. The clock source is MOCO.

Note 4. The clock source is the sub-clock oscillator.

Note 5. This does not include BGO operation.

Note 6. This is the increase for programming or erasure of the flash memory for data storage during program execution.

Note 7. PCLKB and PCLKD are set to divided by 64.

Note 8. PCLKB and PCLKD are the same frequency as that of ICLK.

Note 9. VCC = 3.3 V.

2.2.10 VCC Rise and Fall Gradient and Ripple Frequency

Table 2.14 Rise and fall gradient characteristics

Conditions: VCC = AVCC0 = 0 to 5.5 V

Parameter		Symbol	Min	Тур	Мах	Unit	Test conditions
Power-on VCC	Voltage monitor 0 reset disabled at startup	SrVCC	0.02	-	2	ms/V	-
rising gradient	Voltage monitor 0 reset enabled at startup*1, *2		0.02	-	-		
	SCI Boot mode*2		0.02	-	2		

Note 1. When OFS1.LVDAS = 0.

Note 2. At boot mode, the reset from voltage monitor 0 is disabled regardless of the value of OFS1.LVDAS bit.

Table 2.15 Rising and falling gradient and ripple frequency characteristics

Conditions: VCC = AVCC0 = 1.6 to 5.5 V

The ripple voltage must meet the allowable ripple frequency $f_{r(VCC)}$ within the range between the VCC upper limit (5.5 V) and lower limit (1.6 V).

When the VCC change exceeds VCC ±10%, the allowable voltage change rising and falling gradient dt/dVCC must be met.

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Allowable ripple frequency	f _{r (VCC)}	-	-	10	kHz	Figure 2.24 $V_{r (VCC)} \leq VCC \times 0.2$
		-	-	1	MHz	Figure 2.24 V _{r (VCC)} ≤ VCC × 0.08
		-	-	10	MHz	Figure 2.24 $V_{r (VCC)} \leq VCC \times 0.06$
Allowable voltage change rising and falling gradient	dt/dVCC	1.0	-	-	ms/V	When VCC change exceeds VCC ±10%

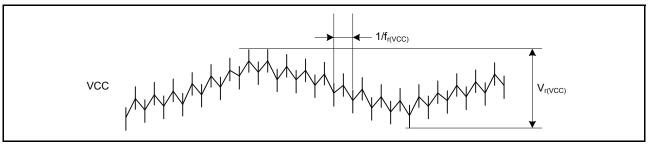


Figure 2.24 Ripple waveform

2.3 AC Characteristics

2.3.1 Frequency

Table 2.16 Operation frequency in high-speed operating mode

Conditions: VCC = AVCC0 = 2.4 to 5.5 V

Parameter		Symbol	Min	Тур	Max*5	Unit	
Operation	System clock (ICLK)*1, *2, *4	2.7 to 5.5 V	f	0.032768	-	32	MHz
frequency		2.4 to 2.7 V		0.032768	-	16	
	Peripheral module clock (PCLKB)*4	2.7 to 5.5 V		-	-	32	
		2.4 to 2.7 V		-	-	16	
	Peripheral module clock (PCLKD)*3, *4	2.7 to 5.5 V		-	-	64	
		2.4 to 2.7 V	1	-	-	16	

Note 1. The lower-limit frequency of ICLK is 1 MHz while programming or erasing the flash memory. When using ICLK for programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note 2. The frequency accuracy of ICLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

- Note 3. The lower-limit frequency of PCLKD is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the 14-bit A/D converter is in use.
- Note 4. See section 8, Clock Generation Circuit in User's Manual for the relationship of frequencies between ICLK, PCLKB, and PCLKD.
- Note 5. The maximum value of operation frequency does not include internal oscillator errors. For details on the range of guaranteed operation, see Table 2.21, Clock timing.

Table 2.17 Operation frequency in middle-speed mode Conditions: VCC = AVCC0 = 1.8 to 5.5 V

Parameter			Symbol	Min	Тур	Max*5	Unit
Operation	System clock (ICLK)*1, *2, *4	2.7 to 5.5 V	f	0.032768	-	12	MHz
frequency		2.4 to 2.7 V		0.032768	-	12	
		1.8 to 2.4 V		0.032768	-	8	
	Peripheral module clock (PCLKB)*4	2.7 to 5.5 V		-	-	12	
		2.4 to 2.7 V		-	-	12	
		1.8 to 2.4 V		-	-	8	
	Peripheral module clock (PCLKD)*3, *4	2.7 to 5.5 V		-	-	12	
		2.4 to 2.7 V		-	-	12	
		1.8 to 2.4 V		-	-	8	

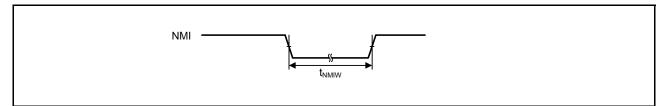
Note 1. The lower-limit frequency of ICLK is 1 MHz while programming or erasing the flash memory. When using ICLK for programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note 2. The frequency accuracy of ICLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

- Note 3. The lower-limit frequency of PCLKD is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the 14-bit A/D converter is in use.
- Note 4. See section 8, Clock Generation Circuit in User's Manual for the relationship of frequencies between ICLK, PCLKB, and PCLKD.
- Note 5. The maximum value of operation frequency does not include internal oscillator errors. For details on the range of guaranteed operation, see Table 2.21, Clock timing.

2.3.5 NMI and IRQ Noise Filter

Table 2.29	NMI and IRQ noise filter


Parameter	Symbol	Min	Тур	Max	Unit	Test conditions				
NMI pulse width	t _{NMIW}	200	-	-	ns	NMI digital filter disabled	t _{Pcyc} × 2 ≤ 200 ns			
		t _{Pcyc} × 2*1	-	-			t _{Pcyc} × 2 > 200 ns			
		200	-	-		NMI digital filter enabled	t _{NMICK} × 3 ≤ 200 ns			
		t _{NMICK} × 3.5* ²	-	-			t _{NMICK} × 3 > 200 ns			
IRQ pulse width	t _{IRQW}	200	-	-	ns	IRQ digital filter disabled	t _{Pcyc} × 2 ≤ 200 ns			
		t _{Pcyc} × 2*1	-	-			t _{Pcyc} × 2 > 200 ns			
		200	-	-		IRQ digital filter enabled	t _{IRQCK} × 3 ≤ 200 ns			
		t _{IRQCK} × 3.5* ³	-	-			t _{IRQCK} × 3 > 200 ns			

Note: 200 ns minimum in Software Standby mode.

Note 1. t_{Pcyc} indicates the PCLKB cycle.

Note 2. t_{NMICK} indicates the cycle of the NMI digital filter sampling clock.

Note 3. t_{IRQCK} indicates the cycle of the IRQi digital filter sampling clock (i = 0 to 7).

Figure 2.33 NMI interrupt input timing

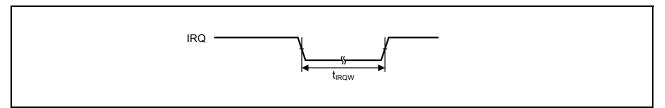
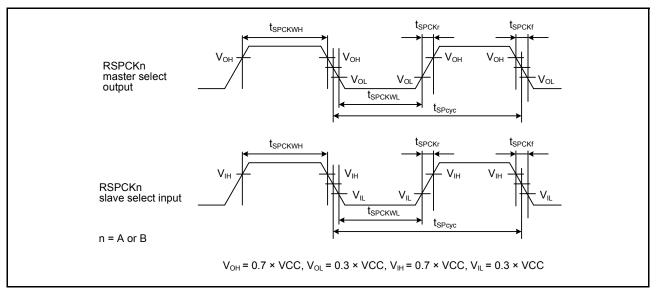
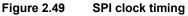


Figure 2.34 IRQ interrupt input timing

Table 2.35 SPI timing (2 of 2)


Param	eter			Symbol	Min	Max	Unit ^{*1}	Test conditions
SPI	Data output delay	Master	2.7V or above	t _{OD}	-	14	ns	Figure 2.50 to
			2.4V or above		-	20		Figure 2.55 C = 30_PF
			1.8V or above		-	25		C = 30pi
			1.6V or above		-	30		
		Slave	2.7V or above		-	50		
			2.4V or above		-	60		
			1.8V or above		-	85		
			1.6V or above		-	110		
	Data output hold	Master	-	t _{OH}	0	-	ns	-
	time	Slave			0	-		
	Successive transmission delay	Master		t _{TD}	t _{SPcyc} + 2 × t _{Pcyc}	8 × t _{SPcyc} + 2 × t _{Pcyc}	ns	
		Slave			6 × t _{Pcyc}	-		
	MOSI and MISO	Output	2.7V or above	t _{Dr,} t _{Df}	-	10	ns	
	rise and fall time		2.4V or above		-	15		
			1.8V or above		-	20		
			1.6V or above		-	30		
		Input			-	1	μs	
	SSL rise and fall	Output	2.7V or above	t _{SSLr,} t _{SSLf}	-	10	ns	
	time		2.4V or above		-	15		
			1.8V or above		-	20		
			1.6V or above		-	30		
		Input			-	1	μs	
	Slave access time		2.4V or above	t _{SA}	-	2 × t _{Pcyc} +100	ns	Figure 2.54 and Figure 2.55 $C = 30_PF$
			1.8V or above		-	2 × t _{Pcyc} +140		
			1.6V or above		-	2 × t _{Pcyc} +180		
	Slave output release	time	2.4V or above	t _{REL}	-	2 × t _{Pcyc} +100	ns	
			1.8V or above		-	2 × t _{Pcyc} +140		
			1.6V or above		-	2 × t _{Pcyc} +180		


Note 1. t_{Pcyc}: PCLKB cycle.

Note 2. N is set as an integer from 1 to 8 by the SPCKD register.

Note 3. N is set as an integer from 1 to 8 by the SSLND register.

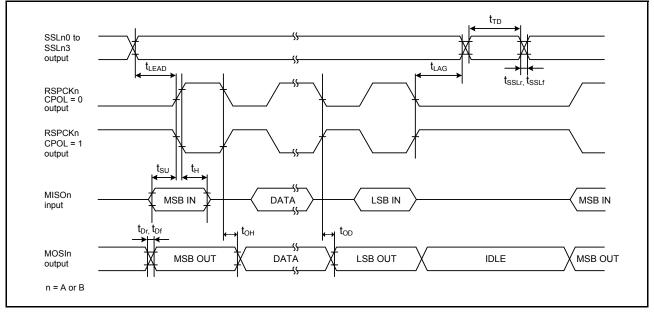


Figure 2.50 SPI timing (master, CPHA = 0) (bit rate: PCLKB division ratio is set to any value other than 1/2)

Table 2.45 A/D conversion characteristics (6) in low-power A/D conversion mode (2 of 2)

Conditions: VCC = AVCC0 = 1.8 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.8 to 5.5 V, VSS = AVSS0 = VREFL0 = 0 V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter		Min	Тур	Max	Unit	Test Conditions
Conversion time*1 (Operation at PCLKD = 8 MHz)	Permissible signal source impedance Max. = 5 kΩ	6.75	-	-	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh
		10.13	-	-	μs	Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h
Offset error	·	-	- ±1.0	±7.5	LSB	High-precision channel
				±10.0	LSB	Other than above
Full-scale error		-	±1.5	±7.5	LSB	High-precision channel
				±10.0	LSB	Other than above
Quantization error		-	±0.5	-	LSB	-
Absolute accuracy		-	±3.0	±8.0	LSB	High-precision channel
				±12.0	LSB	Other than above
DNL differential nonlinearity error		-	±1.0	-	LSB	-
INL integral nonlinearity error		-	±1.0	±3.0	LSB	-
14-bit mode				1	1	
Resolution		-	-	14	Bit	-
Conversion time ^{*1} (Operation at PCLKD = 8 MHz)	Permissible signal source impedance Max. = 5 kΩ	7.50	-	-	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh
		10.88	-	-	μs	Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h
Offset error	·	-	±4.0	±30.0	LSB	High-precision channel
				±40.0	LSB	Other than above
Full-scale error		-	±6.0	±30.0	LSB	High-precision channel
				±40.0	LSB	Other than above
Quantization error		-	±0.5	-	LSB	-
Absolute accuracy		-	±12.0	±32.0	LSB	High-precision channel
				±48.0	LSB	Other than above
DNL differential nonlin	earity error	-	±4.0	-	LSB	-
INL integral nonlineari	ty error	-	±4.0	±12.0	LSB	-

Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Note 2. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics.

Note 3. Reference data.

Table 2.46 A/D conversion characteristics (7) in low-power A/D conversion mode (1 of 2) Conditions: VCC = AVCC0 = 1.6 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.6 to 5.5 V, VSS = AVSS0 = VREFL0 = 0</td>

Reference voltage range applied to the VREFH0 and VREFL0.

Parameter		Min	Min Typ Ma		Unit	Test Conditions
Frequency		1	-	4	MHz	-
Analog input capacitance*2	Cs	-	-	8* ³	pF	High-precision channel
		-	-	9* ³	pF	Normal-precision channel
Analog input resistance	Rs	-	-	13.1* ³	kΩ	High-precision channel
		-	-	14.3* ³	kΩ	Normal-precision channel

Table 2.46A/D conversion characteristics (7) in low-power A/D conversion mode (2 of 2)Conditions: VCC = AVCC0 = 1.6 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.6 to 5.5 V, VSS = AVSS0 = VREFL0 = 0</td>

Conditions: VCC = AVCC0 = 1.6 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.6 to 5.5 V, VSS = AVSS0 = VREFL0 = 0 Reference voltage range applied to the VREFH0 and VREFL0.

Parameter		Min	Тур	Max	Unit	Test Conditions
Analog input voltage rar	nge Ain	0	-	VREFH0	V	-
12-bit mode						
Resolution		-	-	12	Bit	-
Conversion time*1 Permissible signal (Operation at source impedance PCLKD = 4 MHz) Max. = 9.9 kΩ			-	-	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh
		20.25	-	-	μs	Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h
Offset error		-	±1.0	±7.5	LSB	High-precision channel
				±10.0	LSB	Other than above
Full-scale error		-	±1.5	±7.5	LSB	High-precision channel
				±10.0	LSB	Other than above
Quantization error		-	±0.5	-	LSB	-
Absolute accuracy		-	±3.0	±8.0	LSB	High-precision channel
				±12.0	LSB	Other than above
DNL differential nonlinearity error		-	±1.0	-	LSB	-
INL integral nonlinearity error		-	±1.0	±3.0	LSB	-
14-bit mode		L			1	
Resolution		-	-	14	Bit	-
Conversion time* ¹ (Operation at PCLKD = 4 MHz)	Permissible sigr source impedan Max. = 9.9 kΩ		-	-	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh
		21.75	-	-	μs	Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h
Offset error		-	±4.0	±30.0	LSB	High-precision channel
				±40.0	LSB	Other than above
Full-scale error		-	±6.0	±30.0	LSB	High-precision channel
				±40.0	LSB	Other than above
Quantization error		-	±0.5	-	LSB	-
Absolute accuracy		-	±12.0	±32.0	LSB	High-precision channel
				±48.0	LSB	Other than above
DNL differential nonline	arity error	-	±4.0	-	LSB	-
INL integral nonlinearity	/ error	-	±4.0	±12.0	LSB	-

Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Note 2. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics.

Note 3. Reference data.

Figure 2.63 Illustration of 14-bit A/D converter characteristic terms

Absolute accuracy

Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of the analog input voltage (1-LSB width), which can meet the expectation of outputting an equal code based on the theoretical A/D conversion characteristics, is used as the analog input voltage. For example, if 12-bit resolution is used and the reference voltage VREFH0 = 3.072 V, then 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, and 1.5 mV are used as the analog input voltages. If analog input voltage is 6 mV, an absolute accuracy of ± 5 LSB means that the actual A/D conversion result is in the range of 003h to 00Dh, though an output code of 008h can be expected from the theoretical A/D conversion characteristics.

Integral nonlinearity error (INL)

Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale errors are zeroed, and the actual output code.

Differential nonlinearity error (DNL)

Differential nonlinearity error is the difference between 1-LSB width based on the ideal A/D conversion characteristics and the width of the actual output code.

Offset error

Offset error is the difference between the transition point of the ideal first output code and the actual first output code.

Full-scale error

Full-scale error is the difference between the transition point of the ideal last output code and the actual last output code.

Table 2.58 Code flash characteristics (3)

Middle-speed operating mode

Conditions: VCC = AVCC0 = 1.8 to 5.5 V, Ta = -40 to +85°C

				ICLK = 1 I	MHz		ICLK = 8	MHz	
Parameter		Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Programming time	4-byte	t _{P4}	-	157	1411	-	101	966	μs
Erasure time	1-KB	t _{E1K}	-	9.10	289	-	6.10	228	ms
Blank check time	2-byte	t _{BC4}	-	-	87.7	-	-	52.5	μs
	1-KB	t _{BC1K}	-	-	1930	-	-	414	μs
Erase suspended time		t _{SED}	-	-	32.7	-	-	21.6	μs
Startup area switching s	etting time	t _{SAS}	-	22.8	592	-	14.2	465	ms
Access window time		t _{AWS}	-	22.8	592	-	14.2	465	ms
OCD/serial programmer	ID setting time	t _{OSIS}	-	22.8	592	-	14.2	465	ms
Flash memory mode transition wait time 1		t _{DIS}	2	-	-	2	-	-	μs
Flash memory mode tra time 2	nsition wait	t _{MS}	720	-	-	720	-	-	ns

Note 1. Does not include the time until each operation of the flash memory is started after instructions are executed by the software.

Note 2. The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note 3. The frequency accuracy of ICLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

2.12.2 Data Flash Memory Characteristics

Table 2.59Data flash characteristics (1)

Parameter		Symbol	Min	Тур	Мах	Unit	Conditions
Reprogramming/	erasure cycle*1	N _{DPEC}	100000	1000000	-	Times	-
Data hold time	After 10000 times of N _{DPEC}	t _{DDRP}	20*2, *3	-	-	Year	Ta = +85°C
	After 100000 times of N _{DPEC}		5* ^{2, *3}	-	-	Year	
	After 1000000 times of N _{DPEC}		-	1* ^{2, *3}	-	Year	Ta = +25°C

Note 1. The reprogram/erase cycle is the number of erasure for each block. When the reprogram/erase cycle is n times (n = 100,000), erasing can be performed n times for each block. For instance, when 1-byte programming is performed 1,000 times for different addresses in 1-byte blocks, and then the entire block is erased, the reprogram/erase cycle is counted as 1. However, programming the same address for several times as one erasure is not enabled. (overwriting is prohibited.)

Note 2. Characteristics when using the flash memory programmer and the self-programming library provided by Renesas Electronics.

Note 3. These results are obtained from reliability testing.

Renesas Synergy™ Platform S124 Microcontroller Group

