

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	CANbus, I ² C, SCI, SPI, UART/USART, USB
Peripherals	LVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 14x14b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-WFQFN Exposed Pad
Supplier Device Package	48-HWQFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r7fs124763a01cne-ac0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1.5 Pin assignment for LQFP 48-pin (top view)

Figure 1.6 Pin assignment for QFN 48-pin (top view)

		Pin numbe	r					Tin	ners		Co	ommunicati	ion Interfac	es	Ana	logs	н	м
LQFP64, QFN64	LQFP48	QFN48	QFN40	LGA36	Power, System, Clock, Debug, CAC	I/O ports	AGT	GPT_OPS, POEG	СРТ	RTC	USBFS,CAN	sci	IIC	IdS	ADC14	DAC12, ACMPLP	CTSU	Interrupt
35	27	27	23	D5		P110		_A	_A		CRX0_A	CTS0_RT S0_C/ SS0_C/ RXD9_B/ MISO9_B/ SCL9_B		MISOB_B		VCOUT	TS11	IRQ3
36	28	28	24	D6		P111			GTIOC3A _A			SCK0_C/ SCK9_B		RSPCKB_ B			TS12	IRQ4
37	29	29	25	C6		P112			GTIOC3B _A			TXD0_C/ MOSI0_C/ SDA0_C					TSCAP_C	
38	-	-	-	-		P113												
39	30	30	-	-	VCC													
40	31	31	-	-	VSS													
41	-	-	-	-		P107			GTIOC0A _B									KR07
42	-	-	-	-		P106			GTIOC0B B					SSLA3_A				KR06
43	-	-	-	-		P105		GTETRG	-					SSLA2_A				KR05/
44	32	32	26	-		P104		GTETRG B_B				RXD0_C/ MISO0_C/ SCL0_C		SSLA1_A			TS13	KR04/ IRQ1
45	33	33	27	C3		P103		GTOWUP _A	GTIOC2A _A		CTX0_C	CTS0_RT S0_A/ SS0_A		SSLA0_A	AN019	CMPREF 1	TS14	KR03
46	34	34	28	C4		P102	AGTO0	GTOWLO _A	GTIOC2B _A		CRX0_C	SCK0_A		RSPCKA_ A	AN020/ ADTRG0_ A	CMPIN1	TS15	KR02
47	35	35	29	C5		P101	AGTEE0	GTETRG B_A	GTIOC5A _A			TXD0_A/ MOSI0_A/ SDA0_A/ CTS1_RT S1_A/ SS1_A	SDA1_B	MOSIA_A	AN021	CMPREF 0	TS16	KR01/ IRQ1
48	36	36	30	B6		P100	AGTIO0_ A	GTETRG A_A	GTIOC5B _A			RXD0_A/ MISO0_A/ SCL0_A/ SCK1_A	SCL1_B	MISOA_A	AN022	CMPIN0	TS26	KR00/ IRQ2
49	37	37	-	-		P500	AGTOA0	GTIU_B	GTIOC2A			_			AN016		TS27	
50	-	-	-	-		P501	AGTOB0	GTIV_B	GTIOC2B						AN017			
51	-	-	-	-		P502		GTIW_B	GTIOC3B						AN018			
52	38	38	31	A6		P015			_0						AN010		TS28	IRQ7
53	39	39	32	A5		P014									AN009	DA0		
54	40	40	33	B5		P013									AN008			
55	41	41	34	B4		P012									AN007			
56	42	42	35	A4	AVCC0													
57	43	43	36	A3	AVSS0													
58	44	44	37	B3	VREFL0	P011									AN006		TS31	
59	45	45	38	A2	VREFH0	P010					1	1			AN005		TS30	
60	-	-	-	-		P004						1			AN004		TS25	IRQ3
61	-	-	-	-		P003						1			AN003		TS24	
62	46	46	-	-		P002						1			AN002		TS23	IRQ2
63	47	47	39	-		P001						1			AN001		TS22	IRQ7
64	48	48	40	B2		P000									AN000		TS21	IRQ6

Note: Several pin names have the added suffix of _A, _B, _C, and _D. The suffix can be ignored when assigning functionality.

Table 2.5 I/O V_{IH}, V_{IL} (2) Conditions: VCC = AVCC0 = 1.6 to 2.7 V

Parameter		Symbol	Min	Тур	Max	Unit	Test Conditions
Schmitt trigger	RES, NMI	V _{IH}	VCC × 0.8	-	-	V	-
input voltage	Peripheral input pins	V _{IL}	-	-	VCC × 0.2		
		ΔV _T	VCC × 0.01	-	-		
Input voltage	5V-tolerant ports*1	V _{IH}	VCC × 0.8	-	5.8		
(except for Schmitt trigger		V _{IL}	-	-	VCC × 0.2		
input pin)	P000 to P004	V _{IH}	AVCC0 × 0.8	-	-		
	P010 to P015	V _{IL}	-	-	AVCC0 × 0.2		
	EXTAL	V _{IH}	VCC × 0.8	-	-		
	Input ports pins except for P000 to P004, P010 to P015	V _{IL}	-	-	VCC × 0.2		

Note 1. P205, P206, P400, P401, P407 (total 5pins)

Figure 2.22 Temperature dependency in Software Standby mode (reference data)

Figure 2.23 Temperature dependency of RTC operation (reference data)

Tab	le 2.1	3	Operatin	g and	standby	current	(3) (1 of 2)	
~								

Conditions: VCC = AVCC0 = 1.6 to 5.5 V

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
Analog power	During A/D conversion (at high-speed conversion)	I _{AVCC}	-	-	3.0	mA	-
supply current	During A/D conversion (at low-power conversion)	I _{REFH0}	-	-	1.0	mA	-
	During D/A conversion*1		-	0.4	0.8	mA	-
	Waiting for A/D and D/A conversion (all units)*5		-	-	1.0	μA	-
Reference	During A/D conversion		-	-	150	μA	-
power supply current	Waiting for A/D conversion (all units)		-	-	60	nA	-
Temperature sen	sor	I _{TNS}	-	75	-	μA	-

Table 2.13Operating and standby current (3) (2 of 2)

Conditions: VCC = AVCC0 = 1.6 to 5.5 V

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
Low-power	Window mode	I _{CMPLP}	-	15	-	μA	-
comparator (ACMPLP) operating current	Comparator high-speed mode		-	10	-	μA	-
	Comparator low-speed mode		-	2	-	μA	-
USB operating current	 During USB communication under the following settings and conditions: Function controller is in Full-Speed mode and Bulk OUT transfer is (64 bytes) × 1 Bulk IN transfer is (64 bytes) × 1 Host device is connected by a 1-meter USB cable from the USB port. 	I _{USBF} *2	-	3.6 (VCC) 1.1 (VCC_USB)* ⁴	-	mA	-
	 During suspended state under the following setting and conditions: Function controller is in Full-Speed mode (the USB_DP pin is pulled up) Software Standby mode Host device is connected by a 1-meter USB cable from the USB port. 	I _{SUSP} *3	-	0.35 (VCC) 170 (VCC_USB)*4	-	μΑ	-

Note 1. The reference power supply current is included in the power supply current value for D/A conversion.

Note 2. Current is consumed only by the USBFS.

Note 3. Includes the current supplied from the pull-up resistor of the USB_DP pin to the pull-down resistor of the host device, in addition to the current consumed by the MCU in the suspended state.

Note 4. When VCC = VCC_USB = 3.3 V.

Note 5. When the MSTPCRD.MSTPD16 (ADC140 module-stop bit) is in the module-stop state.

Table 2.18 Operation frequency in low-speed mode

Conditions: VCC = AVCC0 = 1.8 to 5.5 V

Parameter		Symbol	Min	Тур	Max*5	Unit	
Operation	System clock (ICLK)*1, *2, *4	1.8 to 5.5 V	f	0.032768	-	1	MHz
frequency	Peripheral module clock (PCLKB)*4	1.8 to 5.5 V		-	-	1	
	Peripheral module clock (PCLKD)*3, *4	1.8 to 5.5 V		-	-	1	

Note 1. The lower-limit frequency of ICLK is 1 MHz while programming or erasing the flash memory.

Note 2. The frequency accuracy of ICLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

Note 3. The lower-limit frequency of PCLKD is 1 MHz when the A/D converter is in use.

- Note 4. See section 8, Clock Generation Circuit in User's Manual for the relationship of frequencies between ICLK, PCLKB, and PCLKD.
- Note 5. The maximum value of operation frequency does not include internal oscillator errors. For details on the range of guaranteed operation, see Table 2.21, Clock timing.

Table 2.19 Operation frequency in low-voltage mode

Conditions: VCC = AVCC0 = 1.6 to 5.5 V

Parameter		Symbol	Min	Тур	Max*5	Unit	
Operation	System clock (ICLK)*1, *2, *4	1.6 to 5.5 V	f	0.032768	-	4	MHz
frequency	Peripheral module clock (PCLKB)*4	1.6 to 5.5 V		-	-	4	
	Peripheral module clock (PCLKD)*3, *4	1.6 to 5.5 V		-	-	4	

Note 1. The lower-limit frequency of ICLK is 1 MHz while programming or erasing the flash memory. When using ICLK for programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

- Note 2. The frequency accuracy of ICLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.
- Note 3. The lower-limit frequency of PCLKD is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the 14-bit A/D converter is in use.
- Note 4. See section 8, Clock Generation Circuit in User's Manual for the relationship of frequencies between ICLK, PCLKB, and PCLKD.
- Note 5. The maximum value of operation frequency does not include internal oscillator errors. For details on the range of guaranteed operation, see Table 2.21, Clock timing.

Table 2.20 Operation frequency in Subosc-speed mode

Conditions: VCC = AVCC0 = 1.8 to 5.5 V

Parameter		Symbol	Min	Тур	Max	Unit	
Operation	System clock (ICLK)*1, *3	1.8 to 5.5 V	f	27.8528	32.768	37.6832	kHz
frequency	Peripheral module clock (PCLKB)*3	1.8 to 5.5 V		-	-	37.6832	
	Peripheral module clock (PCLKD)* ^{2, *3}	1.8 to 5.5 V		-	-	37.6832	

Note 1. Programming and erasing the flash memory is not possible.

Note 2. The 14-bit A/D converter cannot be used.

Note 3. See section 8, Clock Generation Circuit in User's Manual for the relationship between ICLK, PCLKB, and PCLKD frequencies.

2.3.4 Wakeup Time

Table 2.23	Timing of recovery from low power modes (1)
------------	---

Parameter				Symbol	Min	Тур	Max	Unit	Test conditions
Recovery time from Software Standby mode ^{*1}	High-speed mode	Crystal resonator connected to main clock oscillator	Crystal System clock source is ts resonator main clock oscillator (20 MHz)*2 main clock oscillator (20 MHz)*2		-	2	3	ms	Figure 2.31
		External clock input to main clock oscillator	System clock source is main clock oscillator (20 MHz) ^{*3}	t _{SBYEX}	-	14	25	μs	
		System clock sou (HOCO clock is 3	t _{SBYHO}	-	43	52	μs		
		System clock source is HOCO ^{*4} (HOCO clock is 48 MHz)		t _{SBYHO}	-	44	52	μs	
System clock source is HOCO ^{*5} (HOCO clock is 64 MHz) System clock source is MOCO		System clock sou (HOCO clock is 6	System clock source is HOCO ^{*5} (HOCO clock is 64 MHz)		-	82	110	μs	
		t _{SBYMO}	-	16	25	μs			

Note 1. The division ratio of ICK and PCKx is the minimum division ratio within the allowable frequency range. The recovery time is determined by the system clock source.

Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h.

Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h.

Note 4. The HOCO clock wait control register (HOCOWTCR) is set to 05h.

Note 5. The HOCO clock wait control register (HOCOWTCR) is set to 06h.

Table 2.24Timing of recovery from low power modes (2)

Parameter				Symbol	Min	Тур	Max	Unit	Test conditions
Recovery time from Software Standby mode*1	Middle-speed mode	Crystal resonator connected to main clock oscillator	System clock source is main clock oscillator (12 MHz)* ²	t _{SBYMC}	-	2	3	ms	Figure 2.31
		External clock input to main clock oscillator	System clock source is main clock oscillator (12 MHz)* ³	t _{SBYEX}	-	2.9	10	μs	
		System clock sou	urce is HOCO*4	t _{SBYHO}	-	38	50	μs	
		System clock sou	urce is MOCO	t _{SBYMO}	-	3.5	5.5	μs	

Note 1. The division ratio of ICK and PCKx is the minimum division ratio within the allowable frequency range. The recovery time is determined by the system clock source.

Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h.

Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h.

Note 4. The system clock is 12 MHz.

2.3.5 NMI and IRQ Noise Filter

Table 2.29	NMI and IRQ noise filter

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions				
NMI pulse width	t _{NMIW}	200	-	-	ns	NMI digital filter disabled	t _{Pcyc} × 2 ≤ 200 ns			
		t _{Pcyc} × 2*1	-	-			t _{Pcyc} × 2 > 200 ns			
		200	-	-		NMI digital filter enabled	t _{NMICK} × 3 ≤ 200 ns			
		t _{NMICK} × 3.5*2	-	-			t _{NMICK} × 3 > 200 ns			
IRQ pulse width	t _{IRQW}	200	-	-	ns	IRQ digital filter disabled	t _{Pcyc} × 2 ≤ 200 ns			
		t _{Pcyc} × 2*1	-	-			t _{Pcyc} × 2 > 200 ns			
		200	-	-		IRQ digital filter enabled	t _{IRQCK} × 3 ≤ 200 ns			
		t _{IRQCK} × 3.5* ³	-	-			t _{IRQCK} × 3 > 200 ns			

Note: 200 ns minimum in Software Standby mode.

Note 1. t_{Pcyc} indicates the PCLKB cycle.

Note 2. t_{NMICK} indicates the cycle of the NMI digital filter sampling clock.

Note 3. t_{IRQCK} indicates the cycle of the IRQi digital filter sampling clock (i = 0 to 7).

Figure 2.33 NMI interrupt input timing

Figure 2.34 IRQ interrupt input timing

Figure 2.43 SCI simple SPI mode clock timing

Figure 2.44 SCI simple SPI mode timing (master, CKPH = 1)

Figure 2.48 SCI simple IIC mode timing

SPI Timing 2.3.9

Table 2.35SPI timing (1 of 2)Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.

Parame	eter			Symbol	Min	Max	Unit ^{*1}	Test conditions
SPI	RSPCK clock cycle	Master		t _{SPcyc}	2	4096	t _{Pcyc}	Figure 2.49
		Slave			6	4096		C = 30 _P F
	RSPCK clock high pulse width	Master		t _{SPCKWH}	(t _{SPcyc} – t _{SPCKr} – t _{SPCKf}) / 2 – 3	-	ns	
		Slave			3 × t _{Pcyc}	-		
	RSPCK clock low pulse width	Master		t _{SPCKWL}	(t _{SPcyc} – t _{SPCKr} – t _{SPCKf}) / 2 – 3	-	ns	
		Slave			3 × t _{Pcyc}	-		
	RSPCK clock rise	Output	2.7V or above	t _{SPCKr,}	-	10	ns	
	and fall time		2.4V or above	t _{SPCKf}	-	15		
			1.8V or above		-	20		
			1.6V or above		-	30		
		Input			-	1	μs	
	Data input setup	Master		t _{SU}	10	-	ns	Figure 2.50 to
	time	Slave	2.4V or above		10	-		Figure 2.55 $C = 30_{P}F$
		1.8V or above			15	-		0 000
			1.6V or above		20	-		
	Data input hold time	Master (RSPCK	is PCLKB/2)	t _{HF}	0	-	ns	
		Master (RSPCK	is not PCLKB/2)	t _H	t _{Pcyc}	-		
		Slave		t _H	20	-		
	SSL setup time	Master Slave		t _{LEAD}	– 30 + N x t _{Spcyc} *2	-	ns	
					6 x t _{Pcyc}	-	ns	
	SSL hold time	Master		t _{LAG}	- 30 + N x t _{Spcyc} *3	-	ns	
		Slave			6 x t _{Pcyc}	-	ns]

Table 2.35 SPI timing (2 of 2)

aranne	eter			Symbol	Min	Max	Unit ^{*1}	Test conditions
ΡI	Data output delay	Master	2.7V or above	t _{OD}	-	14	ns	Figure 2.50 to
			2.4V or above		-	20		Figure 2.55
			1.8V or above		-	25		С – ЗОрг
			1.6V or above		-	30		
		Slave	2.7V or above		-	50		
			2.4V or above		-	60		
			1.8V or above		-	85		
			1.6V or above		-	110		
	Data output hold	Master		t _{OH}	0	-	ns	
	time	Slave			0	-		
	Successive transmission delay	Master		t _{TD}	t _{SPcyc} + 2 × t _{Pcyc}	8 × t _{SPcyc} + 2 × t _{Pcyc}	ns	
		Slave			6 × t _{Pcyc}	-		
	MOSI and MISO	Output	2.7V or above	t _{Dr,} t _{Df}	-	10	ns	
	rise and fall time		2.4V or above		-	15		
			1.8V or above		-	20		
			1.6V or above		-	30		
		Input	·		-	1	μs	-
	SSL rise and fall	Output	2.7V or above	t _{SSLr,} t _{SSLf}	-	10	ns	-
	time		2.4V or above		-	15		
			1.8V or above		-	20		
			1.6V or above		-	30		
		Input			-	1	μs	
	Slave access time		2.4V or above	t _{SA}	-	2 × t _{Pcyc} +100	ns	Figure 2.54 and Figure 2.55 C = 30 _P F
			1.8V or above		-	2 × t _{Pcyc} +140		
		1.6V or above		-	2 × t _{Pcyc} +180			
	Slave output release	ase time 2.4V or above		t _{REL}	-	2 × t _{Pcyc} +100	ns	
			1.8V or above		-	2 × t _{Pcyc} +140		
			1.6V or above		-	2 × t _{Pcyc} +180		

Note 1. t_{Pcyc}: PCLKB cycle.

Note 2. N is set as an integer from 1 to 8 by the SPCKD register.

Note 3. N is set as an integer from 1 to 8 by the SSLND register.

2.3.11 CLKOUT Timing

Table 2.37 CLKOUT timing

Parameter			Symbol	Min	Max	Unit*1	Test conditions
CLKOUT	CLKOUT pin output cycle*1	VCC = 2.7 V or above	t _{Ccyc}	62.5	-	ns	Figure 2.57
		VCC = 1.8 V or above		125	-		
		VCC = 1.6 V or above		250	-		
	CLKOUT pin high pulse width*2	VCC = 2.7 V or above	t _{CH}	15	-	ns	
		VCC = 1.8 V or above		30	-		
		VCC = 1.6 V or above		150	-		
	CLKOUT pin low pulse width*2	VCC = 2.7 V or above	t _{CL}	15	-	ns	
		VCC = 1.8 V or above		30	-		
		VCC = 1.6 V or above		150	-		
	CLKOUT pin output rise time	VCC = 2.7 V or above	t _{Cr}	-	12	ns	
		VCC = 1.8 V or above		-	25		
		VCC = 1.6 V or above		-	50		
	CLKOUT pin output fall time	VCC = 2.7 V or above	t _{Cf}	-	12	ns	
		VCC = 1.8 V or above		-	25		
		VCC = 1.6 V or above		-	50		

Note 1. When the EXTAL external clock input or an oscillator is used with division by 1 (the CKOCR.CKOSEL[2:0] bits are 011b and the CKOCR.CKODIV[2:0] bits are 000b) to output from CLKOUT, the above should be satisfied with an input duty cycle of 45 to 55%.

Note 2. When the MOCO is selected as the clock output source (the CKOCR.CKOSEL[2:0] bits are 001b), set the clock output division ratio selection to be divided by 2 (the CKOCR.CKODIV[2:0] bits are 001b).

Figure 2.57 CLKOUT output timing

Offset error

Offset error is the difference between the highest actual output voltage that falls below the lower output limit and the ideal output voltage based on the input code.

Full-scale error

Full-scale error is the difference between the lowest actual output voltage that exceeds the upper output limit and the ideal output voltage based on the input code.

2.7 TSN Characteristics

Table 2.50 TSN characteristics

Conditions: VCC = AVCC0 = 2.0 to 5.5 V

Parameter	Symbol	Min	Тур	Мах	Unit	Test conditions
Relative accuracy	-	-	±1.5	-	°C	2.4 V or above
		-	±2.0	-	°C	Below 2.4 V
Temperature slope	-	-	-3.65	-	mV/°C	-
Output voltage (at 25°C)	-	-	1.05	-	V	VCC = 3.3 V
Temperature sensor start time	t _{START}	-	-	5	μs	-
Sampling time	-	5	-	-	μs	

2.8 OSC Stop Detect Characteristics

Table 2.51 Oscillation stop detection circuit characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Detection time	t _{dr}	-	-	1	ms	Figure 2.65

Main clock	
OSTDSR.OSTDF	f
MOCO clock	
ICLK	

Figure 2.65 Oscillation stop detection timing

2.9 POR and LVD Characteristics

Parameter		Symbol	Min	Тур	Max	Unit	Test Conditions	
Voltage detection level*1	Power-on reset (POR)	V _{POR}	1.27	1.42	1.57	V	Figure 2.66, Figure 2.67	
	Voltage detection circuit (LVD0)*2	V _{det0_0}	3.68	3.85	4.00	V	Figure 2.68	
		V _{det0_1}	2.68	2.85	2.96		At falling edge	
		V _{det0_2}	2.38	2.53	2.64			
		V _{det0_3}	1.78	1.90	2.02			
		V _{det0_4}	1.60	1.69	1.82			
	Voltage detection circuit (LVD1)*3	V _{det1_0}	4.13	4.29	4.45	V	Figure 2.69	
		V _{det1_1}	3.98	4.16	4.30		At falling edge	
		V _{det1_2}	3.86	4.03	4.18			
		V _{det1_3}	3.68	3.86	4.00			
		V _{det1_4}	2.98	3.10	3.22			
		V _{det1_5}	2.89	3.00	3.11			
		V _{det1_6}	2.79	2.90	3.01			
		V _{det1_7}	2.68	2.79	2.90			
		V _{det1_8}	2.58	2.68	2.78			
		V _{det1_9}	2.48	2.58	2.68			
		V _{det1_A}	2.38	2.48	2.58			
		V _{det1_B}	2.10	2.20	2.30			
		V _{det1_C}	1.84	1.96	2.05			
		V _{det1_D}	1.74	1.86	1.95			
		V _{det1_E}	1.63	1.75	1.84			
		V _{det1_F}	1.60	1.65	1.73			
	Voltage detection circuit (LVD2)*4	V _{det2_0}	4.11	4.31	4.48	V	Figure 2.70	
		V _{det2_1}	3.97	4.17	4.34		At falling edge	
		V _{det2_2}	3.83	4.03	4.20		-	
		V _{det2_3}	3.64	3.84	4.01			

 Table 2.52
 Power-on reset circuit and voltage detection circuit characteristics (1)

Note 1. These characteristics apply when noise is not superimposed on the power supply. When a setting causes this voltage detection level to overlap with that of the voltage detection circuit, it cannot be specified whether LVD1 or LVD2 is used for voltage detection.

Note 2. # in the symbol V_{det0} # denotes the value of the OFS1.VDSEL1[2:0] bits.

Note 3. # in the symbol $V_{det1_{\#}}$ denotes the value of the LVDLVLR.LVD1LVL[4:0] bits.

Note 4. # in the symbol V_{det2} # denotes the value of the LVDLVLR.LVD2LVL[2:0] bits.

Table 2.53	Power-on reset circuit and volt	age detection circui	t characteristics (2) (1 of 2)
------------	---------------------------------	----------------------	--------------------------------

Parameter		Symbol	Min	Тур	Max	Unit	Test Conditions
Wait time after power-on Reset cancellation	LVD0:enable	t _{POR}	-	1.7	-	ms	-
	LVD0:disable	t _{POR}	-	1.3	-	ms	-
Wait time after voltage monitor 0,1,2 reset cancellation	LVD0:enable*1	t _{LVD0,1,2}	-	0.6	-	ms	-
	LVD0:disable*2	t _{LVD1,2}	-	0.2	-	ms	-
Response delay*3		t _{det}	-	-	350	μs	Figure 2.66, Figure 2.67
Minimum VCC down time		t _{VOFF}	450	-	-	μs	Figure 2.66, VCC = 1.0 V or above

Table 2.60 Data flash characteristics (2)

High-speed operating mode

Conditions: VCC = AVCC0 = 2.7 to 5.5 V

			ICLK = 4 MHz				ICLK = 32 MHz			
Parameter		Symbol	Min	Тур	Мах	Min	Тур	Max	Unit	
Programming time	1-byte	t _{DP1}	-	52.4	463	-	42.1	387	μs	
Erasure time	1-KB	t _{DE1K}	-	8.98	286	-	6.42	237	ms	
Blank check time	1-byte	t _{DBC1}	-	-	24.3	-	-	16.6	μs	
	1-KB	t _{DBC1K}	-	-	1872	-	-	512	μs	
Suspended time during erasing		t _{DSED}	-	-	13.0	-	-	10.7	μs	
Data flash STOP recovery time		t _{DSTOP}	5	-	-	5	-	-	μs	

Note 1. Does not include the time until each operation of the flash memory is started after instructions are executed by the software.

Note 2. The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note 3. The frequency accuracy of ICLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

Table 2.61 Data flash characteristics (3)

Middle-speed operating mode Conditions: VCC = AVCC0 = 1.8 to 5.5 V, Ta = -40 to +85°C

			ICLK = 4 MHz				ICLK = 8 MHz		
Parameter		Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Programming time	1-byte	t _{DP1}	-	94.7	886	-	89.3	849	μs
Erasure time	1-KB	t _{DE1K}	-	9.59	299	-	8.29	273	ms
Blank check time	1-byte	t _{DBC1}	-	-	56.2	-	-	52.5	μs
	1-KB	t _{DBC1K}	-	-	2.17	-	-	1.51	ms
Suspended time during erasing		t _{DSED}	-	-	23.0	-	-	21.7	μs
Data flash STOP recovery time t _D		t _{DSTOP}	720	-	-	720	-	-	ns

Note 1. Does not include the time until each operation of the flash memory is started after instructions are executed by the software.

Note 2. The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note 3. The frequency accuracy of ICLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

Appendix 1. Package Dimensions

Information on the latest version of the package dimensions or mountings is displayed in "Packages" on the Renesas Electronics Corporation website.

Figure 1.3 LGA 36-pin

General Precautions

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Renesas Synergy™ Platform S124 Microcontroller Group

