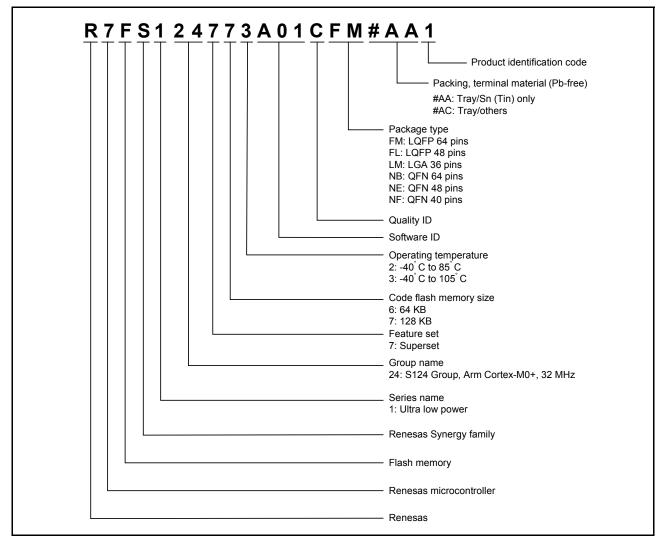
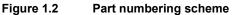

E:>< Filenesas Electronics America Inc - <u>R7FS124773A01CNB#AC0 Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Obsolete
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	CANbus, I ² C, SCI, SPI, UART/USART, USB
Peripherals	LVD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 18x14b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-WFQFN Exposed Pad
Supplier Device Package	64-HWQFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r7fs124773a01cnb-ac0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1.12 Product list

Product part number	Orderable part number	Package code	Code flash	Data flash	SRAM	Operating temperature
R7FS124773A01CFM	R7FS124773A01CFM#AA1	PLQP0064KB-C	128 KB	4 KB	16 KB	–40 to +105°C
R7FS124773A01CNB	R7FS124773A01CNB#AC1	PWQN0064LA-A				-40 to +105°C
R7FS124773A01CFL	R7FS124773A01CFL#AA1	PLQP0048KB-B	1			-40 to +105°C
R7FS124773A01CNE	R7FS124773A01CNE#AC1	PWQN0048KB-A				-40 to +105°C
R7FS124773A01CNF	R7FS124773A01CNF#AC1	PWQN0040KC-A				-40 to +105°C
R7FS124772A01CLM	R7FS124772A01CLM#AC1	PWLG0036KA-A				-40 to +85°C
R7FS124763A01CFM	R7FS124763A01CFM#AA1	PLQP0064KB-C	64 KB			-40 to +105°C
R7FS124763A01CFL	R7FS124763A01CFL#AA1	PLQP0048KB-B	1			-40 to +105°C
R7FS124762A01CLM	R7FS124762A01CLM#AC1	PWLG0036KA-A	1			-40 to +85°C

Note: Earlier products with orderable part number suffix AA0 and AC0 have a restriction in AES functions. If AES functions are required for your application, refer to the products with orderable part number suffix AA1 or AC1. For details on the differences of AES functions between AA0/AC0 and AA1/AC1 products, see *Technical Update* (*TN-SY*-A024A/E*). Contact your Renesas sales representative for additional information.

RENESAS

Figure 1.4 Pin assignment for QFN 64-pin (top view)

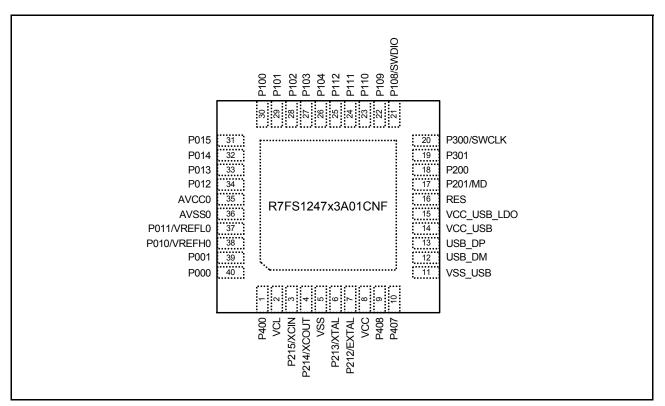


Figure 1.7 Pin assignment for QFN 40-pin (top view)

R7FS1247x2A01CLM									
	A	В	c	D	E	F			
	6 P015	P100	P112	P111	P108 /SWDIO	P300 /SWCLK			
	5 P014	P013	P101	P110	P200	VCC_USB _LDO			
	4 AVCC0	P012	P102	P109	P201/MD	VCC_USB			
	3 AVSS0	P011 /VREFL0	P103	P213 /XTAL	RES	USB_DP			
	2 P010 /VREFH0	P000	P400	P212 /EXTAL	P407	USB_DM			
	1 VCL	P215 /XCIN	P214 /XCOUT	VSS	VCC	VSS_USB			
	A	В	С	D	E	F			

Figure 1.8

Pin assignment for LGA 36-pin (top view, pad side down)

2.2 DC Characteristics

2.2.1 Tj/Ta Definition

Table 2.3DC characteristics

Conditions: Products with operating temperature (T_a) –40 to +105°C

Parameter	Symbol	Тур	Max	Unit	Test conditions
Permissible junction temperature	Tj	-	125	°C	High-speed mode
			105* ¹		Middle-speed mode Low-voltage mode Low-speed mode
					Subosc-speed mode

Note: Make sure that $Tj = T_a + \theta ja \times total power consumption (W)$, where total power consumption = (VCC - V_{OH}) × $\Sigma I_{OH} + V_{OL} \times \Sigma I_{OL} + I_{CC}max \times VCC$.

Note 1. The upper limit of operating temperature is 85°C or 105°C, depending on the product. For details, see section 1.3, Part Numbering. If the part number shows the operation temperature at 85°C, then the maximum value of Tj is 105°C, otherwise, it is 125°C.

2.2.2 I/O V_{IH}, V_{IL}

Table 2.4 I/O V_{IH}, V_{IL} (1) Conditions: VCC = AVCC0 = 2.7 to 5.5 V

Parameter		Symbol	Min	Тур	Мах	Unit	Test Conditions
Schmitt trigger	IIC (except for SMBus)*1	V _{IH}	VCC × 0.7	-	5.8	V	-
input voltage		V _{IL}	-	-	VCC × 0.3		
		ΔV_T	VCC × 0.05	-	-		
	RES, NMI	V _{IH}	VCC × 0.8	-	-		
	Other peripheral input pins excluding IIC	V _{IL}	-	-	VCC × 0.2		
		ΔV_T	VCC × 0.1	-	-		
Input voltage (except for	IIC (SMBus)*2	V _{IH}	2.2	-	-	-	VCC = 3.6 to 5.5 V
Schmitt trigger input pin)		V _{IH}	2.0	-	-		VCC =2.7 to 3.6 V
		V _{IL}	-	-	0.8		-
	5V-tolerant ports*3	V _{IH}	VCC × 0.8	-	5.8		
		V _{IL}	-	-	VCC × 0.2		
	P000 to P004	V _{IH}	AVCC0 × 0.8	-	-		
	P010 to P015	V _{IL}	-	-	AVCC0 × 0.2	-	
	EXTAL	V _{IH}	VCC × 0.8	-	-		
	Input ports pins except for P000 to P004, P010 to P015	V _{IL}	-	-	VCC × 0.2	1	

Note 1. SCL0_A, SDA0_A, SDA0_B, SCL1_A, SDA1_A (total 5 pins)

Note 2. SCL0_A, SDA0_A, SCL0_B, SDA0_B, SCL1_A, SDA1_A, SCL1_B, SDA1_B (total 8 pins)

Note 3. P205, P206, P400, P401, P407 (total 5pins)

Table 2.9 I/O V_{OH}, V_{OL} (3)

Conditions: VCC = AVC	CO =	1.6 to 2.7 V

Parameter			Symbol	Min	Тур	Max	Unit	Test conditions
Output voltage	Ports P000 to P004 P010 to P015	Low drive	V _{OH}	AVCC0 – 0.3	-	-		I _{OH} = -0.5 mA
			V _{OL}	-	-	0.3		I _{OL} = 0.5 mA
		Middle drive	V _{OH}	AVCC0 – 0.3	-	-		I _{OH} = -1.0 mA
			V _{OL}	-	-	0.3		I _{OL} = 1.0 mA
	Other output pins*1	Low drive	V _{OH}	VCC - 0.3	-	-	V	I _{OH} = -0.5 mA
			V _{OL}	-	-	0.3		I _{OL} = 0.5 mA
		Middle drive*2	V _{OH}	VCC - 0.3	-	-		I _{OH} = -1.0 mA
			V _{OL}	-	-	0.3		I _{OL} = 1.0 mA

Note 1. Except for Ports P200, P214, P215, which are input ports.

Note 2. Except for P212, P213.

Table 2.10I/O other characteristics

Conditions: VCC = AVCC0 = 1.6 to 5.5 V

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions	
Input leakage current	RES, Ports P200, P214, P215	I _{in}	-	-	1.0	μA	V _{in} = 0 V V _{in} = VCC	
Three-state leakage current (off state)	5V-tolerant ports	I _{TSI}	-	-	1.0	μA	V _{in} = 0 V V _{in} = 5.8 V	
	Other ports		-	-	1.0		V _{in} = 0 V V _{in} = VCC	
Input pull-up resistor	All ports (except for P200, P214, P215)	R _U	10	20	50	kΩ	V _{in} = 0 V	
Input capacitance	USB_DP, USB_DM, P200	C _{in}	-	-	30	pF	V _{in} = 0 V	
	Other input pins		-	-	15]	f = 1 MHz T _a = 25°C	

2.2.5 I/O Pin Output Characteristics of Low Drive Capacity

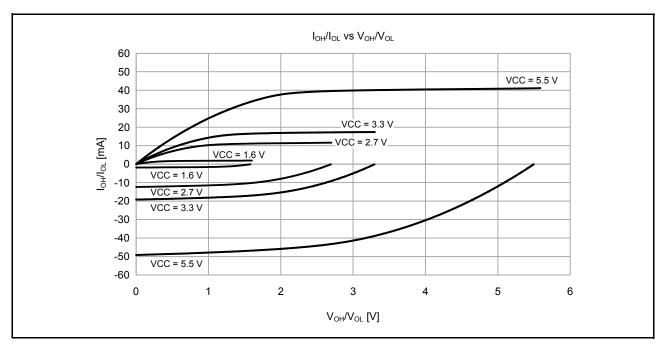


Figure 2.2 V_{OH}/V_{OL} and I_{OH}/I_{OL} voltage characteristics at Ta = 25°C when low drive output is selected (reference data)

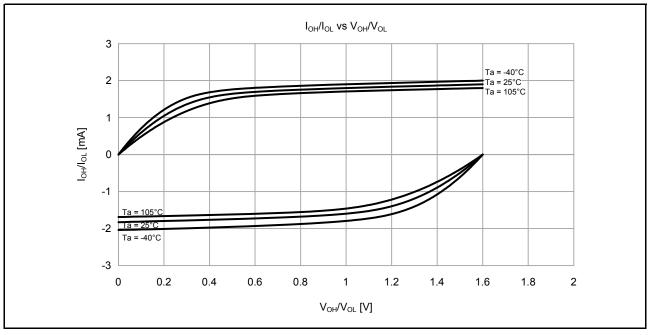


Figure 2.3 V_{OH}/V_{OL} and I_{OH}/I_{OL} temperature characteristics at VCC = 1.6 V when low drive output is selected (reference data)

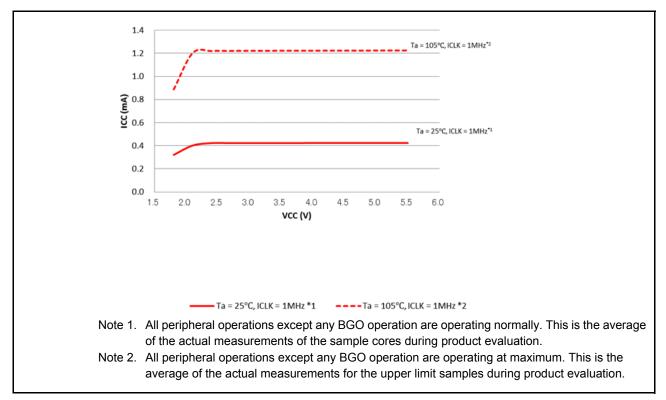
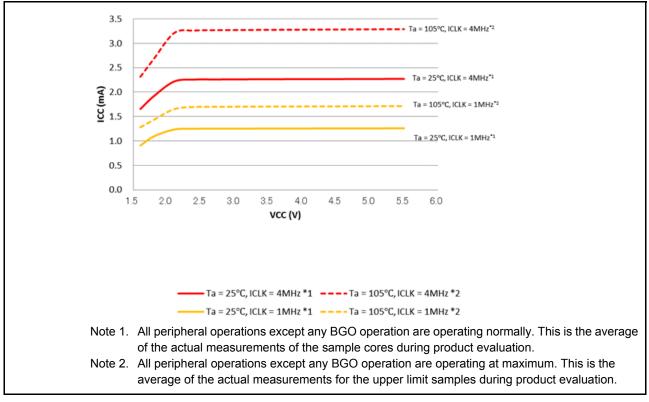



Figure 2.19 Voltage dependency in low-speed operating mode (reference data)

RENESAS

Table 2.18 Operation frequency in low-speed mode

Conditions: VCC = AVCC0 = 1.8 to 5.5 V

Parameter				Min	Тур	Max*5	Unit
Operation	System clock (ICLK)*1, *2, *4	1.8 to 5.5 V	f	0.032768	-	1	MHz
frequency	Peripheral module clock (PCLKB)*4	1.8 to 5.5 V		-	-	1	
	Peripheral module clock (PCLKD)*3, *4	1.8 to 5.5 V		-	-	1	

Note 1. The lower-limit frequency of ICLK is 1 MHz while programming or erasing the flash memory.

Note 2. The frequency accuracy of ICLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

Note 3. The lower-limit frequency of PCLKD is 1 MHz when the A/D converter is in use.

- Note 4. See section 8, Clock Generation Circuit in User's Manual for the relationship of frequencies between ICLK, PCLKB, and PCLKD.
- Note 5. The maximum value of operation frequency does not include internal oscillator errors. For details on the range of guaranteed operation, see Table 2.21, Clock timing.

Table 2.19 Operation frequency in low-voltage mode

Conditions: VCC = AVCC0 = 1.6 to 5.5 V

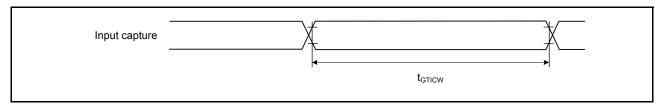
Parameter			Symbol	Min	Тур	Max*5	Unit
Operation	System clock (ICLK)*1, *2, *4	1.6 to 5.5 V	f	0.032768	-	4	MHz
frequency	Peripheral module clock (PCLKB)*4	1.6 to 5.5 V		-	-	4	
	Peripheral module clock (PCLKD)*3, *4	1.6 to 5.5 V		-	-	4	

Note 1. The lower-limit frequency of ICLK is 1 MHz while programming or erasing the flash memory. When using ICLK for programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

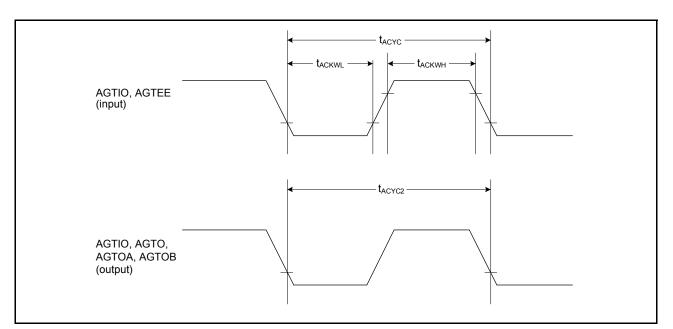
- Note 2. The frequency accuracy of ICLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.
- Note 3. The lower-limit frequency of PCLKD is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the 14-bit A/D converter is in use.
- Note 4. See section 8, Clock Generation Circuit in User's Manual for the relationship of frequencies between ICLK, PCLKB, and PCLKD.
- Note 5. The maximum value of operation frequency does not include internal oscillator errors. For details on the range of guaranteed operation, see Table 2.21, Clock timing.

Table 2.20 Operation frequency in Subosc-speed mode

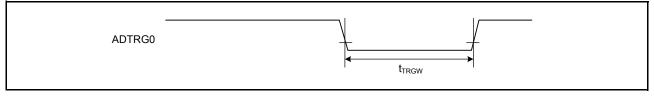
Conditions: VCC = AVCC0 = 1.8 to 5.5 V


Parameter			Symbol	Min	Тур	Max	Unit
Operation frequency	System clock (ICLK)*1, *3	1.8 to 5.5 V	f	27.8528	32.768	37.6832	kHz
	Peripheral module clock (PCLKB)*3	1.8 to 5.5 V		-	-	37.6832	
	Peripheral module clock (PCLKD)*2, *3	1.8 to 5.5 V		-	-	37.6832	

Note 1. Programming and erasing the flash memory is not possible.


Note 2. The 14-bit A/D converter cannot be used.

Note 3. See section 8, Clock Generation Circuit in User's Manual for the relationship between ICLK, PCLKB, and PCLKD frequencies.



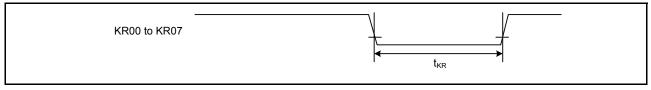


Figure 2.38 AGT I/O timing

Figure 2.39 ADC14 trigger input timing

Figure 2.40 Key interrupt input timing

2.3.7 CAC Timing

Table 2.31CAC timing

Paramete	Parameter			Min	Тур	Max	Unit	Test conditions
CAC	CACREF input pulse width	t _{PBcyc} ≤ tcac*²	t _{CACREF}	$4.5 \times t_{cac} + 3 \times t_{PBcyc}$	-	-	ns	-
		t _{PBcyc} > tcac* ²		$5 \times t_{cac} + 6.5 \times t_{PBcyc}$	-	-	ns	

Note 1. t_{PBcyc}: PCLKB cycle.

Note 2. $t_{cac}\!\!:$ CAC count clock source cycle.

2.3.8 SCI Timing

Table 2.32SCI timing (1)Conditions: VCC = AVCC0 = 1.6 to 5.5 V

-

Paran	Parameter			Symbol	Min	Max	Unit ^{*1}	Test conditions
SCI	Input clock cycle	Asynchro	nous	t _{Scyc}	4	-	t _{Pcyc}	Figure 2.41
		Clock syn	chronous		6	-		
	Input clock pulse wid	lth		t _{SCKW}	0.4	0.6	t _{Scyc}	-
	Input clock rise time			t _{SCKr}	-	20	ns	-
	Input clock fall time			t _{SCKf}	-	20	ns	
	Output clock cycle	Asynchro	nous	t _{Scyc}	6	-	t _{Pcyc}	
		Clock syn	Clock synchronous		4	-		
	Output clock pulse w	ridth		t _{SCKW}	0.4	0.6	t _{Scyc}	
	Output clock rise time	е	1.8V or above	t _{SCKr}	-	20	ns	
			1.6V or above		-	30		
	Output clock fall time	;	1.8V or above	t _{SCKf}	-	20	ns	
			1.6V or above		-	30		
		Clock	1.8V or above	t _{TXD}	-	40	ns	Figure 2.42
	(master)	synchro nous	1.6V or above		-	45		-
	Transmit data delay	Clock	2.7V or above	-	-	55	ns	
	(slave)	synchro nous	2.4V or above		-	60		
			1.8V or above		-	100		
			1.6V or above		-	125		
	Receive data setup	Clock	2.7V or above	t _{RXS}	45	-	ns	-
	time (master)	synchro nous	2.4V or above		55	-		
		11000	1.8V or above		90	-		
			1.6V or above		110	-		
	Receive data setup	Clock	2.7V or above		40	-	ns	
	time (slave)	synchro nous	1.6V or above		45	-		
	Receive data hold time (master)	Clock syn	ichronous	t _{RXH}	5	-	ns	
	Receive data hold time (slave)	Clock syn	chronous	t _{RXH}	40	-	ns	

Note 1. t_{Pcyc}: PCLKB cycle.

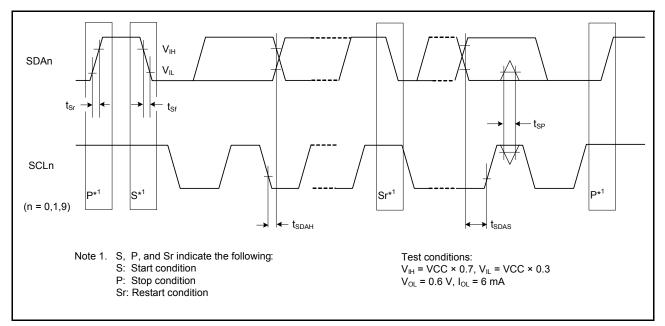
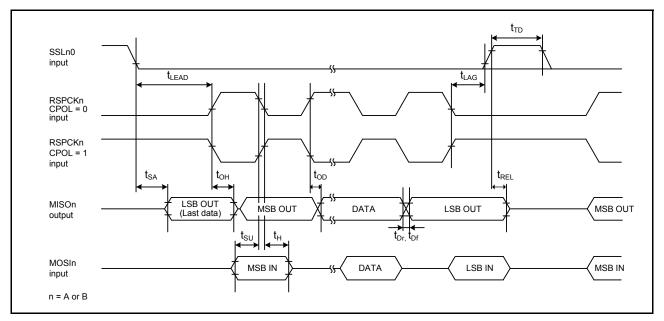



Figure 2.48 SCI simple IIC mode timing

2.3.11 CLKOUT Timing

Table 2.37 CLKOUT timing

Parameter	Parameter				Max	Unit*1	Test conditions
CLKOUT	CLKOUT pin output cycle*1	VCC = 2.7 V or above	t _{Ccyc}	62.5	-	ns	Figure 2.57
		VCC = 1.8 V or above		125	-		
		VCC = 1.6 V or above		250	-		
	CLKOUT pin high pulse width*2	VCC = 2.7 V or above	t _{CH}	15	-	ns	
		VCC = 1.8 V or above		30	-		
		VCC = 1.6 V or above		150	-		
	CLKOUT pin low pulse width*2	VCC = 2.7 V or above	t _{CL}	15	-	ns	
		VCC = 1.8 V or above		30	-		
		VCC = 1.6 V or above		150	-		
	CLKOUT pin output rise time	VCC = 2.7 V or above	t _{Cr}	-	12	ns	
		VCC = 1.8 V or above		-	25		
		VCC = 1.6 V or above		-	50		
	CLKOUT pin output fall time	VCC = 2.7 V or above	t _{Cf}	-	12	ns	
		VCC = 1.8 V or above	1	-	25	1	
		VCC = 1.6 V or above		-	50		

Note 1. When the EXTAL external clock input or an oscillator is used with division by 1 (the CKOCR.CKOSEL[2:0] bits are 011b and the CKOCR.CKODIV[2:0] bits are 000b) to output from CLKOUT, the above should be satisfied with an input duty cycle of 45 to 55%.

Note 2. When the MOCO is selected as the clock output source (the CKOCR.CKOSEL[2:0] bits are 001b), set the clock output division ratio selection to be divided by 2 (the CKOCR.CKODIV[2:0] bits are 001b).

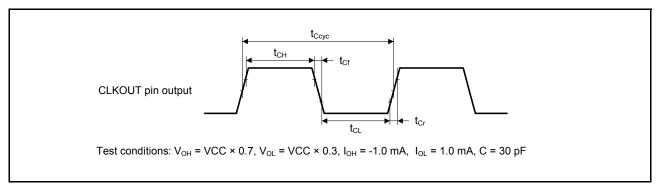


Figure 2.57 CLKOUT output timing

Table 2.40 A/D conversion characteristics (1) in high-speed A/D conversion mode (2 of 2) Conditions: VCC = AVCC0 = 4.5 to 5.5 V, VREFH0 = 4.5 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter		Min	Тур	Max	Unit	Test Conditions
Conversion time* ¹ (Operation at PCLKD = 64 MHz)	Permissible signal source impedance Max. = $0.3 \text{ k}\Omega$	0.80	-	-	μs	High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0Dh
		1.22	-	-	μs	Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 28h
Offset error		-	±2.0	±18	LSB	High-precision channel
				±24.0	LSB	Other than above
Full-scale error		-	±3.0	±18	LSB	High-precision channel
				±24.0	LSB	Other than above
Quantization error		-	±0.5	-	LSB	-
Absolute accuracy		-	±5.0	±20	LSB	High-precision channel
				±32.0	LSB	Other than above
DNL differential nonlinearity error		-	±4.0	-	LSB	-
INL integral nonlinearit	y error	-	±4.0	±12.0	LSB	-

Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Note 2. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics.

Note 3. Reference data.

Table 2.41A/D conversion characteristics (2) in high-speed A/D conversion mode (1 of 2)Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V

Reference voltage range applied to the VREFH0 and VREFL0.

Parameter Frequency		Min	Тур	Max	Unit MHz	Test Conditions	
		1	-	48			
Analog input capacitance*2	Cs	-	-	8* ³	pF	High-precision channel	
		-	-	9* ³	pF	Normal-precision channel	
Analog input resistance	Rs	-	-	2.5* ³	kΩ	High-precision channel	
		-	-	6.7* ³	kΩ	Normal-precision channel	
Analog input voltage range	Ain	0	-	VREFH0	V	-	

12-bit mode

Resolution		-	-	12	Bit	-
Conversion time* ¹ (Operation at PCLKD = 48 MHz)	Permissible signal source impedance Max. = 0.3 kΩ	0.94	-	-	μs	High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0Dh
		1.50	-	-	μs	Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 28h
Offset error		-	±0.5	±4.5	LSB	High-precision channel
				±6.0	LSB	Other than above
Full-scale error		-	±0.75	±4.5	LSB	High-precision channel
				±6.0	LSB	Other than above
Quantization error		-	±0.5	-	LSB	-
Absolute accuracy		-	±1.25	±5.0	LSB	High-precision channel
				±8.0	LSB	Other than above
DNL differential nonline	earity error	-	±1.0	-	LSB	-
INL integral nonlinearit	y error	-	±1.0	±3.0	LSB	-

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Power-on reset enable time	t _{W (POR)}	1	-	-	ms	Figure 2.67, VCC = below 1.0 V
LVD operation stabilization time (after LVD is enabled)	T _{d (E-A)}	-	-	300	μs	Figure 2.69, Figure 2.70
Hysteresis width (POR)	V _{PORH}	-	110	-	mV	-
Hysteresis width (LVD0, LVD1, and LVD2)	V _{LVH}	-	60	-	mV	LVD0 selected
		-	100	-		V_{det1_0} to V_{det1_2} selected.
		-	60	-		V _{det1_3} to V _{det1_9} selected.
		-	50	-		V_{det1_A} to V_{det1_B} selected.
		-	40	-		V _{det1_C} to V _{det1_F} selected.
		-	60	-		LVD2 selected

Note 1. When OFS1.LVDAS = 0

Note 2. When OFS1.LVDAS = 1

Note 3. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels V_{POR} , V_{det0} , V_{det1} , and V_{det2} for the POR/LVD.

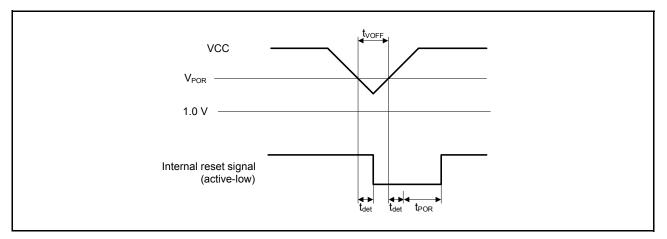


Figure 2.66 Voltage detection reset timing

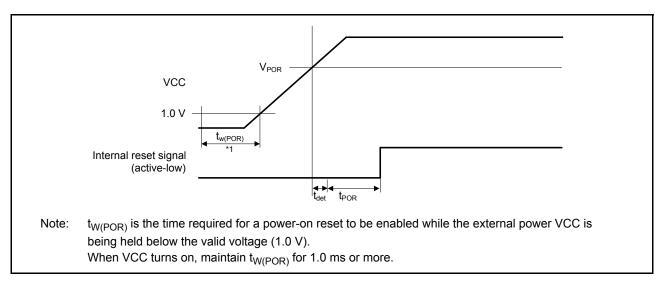


Figure 2.67 Power-on reset timing

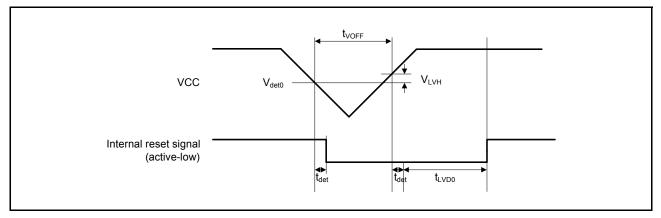


Figure 2.68 Voltage detection circuit timing (V_{det0})

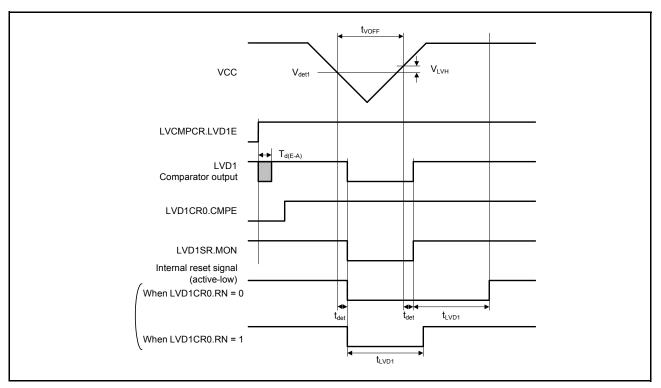


Figure 2.69 Voltage detection circuit timing (V_{det1})

Table 2.58 Code flash characteristics (3)

Middle-speed operating mode

Conditions: VCC = AVCC0 = 1.8 to 5.5 V, Ta = -40 to +85°C

				ICLK = 1 I	MHz		ICLK = 8	MHz	
Parameter		Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Programming time	4-byte	t _{P4}	-	157	1411	-	101	966	μs
Erasure time	1-KB	t _{E1K}	-	9.10	289	-	6.10	228	ms
Blank check time	2-byte	t _{BC4}	-	-	87.7	-	-	52.5	μs
	1-KB	t _{BC1K}	-	-	1930	-	-	414	μs
Erase suspended time		t _{SED}	-	-	32.7	-	-	21.6	μs
Startup area switching s	etting time	t _{SAS}	-	22.8	592	-	14.2	465	ms
Access window time		t _{AWS}	-	22.8	592	-	14.2	465	ms
OCD/serial programmer	ID setting time	t _{OSIS}	-	22.8	592	-	14.2	465	ms
Flash memory mode transition wait time 1		t _{DIS}	2	-	-	2	-	-	μs
Flash memory mode transition wait time 2		t _{MS}	720	-	-	720	-	-	ns

Note 1. Does not include the time until each operation of the flash memory is started after instructions are executed by the software.

Note 2. The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

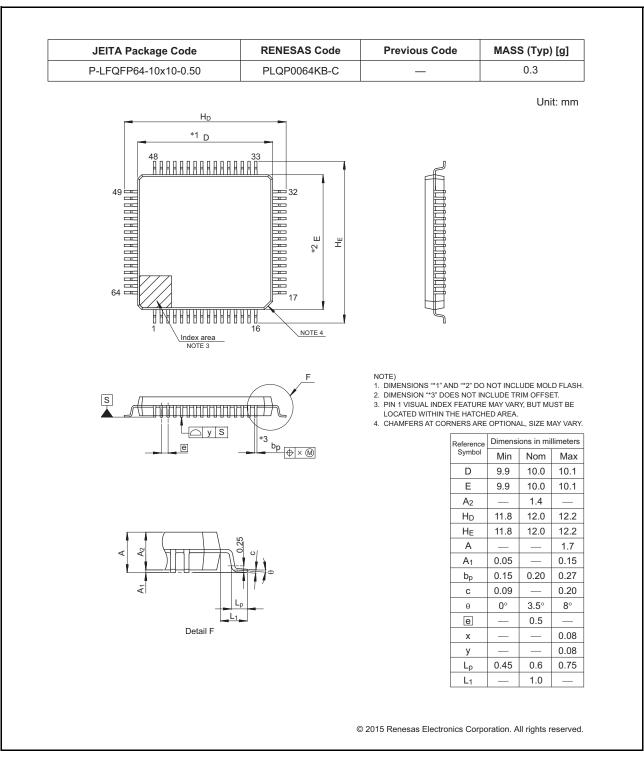
Note 3. The frequency accuracy of ICLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

2.12.2 Data Flash Memory Characteristics

Table 2.59Data flash characteristics (1)

Parameter Reprogramming/erasure cycle*1		Parameter		Symbol	Min	Тур	Мах	Unit	Conditions
		N _{DPEC}	100000	1000000	-	Times	-		
Data hold time	After 10000 times of N _{DPEC}	t _{DDRP}	20*2, *3	-	-	Year	Ta = +85°C		
	After 100000 times of N _{DPEC}		5* ^{2, *3}	-	-	Year			
	After 1000000 times of N _{DPEC}		-	1* ^{2, *3}	-	Year	Ta = +25°C		

Note 1. The reprogram/erase cycle is the number of erasure for each block. When the reprogram/erase cycle is n times (n = 100,000), erasing can be performed n times for each block. For instance, when 1-byte programming is performed 1,000 times for different addresses in 1-byte blocks, and then the entire block is erased, the reprogram/erase cycle is counted as 1. However, programming the same address for several times as one erasure is not enabled. (overwriting is prohibited.)


Note 2. Characteristics when using the flash memory programmer and the self-programming library provided by Renesas Electronics.

Note 3. These results are obtained from reliability testing.

Appendix 1. Package Dimensions

Information on the latest version of the package dimensions or mountings is displayed in "Packages" on the Renesas Electronics Corporation website.

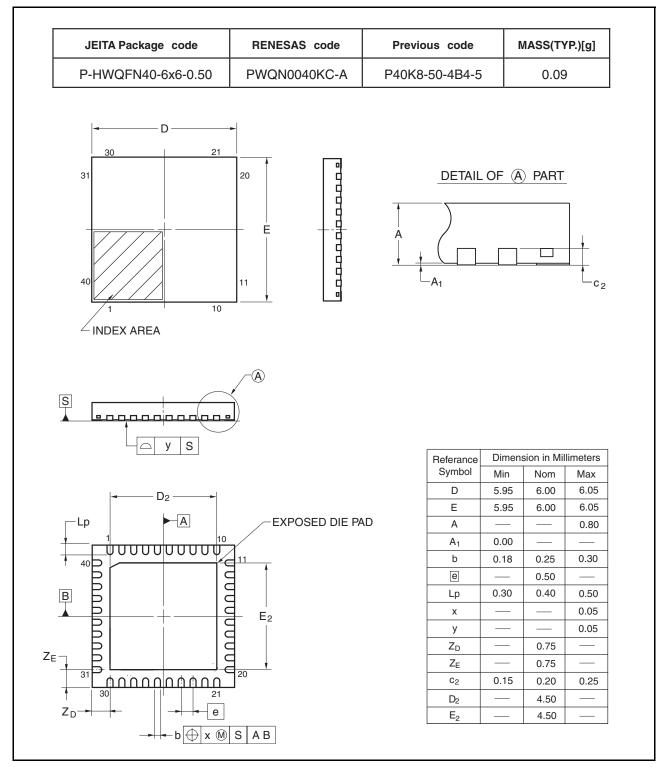


Figure 1.6 QFN 40-pin

Revision History	S124 Microcontroller Group Datasheet
------------------	--------------------------------------

Rev.	Date	Summary
1.00	May 19, 2016	1st release
1.01	Oct 3, 2016	2nd release
1.30	Feb 5, 2018	3rd release

Proprietary Notice

All text, graphics, photographs, trademarks, logos, artwork and computer code, collectively known as content, contained in this document is owned, controlled or licensed by or to Renesas, and is protected by trade dress, copyright, patent and trademark laws, and other intellectual property rights and unfair competition laws. Except as expressly provided herein, no part of this document or content may be copied, reproduced, republished, posted, publicly displayed, encoded, translated, transmitted or distributed in any other medium for publication or distribution or for any commercial enterprise, without prior written consent from Renesas.

Arm[®] and Cortex[®] are registered trademarks of Arm Limited. CoreSight[™] is a trademark of Arm Limited.

CoreMark® is a registered trademark of the Embedded Microprocessor Benchmark Consortium.

Magic Packet[™] is a trademark of Advanced Micro Devices, Inc.

SuperFlash[®] is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Other brands and names mentioned in this document may be the trademarks or registered trademarks of their respective holders.