

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	CANbus, I ² C, SCI, SPI, UART/USART, USB
Peripherals	LVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 14x14b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-WFQFN Exposed Pad
Supplier Device Package	48-HWQFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r7fs124773a01cne-ac0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RENESAS

S124 Microcontroller Group

Datasheet

Ultra-low power 32-MHz Arm[®] Cortex[®]-M0+ microcontroller, 128-KB code flash memory, 16-KB SRAM, Capacitive Touch Sensing Unit, 14-bit A/D Converter, 12-bit D/A Converter, security and safety features.

Features

Arm Cortex-M0+ Core

- Armv6-M architecture
- Maximum operating frequency: 32 MHz
- Debug and Trace: DWT, BPU, CoreSight™ MTB-M0+
- CoreSight Debug Port: SW-DP

Memory

- 128-KB code flash memory
- 4-KB data flash memory (100,000 erase/write cycles)
- Up to 16-KB SRAM
- 128-bit unique ID

Connectivity

- USB 2.0 Full-Speed Module (USBFS)
- On-chip transceiver with voltage regulator
 Compliant with USB Battery Charging Specification 1.2
- Serial Communications Interface (SCI) × 3
 - UART
 - Simple IIC
 - Simple SPI
- Serial Peripheral Interface (SPI) $\times 2$
- I²C bus interface (IIC) \times 2
- CAN module (CAN)

Analog

- 14-Bit A/D Converter (ADC14)
- 12-Bit D/A Converter (DAC12)
- Low-Power Analog Comparator (ACMPLP) × 2
- Temperature Sensor (TSN)

Timers

- General PWM Timer 32-Bit (GPT32)
- General PWM Timer 16-Bit (GPT16) \times 6
- Asynchronous General-Purpose Timer (AGT) $\times\,2$
- Watchdog Timer (WDT)

Safety

- SRAM Parity Error Check
- Flash Area Protection
- ADC self-diagnosis function
- Clock Frequency Accuracy Measurement Circuit (CAC)
- Cyclic Redundancy Check (CRC) Calculator
- Data Operation Circuit (DOC)
- Port Output Enable for GPT (POEG)
- Independent Watchdog Timer (IWDT)
- GPIO Readback Level Detection
- Register Write Protection
- Main Oscillator Stop Detection

System and Power Management

- Low-power modes
- Realtime Clock (RTC)
- Event Link Controller (ELC)Data Transfer Controller (DTC)
- Key Interrupt Function (KINT)
- Power-on reset
- Low Voltage Detection with voltage settings

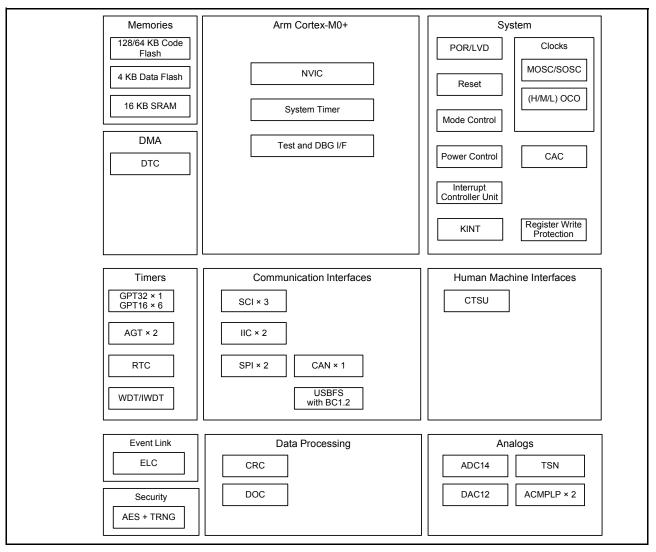
Security and Encryption

- AES128/256
- True Random Number Generator (TRNG)
- Human Machine Interface (HMI)
- Capacitive Touch Sensing Unit (CTSU)
- Multiple Clock Sources
 Main clock oscillator (MOSC)
 - Main clock oscillator (MOSC)
 (1 to 20 MHz when VCC = 2.4 to 5.5 V)
 (1 to 8 MHz when VCC = 1.8 to 5.5 V)
 (1 to 4 MHz when VCC = 1.6 to 5.5 V)
 - Sub-clock oscillator (SOSC) (32.768 kHz)
 - High-speed on-chip oscillator (HOCO)
 - (24, 32, 48, 64 MHz when VCC = 2.4 to 5.5 V) (24, 32, 48 MHz when VCC = 1.8 to 5.5 V) (24, 32 MHz when VCC = 1.6 to 5.5 V)
- Middle-speed on-chip oscillator (MOCO) (8 MHz)
- Low-speed on-chip oscillator (LOCO) (32.768 kHz)
- Independent watchdog timer OCO (15 kHz)
- Clock trim function for HOCO/MOCO/LOCOClock out support

- General Purpose I/O Ports
 - Up to 51 input/output pins - Up to 3 CMOS input
 - Up to 48 CMOS input/output
 - Up to 6 input/output 5 V tolerant
 - Up to 16 pins high current (20 mA)

Operating Voltage

VCC: 1.6 to 5.5 V


- Operating Temperature and Packages
- Ta = -40° C to $+85^{\circ}$ C
- 36-pin LGA (4 mm \times 4 mm, 0.5 mm pitch)
- $Ta = -40^{\circ}C \text{ to } +105^{\circ}C$
- 64-pin LQFP (10 mm \times 10 mm, 0.5 mm pitch)
- 48-pin LQFP (7 mm × 7 mm, 0.5 mm pitch)
- 64-pin QFN (8 mm × 8 mm, 0.4 mm pitch) - 48-pin QFN (7 mm × 7 mm, 0.5 mm pitch)
- 40-pin QFN (6 mm \times 6 mm, 0.5 mm pitch)

Feature	Functional description
AES	See section 38, AES Engine in User's Manual
True Random Number Generator (TRNG)	See section 39, True Random Number Generator (TRNG) in User's Manual

1.2 Block Diagram

Figure 1.1 shows the block diagram of the MCU superset. Individual devices within the group may have a subset of the features.

Figure 1.1 Block diagram

1.3 Part Numbering

Figure 1.2 shows how to read the product part number, memory capacity, and package types. Table 1.12 shows a list of products.

Figure 1.4 Pin assignment for QFN 64-pin (top view)

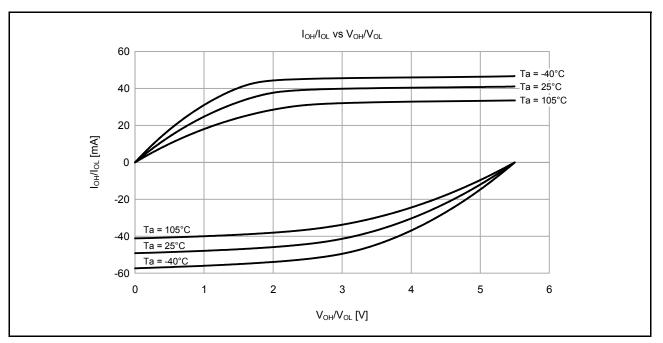
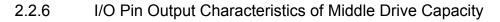



Figure 2.6 V_{OH}/V_{OL} and I_{OH}/I_{OL} temperature characteristics at VCC = 5.5 V when low drive output is selected (reference data)

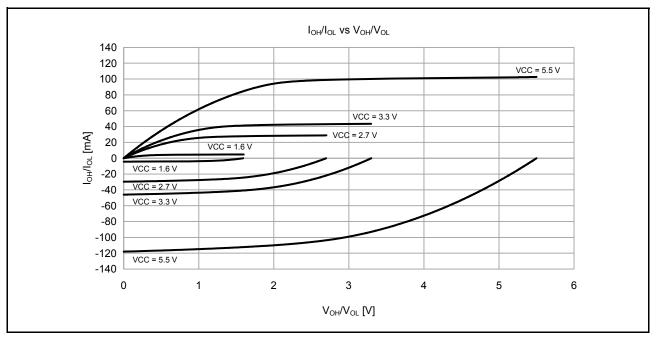


Figure 2.7 V_{OH}/V_{OL} and I_{OH}/I_{OL} voltage characteristics at Ta = 25°C when middle drive output is selected (reference data)

2.2.9 Operating and Standby Current

Table 2.11Operating and standby current (1) (1 of 2)Conditions: VCC = AVCC0 = 1.6 to 5.5 V

Parameter					Symbol	Typ* ⁹	Max	Unit	Test Conditions
Supply	High-speed mode*2	Normal mode	All peripheral clock	ICLK = 32 MHz	I _{CC}	3.6	-	mA	*7
urrent*1	mode ²		disabled, while (1) code executing from flash*5	ICLK = 16 MHz		2.4	-		
				ICLK = 8 MHz		1.7	-		
			All peripheral clock	ICLK = 32 MHz		5.6	-		
			disabled, CoreMark code executing from flash*5	ICLK = 16 MHz		3.5	-		
			_	ICLK = 8 MHz		2.4	-		
			All peripheral clock	ICLK = 32 MHz		9.5	-		*8
			enabled, while (1) code executing from flash* ⁵	ICLK = 16 MHz		5.4	-		
			ICLK = 8 MHz		3.3	-			
		All peripheral clock enabled, code executing from flash* ⁵	ICLK = 32 MHz		-	21.0			
	Sleep mode	All peripheral clock	ICLK = 32 MHz		1.5	-		*7	
		disabled*5	ICLK = 16 MHz		1.1	-	-		
			ICLK = 8 MHz		0.9	-	1		
			All peripheral clock	ICLK = 32 MHz		7.2	-		*8
			enabled*5	ICLK = 16 MHz		4.0	-		
			ICLK = 8 MHz		2.4	-			
		Increase during	BGO operation*6			2.5	-	_	-
	Middle-speed	Normal mode	All peripheral clock	ICLK = 12 MHz	I _{CC}	1.7	-	mA	*7
mode*2	mode*2		disabled, while (1) code executing from flash*5	ICLK = 8 MHz		1.5	-		
		All peripheral clock disabled, CoreMark code	ICLK = 12 MHz		2.7	-	_		
			executing from flash*5	ICLK = 8 MHz		1.9	-		
		All peripheral clock	ICLK = 12 MHz		3.9	-	1	*8	
			enabled, while (1) code executing from flash* ⁵	ICLK = 8 MHz		3.0	-		
		All peripheral clock enabled, code executing from flash* ⁵	ICLK = 12 MHz		-	8.0			
		Sleep mode	All peripheral clock	ICLK = 12 MHz		0.8	-		*7
			disabled*5	ICLK = 8 MHz		0.8	-		
			All peripheral clock	ICLK = 12 MHz		2.9	-		*8
			enabled*5	ICLK = 8 MHz		2.2	-		
		Increase during	BGO operation*6			2.5	-		-
	Low-speed mode*3	Normal mode	All peripheral clock disabled, while (1) code executing from flash*5	ICLK = 1 MHz	Icc	0.2	-	mA	*7
			All peripheral clock disabled, CoreMark code executing from flash*5	ICLK = 1 MHz		0.3	-		
			All peripheral clock enabled, while (1) code executing from flash* ⁵	ICLK = 1 MHz		0.4	-		*8
			All peripheral clock enabled, code executing from flash* ⁵	ICLK = 1 MHz		-	2.0		
		Sleep mode	All peripheral clock disabled*5	ICLK = 1 MHz		0.2	-		*7
			All peripheral clock enabled*5	ICLK = 1 MHz		0.3	-		*8

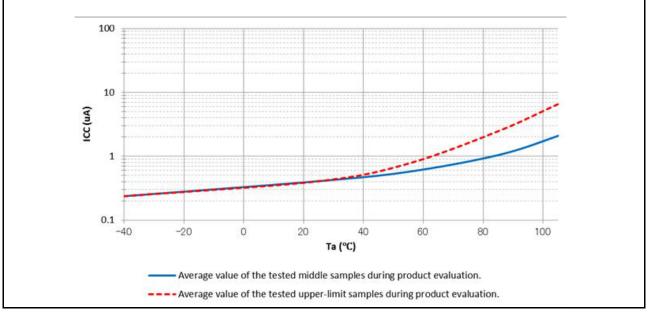


Figure 2.22 Temperature dependency in Software Standby mode (reference data)

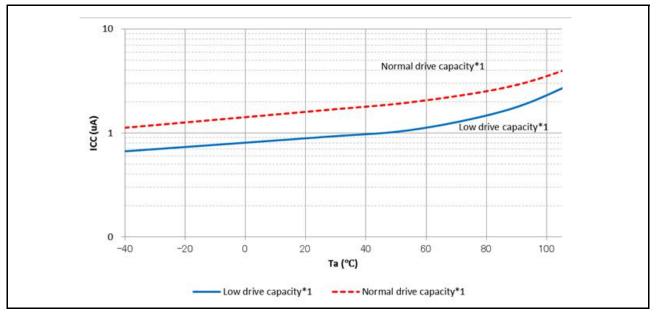


Figure 2.23 Temperature dependency of RTC operation (reference data)

Tab	ole 2.1	3	Operatin	g and	l standby current (3) (1 of 2	2)
~		1100			\ /	

Conditions: VCC = AVCC0 = 1.6 to 5.5 V

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
Analog power	During A/D conversion (at high-speed conversion)	IAVCC	-	-	3.0	mA	-
supply current	During A/D conversion (at low-power conversion)		-	-	1.0	mA	-
	During D/A conversion*1		-	0.4	0.8	mA	-
	Waiting for A/D and D/A conversion (all units)*5		-	-	1.0	μA	-
Reference	During A/D conversion	I _{REFH0}	-	-	150	μA	-
power supply current	Waiting for A/D conversion (all units)		-	-	60	nA	-
Temperature ser	isor	I _{TNS}	-	75	-	μA	-

Table 2.18 Operation frequency in low-speed mode

Conditions: VCC = AVCC0 = 1.8 to 5.5 V

Parameter				Min	Тур	Max*5	Unit
Operation	System clock (ICLK)*1, *2, *4	1.8 to 5.5 V	f	0.032768	-	1	MHz
frequency	Peripheral module clock (PCLKB)*4	1.8 to 5.5 V		-	-	1	
	Peripheral module clock (PCLKD)*3, *4	1.8 to 5.5 V		-	-	1	

Note 1. The lower-limit frequency of ICLK is 1 MHz while programming or erasing the flash memory.

Note 2. The frequency accuracy of ICLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

Note 3. The lower-limit frequency of PCLKD is 1 MHz when the A/D converter is in use.

- Note 4. See section 8, Clock Generation Circuit in User's Manual for the relationship of frequencies between ICLK, PCLKB, and PCLKD.
- Note 5. The maximum value of operation frequency does not include internal oscillator errors. For details on the range of guaranteed operation, see Table 2.21, Clock timing.

Table 2.19 Operation frequency in low-voltage mode

Conditions: VCC = AVCC0 = 1.6 to 5.5 V

Parameter				Min	Тур	Max*5	Unit
Operation	System clock (ICLK)*1, *2, *4	1.6 to 5.5 V	f	0.032768	-	4	MHz
frequency	Peripheral module clock (PCLKB)*4	1.6 to 5.5 V		-	-	4	
	Peripheral module clock (PCLKD)*3, *4	1.6 to 5.5 V		-	-	4	

Note 1. The lower-limit frequency of ICLK is 1 MHz while programming or erasing the flash memory. When using ICLK for programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

- Note 2. The frequency accuracy of ICLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.
- Note 3. The lower-limit frequency of PCLKD is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the 14-bit A/D converter is in use.
- Note 4. See section 8, Clock Generation Circuit in User's Manual for the relationship of frequencies between ICLK, PCLKB, and PCLKD.
- Note 5. The maximum value of operation frequency does not include internal oscillator errors. For details on the range of guaranteed operation, see Table 2.21, Clock timing.

Table 2.20 Operation frequency in Subosc-speed mode

Conditions: VCC = AVCC0 = 1.8 to 5.5 V

Parameter			Symbol	Min	Тур	Max	Unit
Operation	System clock (ICLK)*1, *3	1.8 to 5.5 V	f	27.8528	32.768	37.6832	kHz
frequency	Peripheral module clock (PCLKB)*3	1.8 to 5.5 V		-	-	37.6832	
	Peripheral module clock (PCLKD)*2, *3	1.8 to 5.5 V		-	-	37.6832	

Note 1. Programming and erasing the flash memory is not possible.

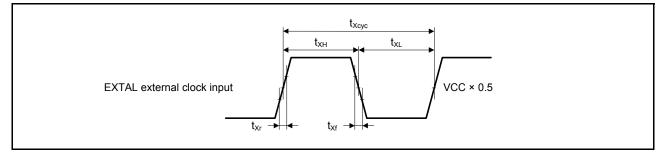
Note 2. The 14-bit A/D converter cannot be used.

Note 3. See section 8, Clock Generation Circuit in User's Manual for the relationship between ICLK, PCLKB, and PCLKD frequencies.

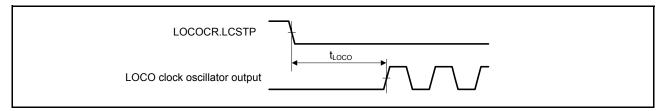
Table 2.21Clock timing (2 of 2)

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Sub-clock oscillation stabilization time*2	t _{SUBOSC}	-	0.5	-	S	Figure 2.28

Note 1. Time until the clock can be used after the main clock oscillator stop bit (MOSCCR.MOSTP) is set to 0 (operating) when the external clock is stable.


Note 2. After changing the setting of the SOSCCR.SOSTP bit to start sub-clock oscillator operation, only start using the sub-clock oscillator after the sub-clock oscillation stabilization wait time elapsed. Use the oscillator wait time value recommended by the oscillator manufacturer.

Note 3. The 48-MHz HOCO can be used within a VCC range of 1.8 V to 5.5 V.


Note 4. The 64-MHz HOCO can be used within a VCC range of 2.4 V to 5.5 V.

Note 5. This is a characteristic when the HOCOCR.HCSTP bit is cleared to 0 (oscillation) in the MOCO stop state. When the HOCOCR.HCSTP bit is cleared to 0 (oscillation) during MOCO oscillation, this specification is shortened by 1 µs.

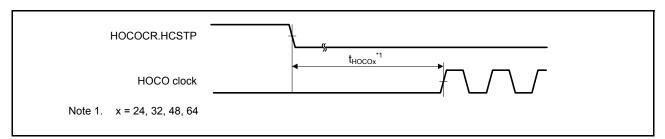

Note 6. Check OSCSF.HOCOSF to confirm whether stabilization time has elapsed.

Figure 2.25 EXTAL external clock input timing

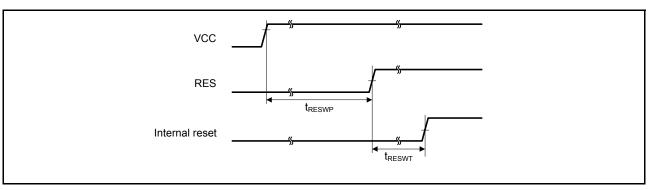

2.3.3 Reset Timing

Table 2.22 Reset timing

Parameter			Min	Тур	Мах	Unit	Test conditions
RES pulse width	At power-on	t _{RESWP}	3	-	-	ms	Figure 2.29
	Not at power-on	t _{RESW}	30	-	-	μs	Figure 2.30
Wait time after RES cancellation	LVD0 enabled*1	t _{RESWT}	-	0.7	-	ms	Figure 2.29
(at power-on)	LVD0 disabled*2		-	0.3	-		
Wait time after RES cancellation	LVD0 enabled*1	t _{RESWT2}	-	0.5	-	ms	Figure 2.30
(during powered-on state)	LVD0 disabled*2		-	0.05	-		
Internal reset cancellation time (Watchdog timer reset, SRAM parity error reset,	LVD0 enabled*1	t _{RESWT3}	-	0.6	-	ms	
Software reset)	LVD0 disabled*2		-	0.15	-		

Note 1. When OFS1.LVDAS = 0.

Note 2. When OFS1.LVDAS = 1.

Figure 2.29 Reset input timing at power-on

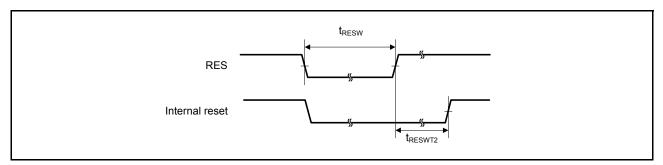


Figure 2.30 Reset input timing (1)

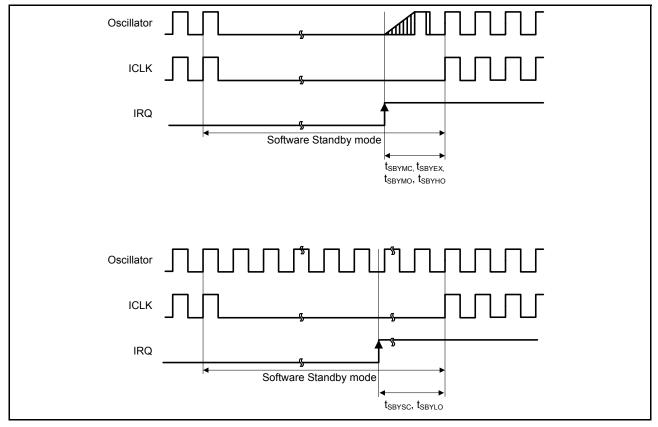


Figure 2.31 Software Standby mode cancellation timing

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
Recovery time from Software Standby	High-speed mode System clock source is HOCO	t _{SNZ}	-	36	45	μs	Figure 2.32
mode to Snooze mode	Middle-speed mode System clock source is MOCO	t _{SNZ}	-	1.3	3.6	μs	
	Low-speed mode System clock source is MOCO	t _{SNZ}	-	10	13	μs	
	Low-voltage mode System clock source is HOCO	t _{SNZ}	-	87	110	μs	

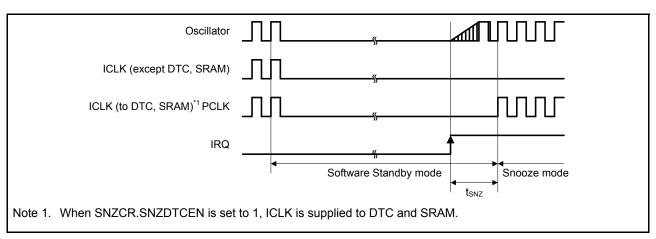
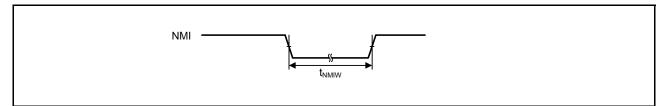


Figure 2.32 Recovery timing from Software Standby mode to Snooze mode

2.3.5 NMI and IRQ Noise Filter

Table 2.29	NMI and IRQ noise filter


Parameter	Symbol	Min	Тур	Мах	Unit	Test conditions			
NMI pulse width	t _{NMIW}	200	-	-	ns	NMI digital filter disabled	t _{Pcyc} × 2 ≤ 200 ns		
		t _{Pcyc} × 2*1	-	-			t _{Pcyc} × 2 > 200 ns		
		200	-	-		NMI digital filter enabled	t _{NMICK} × 3 ≤ 200 ns		
		t _{NMICK} × 3.5* ²	-	-			t _{NMICK} × 3 > 200 ns		
IRQ pulse width	t _{IRQW}	200	-	-	ns	IRQ digital filter disabled	t _{Pcyc} × 2 ≤ 200 ns		
		t _{Pcyc} × 2*1	-	-			t _{Pcyc} × 2 > 200 ns		
		200	-	-		IRQ digital filter enabled	t _{IRQCK} × 3 ≤ 200 ns		
		t _{IRQCK} × 3.5* ³	-	-	1		t _{IRQCK} × 3 > 200 ns		

Note: 200 ns minimum in Software Standby mode.

Note 1. t_{Pcyc} indicates the PCLKB cycle.

Note 2. t_{NMICK} indicates the cycle of the NMI digital filter sampling clock.

Note 3. t_{IRQCK} indicates the cycle of the IRQi digital filter sampling clock (i = 0 to 7).

Figure 2.33 NMI interrupt input timing

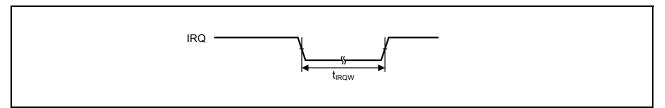
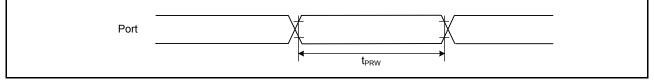
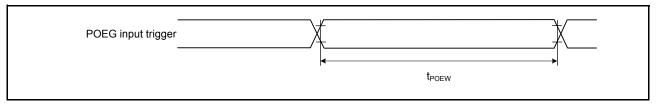


Figure 2.34 IRQ interrupt input timing


2.3.6 I/O Ports, POEG, GPT, AGT, KINT, and ADC14 Trigger Timing

Parameter		Symbol	Min	Max	Unit	Test conditions	
I/O Ports	Input data pulse width		t _{PRW}	1.5	-	t _{Pcyc}	Figure 2.35
POEG	POEG input trigger pulse width		t _{POEW}	3	-	t _{Pcyc}	Figure 2.36
GPT	Input capture pulse width	Single edge	t _{GTICW}	1.5	-	t _{PDcyc}	Figure 2.37
		Dual edge		2.5	-		
AGT	AGTIO, AGTEE input cycle	2.7 V ≤ VCC ≤ 5.5 V	t _{ACYC} *1	250	-	ns	Figure 2.38
		2.4 V ≤ VCC < 2.7 V		500	-	ns	
		1.8 V ≤ VCC < 2.4 V	-	1000	-	ns	-
		1.6 V ≤ VCC < 1.8 V		2000	-	ns	
	AGTIO, AGTEE input high level	2.7 V ≤ VCC ≤ 5.5 V	t _{ACKWH} ,	100	-	ns	
width, low-level width	2.4 V ≤ VCC < 2.7 V	t _{ACKWL}	200	-	ns	1	
		1.8 V ≤ VCC < 2.4 V		400	-	ns	Figure 2.38
		1.6 V ≤ VCC < 1.8 V		800	-	ns	
	AGTIO, AGTO, AGTOA, AGTOB	2.7 V ≤ VCC ≤ 5.5 V	t _{ACYC2}	62.5	-	ns	
	output cycle	2.4 V ≤ VCC < 2.7 V		125	-	ns	
		1.8 V ≤ VCC < 2.4 V		250	-	ns	-
		1.6 V ≤ VCC < 1.8 V		500	-	ns	
ADC14	14-bit A/D converter trigger input p	ulse width	t _{TRGW}	1.5	-	t _{Pcyc}	Figure 2.39
KINT	KRn (n = 00 to 07) pulse width		t _{KR}	250	-	ns	Figure 2.40


Table 2.30 I/O Ports, POEG, GPT, AGT, KINT, and ADC14 trigger timing

Note: tPcyc: PCLKB cycle, tPDcyc: PCLKD cycle.

Note 1. Constraints on AGTIO input: t_{Pcyc} × 2 (t_{Pcyc}: PCLKB cycle) < t_{ACYC}.

Figure 2.35 I/O ports input timing

Figure 2.36 POEG input trigger timing

Note 2. $t_{cac}\!\!:$ CAC count clock source cycle.

2.3.8 SCI Timing

Table 2.32SCI timing (1)Conditions: VCC = AVCC0 = 1.6 to 5.5 V

Param	neter			Symbol	Min	Max	Unit ^{*1}	Test conditions
SCI	Input clock cycle	Asynchro	nous	t _{Scyc}	4	-	t _{Pcyc}	Figure 2.41
		Clock syr	Clock synchronous		6	-		
	Input clock pulse wid	lth		t _{SCKW}	0.4	0.6	t _{Scyc}	
	Input clock rise time			t _{SCKr}	-	20	ns	1
	Input clock fall time	Input clock fall time		t _{SCKf}	-	20	ns	
	Output clock cycle	Asynchro	nous	t _{Scyc}	6	-	t _{Pcyc}	
		Clock syr	chronous		4	-		
	Output clock pulse w	Output clock pulse width		t _{SCKW}	0.4	0.6	t _{Scyc}	1
	Output clock rise tim	е	1.8V or above	t _{SCKr}	-	20	ns	1
			1.6V or above		-	30		
	Output clock fall time	;	1.8V or above	t _{SCKf}	-	20	ns	
			1.6V or above	-	-	30		
	Transmit data delay	Clock	1.8V or above	t _{TXD}	-	40	ns	Figure 2.42
	(master)	synchro nous	1.6V or above		-	45		
	Transmit data delay	Clock	2.7V or above	1	-	55	ns	
	(slave)	synchro nous	24V 01 a00Ve		-	60		
		nous			-	100		
			1.6V or above		-	125		
	Receive data setup	Clock	2.7V or above	t _{RXS}	45	-	ns	
	time (master)	synchro nous	2.4V or above		55	-		
		11003	1.8V or above		90	-		
			1.6V or above		110	-		
	Receive data setup	Clock	2.7V or above		40	-	ns	
	time (slave) synchro nous Receive data hold time (master)		1.6V or above		45	-		
			ichronous	t _{RXH}	5	-	ns	
	Receive data hold time (slave)	Clock syr	ichronous	t _{RXH}	40	-	ns	

Note 1. t_{Pcyc}: PCLKB cycle.

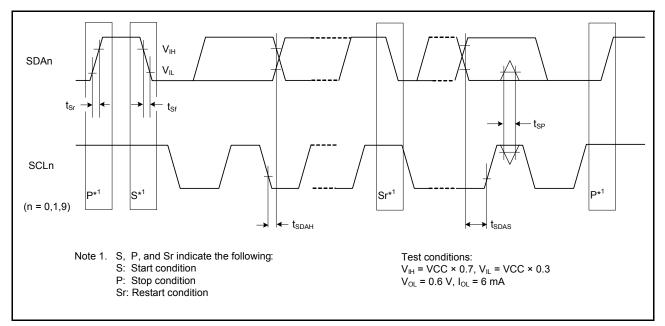
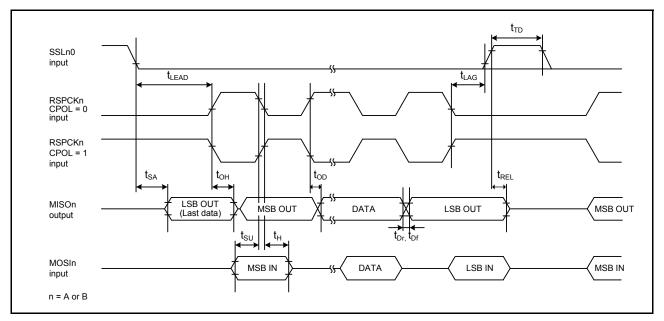



Figure 2.48 SCI simple IIC mode timing

Table 2.40 A/D conversion characteristics (1) in high-speed A/D conversion mode (2 of 2) Conditions: VCC = AVCC0 = 4.5 to 5.5 V, VREFH0 = 4.5 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter		Min	Тур	Max	Unit	Test Conditions
Conversion time* ¹ (Operation at PCLKD = 64 MHz)	Permissible signal source impedance Max. = $0.3 \text{ k}\Omega$	0.80	-	-	μs	High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0Dh
		1.22	-	-	μs	Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 28h
Offset error		-	±2.0	±18	LSB	High-precision channel
				±24.0	LSB	Other than above
Full-scale error		-	±3.0	±18	LSB	High-precision channel
				±24.0	LSB	Other than above
Quantization error		-	±0.5	-	LSB	-
Absolute accuracy		-	±5.0	±20	LSB	High-precision channel
				±32.0	LSB	Other than above
DNL differential nonlinearity error		-	±4.0	-	LSB	-
INL integral nonlinearit	y error	-	±4.0	±12.0	LSB	-

Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Note 2. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics.

Note 3. Reference data.

Table 2.41A/D conversion characteristics (2) in high-speed A/D conversion mode (1 of 2)Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V

Reference voltage range applied to the VREFH0 and VREFL0.

Parameter Frequency		Min	Тур	Max	Unit	Test Conditions
		1	-	48	MHz	-
Analog input capacitance*2	Cs	-	-	8* ³		High-precision channel
		-	-	9* ³	pF	Normal-precision channel
Analog input resistance	Rs	-	-	2.5* ³	kΩ	High-precision channel
		-	-	6.7* ³	kΩ	Normal-precision channel
Analog input voltage range	Ain	0	-	VREFH0	V	-

12-bit mode

Resolution		-	-	12	Bit	-
Conversion time* ¹ (Operation at PCLKD = 48 MHz)	Permissible signal source impedance Max. = 0.3 kΩ	0.94	-	-	μs	High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0Dh
		1.50	-	-	μs	Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 28h
Offset error		-	±0.5	±4.5	LSB	High-precision channel
				±6.0	LSB	Other than above
Full-scale error		-	±0.75	±4.5	LSB	High-precision channel
				±6.0	LSB	Other than above
Quantization error		-	±0.5	-	LSB	-
Absolute accuracy		-	±1.25	±5.0	LSB	High-precision channel
				±8.0	LSB	Other than above
DNL differential nonlinearity error		-	±1.0	-	LSB	-
INL integral nonlinearity error		-	±1.0	±3.0	LSB	-

Table 2.46A/D conversion characteristics (7) in low-power A/D conversion mode (2 of 2)Conditions: VCC = AVCC0 = 1.6 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.6 to 5.5 V, VSS = AVSS0 = VREFL0 = 0</td>

Conditions: VCC = AVCC0 = 1.6 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.6 to 5.5 V, VSS = AVSS0 = VREFL0 = 0 Reference voltage range applied to the VREFH0 and VREFL0.

Parameter		Min	Тур	Max	Unit	Test Conditions
Analog input voltage rar	nge Ain	0	-	VREFH0	V	-
12-bit mode						
Resolution		-	-	12	Bit	-
Conversion time* ¹ (Operation at PCLKD = 4 MHz)	Permissible sigr source impedan Max. = 9.9 kΩ		-	-	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh
		20.25	-	-	μs	Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h
Offset error	fset error		±1.0	±7.5	LSB	High-precision channel
				±10.0	LSB	Other than above
Full-scale error		-	±1.5	±7.5	LSB	High-precision channel
				±10.0	LSB	Other than above
Quantization error		-	±0.5	-	LSB	-
Absolute accuracy	Absolute accuracy		±3.0	±8.0	LSB	High-precision channel
				±12.0	LSB	Other than above
DNL differential nonlinearity error		-	±1.0	-	LSB	-
INL integral nonlinearity error		-	±1.0	±3.0	LSB	-
14-bit mode		L			1	
Resolution		-	-	14	Bit	-
Conversion time* ¹ (Operation at PCLKD = 4 MHz)	Permissible sigr source impedan Max. = 9.9 kΩ		-	-	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh
		21.75	-	-	μs	Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h
Offset error		-	±4.0	±30.0	LSB	High-precision channel
				±40.0	LSB	Other than above
Full-scale error		-	±6.0	±30.0	LSB	High-precision channel
				±40.0	LSB	Other than above
Quantization error		-	±0.5	-	LSB	-
Absolute accuracy		-	±12.0	±32.0	LSB	High-precision channel
				±48.0	LSB	Other than above
DNL differential nonline	arity error	-	±4.0	-	LSB	-
INL integral nonlinearity	/ error	-	±4.0	±12.0	LSB	-

Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Note 2. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics.

Note 3. Reference data.

Figure 2.63 Illustration of 14-bit A/D converter characteristic terms

Absolute accuracy

Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of the analog input voltage (1-LSB width), which can meet the expectation of outputting an equal code based on the theoretical A/D conversion characteristics, is used as the analog input voltage. For example, if 12-bit resolution is used and the reference voltage VREFH0 = 3.072 V, then 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, and 1.5 mV are used as the analog input voltages. If analog input voltage is 6 mV, an absolute accuracy of ± 5 LSB means that the actual A/D conversion result is in the range of 003h to 00Dh, though an output code of 008h can be expected from the theoretical A/D conversion characteristics.

Integral nonlinearity error (INL)

Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale errors are zeroed, and the actual output code.

Differential nonlinearity error (DNL)

Differential nonlinearity error is the difference between 1-LSB width based on the ideal A/D conversion characteristics and the width of the actual output code.

Offset error

Offset error is the difference between the transition point of the ideal first output code and the actual first output code.

Full-scale error

Full-scale error is the difference between the transition point of the ideal last output code and the actual last output code.

2.9 POR and LVD Characteristics

Parameter		Symbol	Min	Тур	Мах	Unit	Test Conditions
Voltage detection level*1	Power-on reset (POR)	V _{POR}	1.27	1.42	1.57	V	Figure 2.66, Figure 2.67
	Voltage detection circuit (LVD0)*2	V _{det0_0}	3.68	3.85	4.00	V	Figure 2.68
		V _{det0_1}	2.68	2.85	2.96		At falling edge VCC
		V _{det0_2}	2.38	2.53	2.64		
		V _{det0_3}	1.78	1.90	2.02		
		V _{det0_4}	1.60	1.69	1.82		
	Voltage detection circuit (LVD1)*3	V _{det1_0}	4.13	4.29	4.45	V	Figure 2.69
		V _{det1_1}	3.98	4.16	4.30		At falling edge VCC
		V _{det1_2}	3.86	4.03	4.18		
		V _{det1_3}	3.68	3.86	4.00		
		V _{det1_4}	2.98	3.10	3.22		
		V _{det1_5}	2.89	3.00	3.11		
		V _{det1_6}	2.79	2.90	3.01		
		V _{det1_7}	2.68	2.79	2.90		
		V _{det1_8}	2.58	2.68	2.78		
		V _{det1_9}	2.48	2.58	2.68		
		V _{det1_A}	2.38	2.48	2.58		
		V _{det1_B}	2.10	2.20	2.30		
		V _{det1_C}	1.84	1.96	2.05		
		V _{det1_D}	1.74	1.86	1.95		
		V _{det1_E}	1.63	1.75	1.84		
		V _{det1_F}	1.60	1.65	1.73		
	Voltage detection circuit (LVD2)*4	V _{det2_0}	4.11	4.31	4.48	V	Figure 2.70 At falling edge VCC
		V _{det2_1}	3.97	4.17	4.34		
		V _{det2_2}	3.83	4.03	4.20		
		V _{det2_3}	3.64	3.84	4.01		

 Table 2.52
 Power-on reset circuit and voltage detection circuit characteristics (1)

Note 1. These characteristics apply when noise is not superimposed on the power supply. When a setting causes this voltage detection level to overlap with that of the voltage detection circuit, it cannot be specified whether LVD1 or LVD2 is used for voltage detection.

Note 2. # in the symbol V_{det0} # denotes the value of the OFS1.VDSEL1[2:0] bits.

Note 3. # in the symbol $V_{det1_{\#}}$ denotes the value of the LVDLVLR.LVD1LVL[4:0] bits.

Note 4. # in the symbol V_{det2} # denotes the value of the LVDLVLR.LVD2LVL[2:0] bits.

Table 2.53	Power-on reset circuit and voltage detection circuit characteristics (2) (1 of 2)
------------	---

Parameter		Symbol	Min	Тур	Max	Unit	Test Conditions
Wait time after power-on Reset cancellation	LVD0:enable	t _{POR}	-	1.7	-	ms	-
	LVD0:disable	t _{POR}	-	1.3	-	ms	-
Wait time after voltage monitor 0,1,2 reset cancellation	LVD0:enable*1	t _{LVD0,1,2}	-	0.6	-	ms	-
	LVD0:disable*2	t _{LVD1,2}	-	0.2	-	ms	-
Response delay*3	*	t _{det}	-	-	350	μs	Figure 2.66, Figure 2.67
Minimum VCC down time		t _{VOFF}	450	-	-	μs	Figure 2.66, VCC = 1.0 V or above

2.12 Flash Memory Characteristics

2.12.1 Code Flash Memory Characteristics

Table 2.56 Code flash characteristics (1)

Parameter		Symbol	Min	Тур	Мах	Unit	Conditions
Reprogramming/er	rasure cycle*1	N _{PEC}	1000	-	-	Times	-
Data hold time	After 1000 times N _{PEC}	t _{DRP}	20*2, *3	-	-	Year	T _a = +85°C

Note 1. The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 1,000), erasing can be performed n times for each block. For instance, when 4-byte programming is performed 256 times for different addresses in 1-KB blocks, and then the entire block is erased, the reprogram/ erase cycle is counted as 1. However, programming the same address for several times as one erasure is not enabled. (overwriting is prohibited.)

Note 2. Characteristic when using the flash memory programmer and the self-programming library provided by Renesas Electronics.

Note 3. This result is obtained from reliability testing.

Table 2.57 Code flash characteristics (2)

High-speed operating mode Conditions: VCC = AVCC0 = 2.7 to 5.5 V

			ICLK = 1 MHz			ICLK = 32 MHz			
Parameter		Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Programming time	4-byte	t _{P4}	-	116	998	-	54	506	μs
Erasure time	1-KB	t _{E1K}	-	9.03	287	-	5.67	222	ms
Blank check time	4-byte	t _{BC4}	-	-	56.8	-	-	16.6	μs
	1-KB	t _{BC1K}	-	-	1899	-	-	140	μs
Erase suspended time		t _{SED}	-	-	22.5	-	-	10.7	μs
Startup area switching setting time		t _{SAS}	-	21.9	585	-	12.1	447	ms
Access window time		t _{AWS}	-	21.9	585	-	12.1	447	ms
OCD/serial programmer ID setting time		t _{OSIS}	-	21.9	585	-	12.1	447	ms
Flash memory mode transition wait time 1		t _{DIS}	2	-	-	2	-	-	μs
Flash memory mode transition wait time 2		t _{MS}	5	-	-	5	-	-	μs

Note 1. Does not include the time until each operation of the flash memory is started after instructions are executed by the software.

Note 2. The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note 3. The frequency accuracy of ICLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

