

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	CANbus, I ² C, SCI, SPI, UART/USART, USB
Peripherals	LVD, POR, PWM, WDT
Number of I/O	29
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x14b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	40-WFQFN Exposed Pad
Supplier Device Package	40-HWQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r7fs124773a01cnf-ac1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RENESAS

S124 Microcontroller Group

Datasheet

Ultra-low power 32-MHz Arm[®] Cortex[®]-M0+ microcontroller, 128-KB code flash memory, 16-KB SRAM, Capacitive Touch Sensing Unit, 14-bit A/D Converter, 12-bit D/A Converter, security and safety features.

Features

Arm Cortex-M0+ Core

- Armv6-M architecture
- Maximum operating frequency: 32 MHz
- Debug and Trace: DWT, BPU, CoreSight™ MTB-M0+
- CoreSight Debug Port: SW-DP

Memory

- 128-KB code flash memory
- 4-KB data flash memory (100,000 erase/write cycles)
- Up to 16-KB SRAM
- 128-bit unique ID

Connectivity

- USB 2.0 Full-Speed Module (USBFS)
- On-chip transceiver with voltage regulator
 Compliant with USB Battery Charging Specification 1.2
- Serial Communications Interface (SCI) × 3
 - UART
 - Simple IIC
 - Simple SPI
- Serial Peripheral Interface (SPI) $\times 2$
- I²C bus interface (IIC) \times 2
- CAN module (CAN)

Analog

- 14-Bit A/D Converter (ADC14)
- 12-Bit D/A Converter (DAC12)
- Low-Power Analog Comparator (ACMPLP) × 2
- Temperature Sensor (TSN)

Timers

- General PWM Timer 32-Bit (GPT32)
- General PWM Timer 16-Bit (GPT16) \times 6
- Asynchronous General-Purpose Timer (AGT) $\times\,2$
- Watchdog Timer (WDT)

Safety

- SRAM Parity Error Check
- Flash Area Protection
- ADC self-diagnosis function
- Clock Frequency Accuracy Measurement Circuit (CAC)
- Cyclic Redundancy Check (CRC) Calculator
- Data Operation Circuit (DOC)
- Port Output Enable for GPT (POEG)
- Independent Watchdog Timer (IWDT)
- GPIO Readback Level Detection
- Register Write Protection
- Main Oscillator Stop Detection

System and Power Management

- Low-power modes
- Realtime Clock (RTC)
- Event Link Controller (ELC)Data Transfer Controller (DTC)
- Key Interrupt Function (KINT)
- Power-on reset
- Low Voltage Detection with voltage settings

Security and Encryption

- AES128/256
- True Random Number Generator (TRNG)
- Human Machine Interface (HMI)
- Capacitive Touch Sensing Unit (CTSU)
- Capacitive Fouch Sensing Onit (
- Multiple Clock Sources
 Main clock oscillator (MOSC)
 - Main clock oscillator (MOSC)
 (1 to 20 MHz when VCC = 2.4 to 5.5 V)
 (1 to 8 MHz when VCC = 1.8 to 5.5 V)
 (1 to 4 MHz when VCC = 1.6 to 5.5 V)
 - Sub-clock oscillator (SOSC) (32.768 kHz)
 - High-speed on-chip oscillator (HOCO)
 - (24, 32, 48, 64 MHz when VCC = 2.4 to 5.5 V) (24, 32, 48 MHz when VCC = 1.8 to 5.5 V) (24, 32 MHz when VCC = 1.6 to 5.5 V)
- Middle-speed on-chip oscillator (MOCO) (8 MHz)
- Low-speed on-chip oscillator (LOCO) (32.768 kHz)
- Independent watchdog timer OCO (15 kHz)
- Clock trim function for HOCO/MOCO/LOCOClock out support

- General Purpose I/O Ports
 - Up to 51 input/output pins - Up to 3 CMOS input
 - Up to 48 CMOS input/output
 - Up to 6 input/output 5 V tolerant
 - Up to 16 pins high current (20 mA)

Operating Voltage

VCC: 1.6 to 5.5 V

- Operating Temperature and Packages
- Ta = -40° C to $+85^{\circ}$ C
- 36-pin LGA (4 mm \times 4 mm, 0.5 mm pitch)
- $Ta = -40^{\circ}C \text{ to } +105^{\circ}C$
- 64-pin LQFP (10 mm \times 10 mm, 0.5 mm pitch)
- 48-pin LQFP (7 mm × 7 mm, 0.5 mm pitch)
- 64-pin QFN (8 mm × 8 mm, 0.4 mm pitch) - 48-pin QFN (7 mm × 7 mm, 0.5 mm pitch)
- 40-pin QFN (6 mm \times 6 mm, 0.5 mm pitch)

1.4 Function Comparison

Table 1.13 Function comparison

Parts number		R7FS124773A01CFM/ R7FS124763A01CFM/ R7FS124773A01CNB/	R7FS124773A01CFL/ R7FS124763A01CFL/ R7FS124773A01CNE	R7FS124773A01CNF	R7FS124772A01CLM/ R7FS124762A01CLM					
Pin count		64	48	40	36					
Package		LQFP/QFN	LQFP/QFN	QFN	LGA					
Code flash memor	у		128/6	64 KB						
Data flash memory	/		4	KB						
SRAM			16	KB						
	Parity		4	KB						
System	CPU clock		32 1	MHz						
	ICU		Yes							
	KINT	8	5	5	4					
Event link	ELC		Ye	es						
DMA	DTC		Ye	es						
Timers	GPT32	1								
	GPT16	6	6	4	4					
	AGT	2	2	2	2					
	RTC		Yes							
	WDT/IWDT	Yes								
Communication	SCI		:	3						
	IIC	2								
	SPI			2						
	CAN		Ye	es						
	USBFS		Ye	es						
Analog	ADC14	18	14	12	11					
	DAC12			1	·					
	ACMPLP			2						
	TSN		Ye	es						
HMI	CTSU	31	23	17	13					
	KINT	8	5	5	4					
Data processing	CRC		Ye	es						
	DOC		Yes							
Security			AES an	d TRNG						

2.1 Absolute Maximum Ratings

Table 2.1	Absolute	maximum	ratings
-----------	----------	---------	---------

Parameter		Symbol	Value	Unit	
Power supply voltage		VCC	-0.5 to +6.5	V	
Input voltage	5V-tolerant ports*1	V _{in}	-0.3 to +6.5	V	
	P000 to P004 P010 to P015	V _{in}	-0.3 to AVCC0 + 0.3	V	
	Others	V _{in}	-0.3 to VCC + 0.3	V	
Reference power supply volta	ige	VREFH0	-0.3 to +6.5	V	
Analog power supply voltage		AVCC0	-0.5 to +6.5	V	
USB power supply voltage		VCC_USB	-0.5 to +6.5	V	
		VCC_USB_LDO	-0.5 to +6.5	V	
Analog input voltage	When AN000 to AN010 are used	V _{AN}	-0.3 to AVCC0 + 0.3	V	
	When AN016 to AN022 are used		-0.3 to VCC + 0.3	V	
Operating temperature*2 *3		T _{opr}	-40 to +85 -40 to +105	°C	
Storage temperature		T _{stg}	-55 to +125	°C	

Note: See the Total Operating Time (TOT) Utility located at http://www.renesas.com. This utility is provided for educational and evaluation purposes only and is subject to the accompanying disclaimer.

Note 1. Ports P205, P206, P400, P401, and P407 are 5V-tolerant. Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up might cause malfunction and the abnormal current that passes in the device at this time might cause degradation of internal elements.

Note 2. See section 2.2.1, Tj/Ta Definition.

Note 3. The upper limit of the operating temperature is 85°C or 105°C, depending on the product. For details, see section 1, Part Numbering

Caution: Permanent damage to the MCU may result if absolute maximum ratings are exceeded. To preclude any malfunctions due to noise interference, insert capacitors of high frequency characteristics between the VCC and VSS pins, between the AVCC0 and AVSS0 pins, between the VCC_USB and VSS_USB pins, and between the VREFH0 and VREFL0 pins. Place capacitors of about 0.1 μF as close as possible to every power supply pin and use the shortest and heaviest possible traces. Also, connect capacitors as stabilization capacitance.

Connect the VCL pin to a VSS pin by a 4.7- μ F capacitor. The capacitor must be placed close to the pin.

Table 2.5 I/O V_{IH}, V_{IL} (2) Conditions: VCC = AVCC0 = 1.6 to 2.7 V

Parameter		Symbol	Min	Тур	Max	Unit	Test Conditions
Schmitt trigger	RES, NMI Peripheral input pins	V _{IH}	VCC × 0.8	-	-	V	-
input voltage		V _{IL}	-	-	VCC × 0.2		
		ΔV _T	VCC × 0.01	-	-		
Input voltage	5V-tolerant ports*1	V _{IH}	VCC × 0.8	-	5.8		
(except for Schmitt trigger		V _{IL}	-	-	VCC × 0.2		
input pin)	P000 to P004 P010 to P015	V _{IH}	AVCC0 × 0.8	-	-		
		V _{IL}	-	-	AVCC0 × 0.2		
	EXTAL Input ports pins except for P000 to P004, P010 to P015	V _{IH}	VCC × 0.8	-	-		
		V _{IL}	-	-	VCC × 0.2		

Note 1. P205, P206, P400, P401, P407 (total 5pins)

I/O V_{OH} , V_{OL} , and Other Characteristics 2.2.4

Table 2.7 I/O V_{OH}, V_{OL} (1) Conditions: VCC = AVCC0 = 4.0 to 5.5 V

Parameter			Symbol	Min	Тур	Max	Unit	Test conditions
Output voltage	Ports P408, P409* ^{2, *3}		V _{OL}	-	-	0.4	V	I _{OL} = 3.0 mA
			V _{OL}	-	-	0.6		I _{OL} = 6.0 mA
			V _{OH}	VCC - 1.0	-	-		I _{OH} = -20 mA
		V _{OL}	-	-	1.0		I _{OL} = 20 mA	
	Ports P000 to P004 P010 to P015	Low drive	V _{OH}	AVCC0 – 0.8	-			I _{OH} = -2.0 mA
			V _{OL}	-	-	0.8		I _{OL} = 2.0 mA
		Middle drive	V _{OH}	AVCC0 – 0.8	-			I _{OH} = -4.0 mA
			V _{OL}	-	-	0.8		I _{OL} = 4.0 mA
	Other output pins*4	Low drive	V _{OH}	VCC - 0.8	-	-		I _{OH} = -2.0 mA
			V _{OL}	-	-	0.8		I _{OL} = 2.0 mA
		Middle	V _{OH}	VCC - 0.8	-	-		I _{OH} = -4.0 mA
		drive*5	V _{OL}	-	-	0.8]	I _{OL} = 4.0 mA

Note 1. SCL0_A, SDA0_A, SCL0_B, SDA0_B, SCL1_A, SDA1_A, SCL1_B, SDA1_B (total 8 pins).

Note 2. This is the value when middle driving ability is selected with the Port Drive Capability bit in the PmnPFS register.

Note 3. Based on characterization data, not tested in production.

Note 4. Except for Ports P200, P214, and P215, which are input ports.

Note 5. Except for P212, P213.

Table 2.8 I/O V_{OH}, V_{OL} (2) Conditions: VCC = AVCC0 = 2.7 to 4.0 V

Parameter			Symbol	Min	Тур	Мах	Unit	Test conditions
Output voltage	IIC*1, *2		V _{OL}	-	-	0.4	V	I _{OL} = 3.0 mA
	Ports P408, P409* ^{2, *3}		V _{OL}	-	-	0.6		I _{OL} = 6.0 mA
			V _{OH}	VCC – 1.0	-	-		I _{OH} = -20 mA VCC = 3.3 V
		V _{OL}	-	-	1.0		I _{OL} = 20 mA VCC = 3.3 V	
-	Ports P000 to P004 P010 to P015	Low drive	V _{OH}	AVCC0 – 0.5	-	-		I _{OH} = -1.0 mA
			V _{OL}	-	-	0.5		I _{OL} = 1.0 mA
		Middle drive	V _{OH}	AVCC0 – 0.5	-	-		I _{OH} = -2.0 mA
			V _{OL}	-	-	0.5		I _{OL} = 2.0 mA
	Other output pins*4	Low drive	V _{OH}	VCC - 0.5	-	-		I _{OH} = -1.0 mA
			V _{OL}	-	-	0.5		I _{OL} = 1.0 mA
		Middle	V _{OH}	VCC - 0.5	-	-	1	I _{OH} = -2.0 mA
		drive*5	V _{OL}	-	-	0.5		I _{OL} = 2.0 mA

Note 1. SCL0_A, SDA0_A, SCL0_B, SDA0_B, SCL1_A, SDA1_A, SCL1_B, SDA1_B (total 8 pins).

Note 2. This is the value when middle driving ability is selected with the Port Drive Capability bit in the PmnPFS register.

Note 3. Based on characterization data, not tested in production.

Note 4. Except for Ports P200, P214, P215, which are input ports.

Note 5. Except for P212, P213.

Figure 2.4 V_{OH}/V_{OL} and I_{OH}/I_{OL} temperature characteristics at VCC = 2.7 V when low drive output is selected (reference data)

Figure 2.5 V_{OH}/V_{OL} and I_{OH}/I_{OL} temperature characteristics at VCC = 3.3 V when low drive output is selected (reference data)

Figure 2.10 V_{OH}/V_{OL} and I_{OH}/I_{OL} temperature characteristics at VCC = 3.3 V when middle drive output is selected (reference data)

Figure 2.11 V_{OH}/V_{OL} and I_{OH}/I_{OL} temperature characteristics at VCC = 5.5 V when middle drive output is selected (reference data)

RENESAS

Figure 2.14 V_{OH}/V_{OL} and I_{OH}/I_{OL} temperature characteristics at VCC = 3.3 V when middle drive output is selected (reference data)

Figure 2.15 V_{OH}/V_{OL} and I_{OH}/I_{OL} temperature characteristics at VCC = 5.5 V when middle drive output is selected (reference data)

RENESAS

Figure 2.22 Temperature dependency in Software Standby mode (reference data)

Figure 2.23 Temperature dependency of RTC operation (reference data)

Tab	le 2.1	3	Operatin	g and	standby	current	(3) (1 of 2)	
~								

Conditions: VCC = AVCC0 = 1.6 to 5.5 V

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
Analog power	During A/D conversion (at high-speed conversion)	I _{AVCC}	-	-	3.0	mA	-
supply current	During A/D conversion (at low-power conversion)		-	-	1.0	mA	-
	During D/A conversion*1		-	0.4	0.8	mA	-
	Waiting for A/D and D/A conversion (all units)*5		-	-	1.0	μA	-
Reference	During A/D conversion		-	-	150	μA	-
power supply current	Waiting for A/D conversion (all units)		-	-	60	nA	-
Temperature sen	sor	I _{TNS}	-	75	-	μA	-

Table 2.13Operating and standby current (3) (2 of 2)

Conditions: VCC = AVCC0 = 1.6 to 5.5 V

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
Low-power	Window mode	I _{CMPLP}	-	15	-	μA	-
analog comparator (ACMPLP) operating current	Comparator high-speed mode		-	10	-	μA	-
	Comparator low-speed mode		-	2	-	μA	-
USB operating current	 During USB communication under the following settings and conditions: Function controller is in Full-Speed mode and Bulk OUT transfer is (64 bytes) × 1 Bulk IN transfer is (64 bytes) × 1 Host device is connected by a 1-meter USB cable from the USB port. 	I _{USBF} *2	-	3.6 (VCC) 1.1 (VCC_USB)* ⁴	-	mA	-
	 During suspended state under the following setting and conditions: Function controller is in Full-Speed mode (the USB_DP pin is pulled up) Software Standby mode Host device is connected by a 1-meter USB cable from the USB port. 	I _{SUSP} *3	-	0.35 (VCC) 170 (VCC_USB)*4	-	μΑ	-

Note 1. The reference power supply current is included in the power supply current value for D/A conversion.

Note 2. Current is consumed only by the USBFS.

Note 3. Includes the current supplied from the pull-up resistor of the USB_DP pin to the pull-down resistor of the host device, in addition to the current consumed by the MCU in the suspended state.

Note 4. When VCC = VCC_USB = 3.3 V.

Note 5. When the MSTPCRD.MSTPD16 (ADC140 module-stop bit) is in the module-stop state.

2.2.10 VCC Rise and Fall Gradient and Ripple Frequency

Table 2.14 Rise and fall gradient characteristics

Conditions: VCC = AVCC0 = 0 to 5.5 V

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
Power-on VCC	Voltage monitor 0 reset disabled at startup	SrVCC	0.02	-	2	ms/V	-
rising gradient	Voltage monitor 0 reset enabled at startup*1, *2		0.02	-	-		
	SCI Boot mode*2		0.02	-	2		

Note 1. When OFS1.LVDAS = 0.

Note 2. At boot mode, the reset from voltage monitor 0 is disabled regardless of the value of OFS1.LVDAS bit.

Table 2.15 Rising and falling gradient and ripple frequency characteristics

Conditions: VCC = AVCC0 = 1.6 to 5.5 V

The ripple voltage must meet the allowable ripple frequency $f_{r(VCC)}$ within the range between the VCC upper limit (5.5 V) and lower limit (1.6 V).

When the VCC change exceeds VCC ±10%, the allowable voltage change rising and falling gradient dt/dVCC must be met.

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Allowable ripple frequency	f _{r (VCC)}	-	-	10	kHz	Figure 2.24 $V_{r (VCC)} \leq VCC \times 0.2$
		-	-	1	MHz	Figure 2.24 $V_{r (VCC)} \leq VCC \times 0.08$
		-	-	10	MHz	Figure 2.24 $V_{r (VCC)} \le VCC \times 0.06$
Allowable voltage change rising and falling gradient	dt/dVCC	1.0	-	-	ms/V	When VCC change exceeds VCC ±10%

Figure 2.24 Ripple waveform

2.3 AC Characteristics

2.3.1 Frequency

Table 2.16 Operation frequency in high-speed operating mode

Conditions: VCC = AVCC0 = 2.4 to 5.5 V

Parameter			Symbol	Min	Тур	Max*5	Unit
Operation	System clock (ICLK)*1, *2, *4	2.7 to 5.5 V	f	0.032768	-	32	MHz
frequency		2.4 to 2.7 V		0.032768	-	16	
	Peripheral module clock (PCLKB)*4	2.7 to 5.5 V		-	-	32	
		2.4 to 2.7 V		-	-	16	
	Peripheral module clock (PCLKD)*3, *4	2.7 to 5.5 V		-	-	64	
		2.4 to 2.7 V		-	-	16	

Note 1. The lower-limit frequency of ICLK is 1 MHz while programming or erasing the flash memory. When using ICLK for programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note 2. The frequency accuracy of ICLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

- Note 3. The lower-limit frequency of PCLKD is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the 14-bit A/D converter is in use.
- Note 4. See section 8, Clock Generation Circuit in User's Manual for the relationship of frequencies between ICLK, PCLKB, and PCLKD.
- Note 5. The maximum value of operation frequency does not include internal oscillator errors. For details on the range of guaranteed operation, see Table 2.21, Clock timing.

Table 2.17 Operation frequency in middle-speed mode Conditions: VCC = AVCC0 = 1.8 to 5.5 V

Parameter			Symbol	Min	Тур	Max* ⁵	Unit
Operation	System clock (ICLK)*1, *2, *4	2.7 to 5.5 V	f	0.032768	-	12	MHz
frequency		2.4 to 2.7 V		0.032768	-	12	-
		1.8 to 2.4 V		0.032768	-	8	
	Peripheral module clock (PCLKB)*4	2.7 to 5.5 V		-	-	12	-
		2.4 to 2.7 V		-	-	12	-
		1.8 to 2.4 V		-	-	8	
	Peripheral module clock (PCLKD)*3, *4	2.7 to 5.5 V		-	-	12	-
		2.4 to 2.7 V		-	-	12	-
		1.8 to 2.4 V	1	-	-	8	1

Note 1. The lower-limit frequency of ICLK is 1 MHz while programming or erasing the flash memory. When using ICLK for programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note 2. The frequency accuracy of ICLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

- Note 3. The lower-limit frequency of PCLKD is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the 14-bit A/D converter is in use.
- Note 4. See section 8, Clock Generation Circuit in User's Manual for the relationship of frequencies between ICLK, PCLKB, and PCLKD.
- Note 5. The maximum value of operation frequency does not include internal oscillator errors. For details on the range of guaranteed operation, see Table 2.21, Clock timing.

2.3.3 Reset Timing

Table 2.22 Reset timing

Parameter			Min	Тур	Max	Unit	Test conditions
RES pulse width	At power-on	t _{RESWP}	3	-	-	ms	Figure 2.29
	Not at power-on	t _{RESW}	30	-	-	μs	Figure 2.30
Wait time after RES cancellation	LVD0 enabled*1	t _{RESWT}	-	0.7	-	ms	Figure 2.29
(at power-on)	LVD0 disabled*2		-	0.3	-		
Wait time after RES cancellation	LVD0 enabled*1	t _{RESWT2}	-	0.5	-	ms	Figure 2.30
(during powered-on state)	LVD0 disabled*2		-	0.05	-		
Internal reset cancellation time (Watchdog	LVD0 enabled*1	t _{RESWT3}	-	0.6	-	ms	
Software reset)	LVD0 disabled*2		-	0.15	-		

Note 1. When OFS1.LVDAS = 0.

Note 2. When OFS1.LVDAS = 1.

Figure 2.29 Reset input timing at power-on

Figure 2.30 Reset input timing (1)

Figure 2.50 SPI timing (master, CPHA = 0) (bit rate: PCLKB division ratio is set to any value other than 1/2)

2.4 USB Characteristics

2.4.1 USBFS Timing

Table 2.38USB characteristics

Conditions: VCC = AVCC0 = VCC_USB = 3.0 to 3.6V, Ta = -20 to +85°C

Parameter		Symbol	Min	Max	Unit	Test conditions	
Input	Input high level volt	age	V _{IH}	2.0	-	V	-
characteristics	Input low level voltage		V _{IL}	-	0.8	V	-
	Differential input se	nsitivity	V _{DI}	0.2	-	V	USB_DP – USB_DM
	Differential commor range	n mode	V _{CM}	0.8	2.5	V	-
Output	Output high level vo	oltage	V _{OH}	2.8	VCC_USB	V	I _{OH} = -200 μA
characteristics	Output low level vo	ltage	V _{OL}	0.0	0.3	V	I _{OL} = 2 mA
	Cross-over voltage		V _{CRS}	1.3	2.0	V	Figure 2.58,
	Rise time	FS	t _r	4	20	ns	Figure 2.59, Figure 2.60
		LS		75	300		1 iguro 2.00
	Fall time	FS	t _f	4	20	ns	
		LS		75	300		
	Rise/fall time ratio	FS	t _r /t _f	90	111.11	%	
		LS		80	125		
	Output resistance		Z _{DRV}	28	44	Ω	(Adjusting the resistance of external elements is not necessary.)
VBUS	VBUS input voltage	•	V _{IH}	VCC × 0.8	-	V	-
characteristics			V _{IL}	-	VCC × 0.2	V	-
Pull-up,	Pull-down resistor		R _{PD}	14.25	24.80	kΩ	-
pull-down	Pull-up resistor		R _{PUI}	0.9	1.575	kΩ	During idle state
			R _{PUA}	1.425	3.09	kΩ	During reception
Battery Charging	D + sink current		I _{DP_SINK}	25	175	μA	-
Specification Ver 1 2	D – sink current		I _{DM_SINK}	25	175	μA	-
	DCD source curren	t	I _{DP_SRC}	7	13	μA	-
	Data detection volta	age	V _{DAT_REF}	0.25	0.4	V	-
	D + source voltage		V _{DP_SRC}	0.5	0.7	V	Output current = 250 µA
	D – source voltage		V _{DM_SRC}	0.5	0.7	V	Output current = 250 µA

Figure 2.58

USB_DP and USB_DM output timing

Table 2.40 A/D conversion characteristics (1) in high-speed A/D conversion mode (2 of 2) Conditions: VCC = AVCC0 = 4.5 to 5.5 V, VREFH0 = 4.5 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter		Min	Тур	Мах	Unit	Test Conditions
Conversion time* ¹ (Operation at PCLKD = 64 MHz)	Permissible signal source impedance Max. = $0.3 \text{ k}\Omega$	0.80	-	-	μs	High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0Dh
		1.22	-	-	μs	Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 28h
Offset error		-	±2.0	±18	LSB	High-precision channel
				±24.0	LSB	Other than above
Full-scale error		-	±3.0	±18	LSB	High-precision channel
				±24.0	LSB	Other than above
Quantization error		-	±0.5	-	LSB	-
Absolute accuracy		-	±5.0	±20	LSB	High-precision channel
				±32.0	LSB	Other than above
DNL differential nonline	earity error	-	±4.0	-	LSB	-
INL integral nonlinearit	y error	-	±4.0	±12.0	LSB	-

Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Note 2. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics.

Note 3. Reference data.

Table 2.41A/D conversion characteristics (2) in high-speed A/D conversion mode (1 of 2)Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V

Reference voltage range applied to the VREFH0 and VREFL0.

Parameter		Min	Тур	Мах	Unit	Test Conditions
Frequency		1	-	48	MHz	-
Analog input capacitance*2	Cs	-	-	8* ³	pF	High-precision channel
		-	-	9* ³	pF	Normal-precision channel
Analog input resistance	Rs	-	-	2.5* ³	kΩ	High-precision channel
		-	-	6.7* ³	kΩ	Normal-precision channel
Analog input voltage range	Ain	0	-	VREFH0	V	-

12-bit mode

Resolution		-	-	12	Bit	-
Conversion time*1 (Operation at PCLKD = 48 MHz)	Permissible signal source impedance Max. = 0.3 kΩ	0.94	-	-	μs	High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0Dh
		1.50	-	-	μs	Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 28h
Offset error		-	±0.5	±4.5	LSB	High-precision channel
				±6.0	LSB	Other than above
Full-scale error		-	±0.75	±4.5	LSB	High-precision channel
				±6.0	LSB	Other than above
Quantization error		-	±0.5	-	LSB	-
Absolute accuracy		-	±1.25	±5.0	LSB	High-precision channel
				±8.0	LSB	Other than above
DNL differential nonlinearity error		-	±1.0	-	LSB	-
INL integral nonlinearity e	error	-	±1.0	±3.0	LSB	-

Table 2.46A/D conversion characteristics (7) in low-power A/D conversion mode (2 of 2)Conditions: VCC = AVCC0 = 1.6 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.6 to 5.5 V, VSS = AVSS0 = VREFL0 = 0</td>

Conditions: VCC = AVCC0 = 1.6 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.6 to 5.5 V, VSS = AVSS0 = VREFL0 = 0 Reference voltage range applied to the VREFH0 and VREFL0.

Parameter			Min	Тур	Max	Unit	Test Conditions
Analog input voltage rang	ge	Ain	0	-	VREFH0	V	-
12-bit mode			1				
Resolution			-	-	12	Bit	-
Conversion time*1 (Operation at PCLKD = 4 MHz)	Permissible source imp Max. = 9.9	e signal bedance kΩ	13.5	-	-	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh
			20.25	-	-	μs	Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h
Offset error			-	±1.0	±7.5	LSB	High-precision channel
					±10.0	LSB	Other than above
Full-scale error			-	±1.5	±7.5	LSB	High-precision channel
					±10.0	LSB	Other than above
Quantization error			-	±0.5	-	LSB	-
Absolute accuracy	Absolute accuracy		-	±3.0	±8.0	LSB	High-precision channel
					±12.0	LSB	Other than above
DNL differential nonlinea	DNL differential nonlinearity error		-	±1.0	-	LSB	-
INL integral nonlinearity e	error		-	±1.0	±3.0	LSB	-
14-bit mode							
Resolution			-	-	14	Bit	-
Conversion time* ¹ (Operation at PCLKD = 4 MHz)	Permissible source imp Max. = 9.9	e signal edance kΩ	15.0	-	-	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh
			21.75	-	-	μs	Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h
Offset error			-	±4.0	±30.0	LSB	High-precision channel
					±40.0	LSB	Other than above
Full-scale error			-	±6.0	±30.0	LSB	High-precision channel
				±40.0	LSB	Other than above	
Quantization error		-	±0.5	-	LSB	-	
Absolute accuracy			-	±12.0	±32.0	LSB	High-precision channel
					±48.0	LSB	Other than above
DNL differential nonlinea	rity error		-	±4.0	-	LSB	-
INL integral nonlinearity error		-	±4.0	±12.0	LSB	-	

Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Note 2. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics.

Note 3. Reference data.

Figure 2.63 Illustration of 14-bit A/D converter characteristic terms

Absolute accuracy

Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of the analog input voltage (1-LSB width), which can meet the expectation of outputting an equal code based on the theoretical A/D conversion characteristics, is used as the analog input voltage. For example, if 12-bit resolution is used and the reference voltage VREFH0 = 3.072 V, then 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, and 1.5 mV are used as the analog input voltages. If analog input voltage is 6 mV, an absolute accuracy of ± 5 LSB means that the actual A/D conversion result is in the range of 003h to 00Dh, though an output code of 008h can be expected from the theoretical A/D conversion characteristics.

Integral nonlinearity error (INL)

Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale errors are zeroed, and the actual output code.

Differential nonlinearity error (DNL)

Differential nonlinearity error is the difference between 1-LSB width based on the ideal A/D conversion characteristics and the width of the actual output code.

Offset error

Offset error is the difference between the transition point of the ideal first output code and the actual first output code.

Full-scale error

Full-scale error is the difference between the transition point of the ideal last output code and the actual last output code.

Offset error

Offset error is the difference between the highest actual output voltage that falls below the lower output limit and the ideal output voltage based on the input code.

Full-scale error

Full-scale error is the difference between the lowest actual output voltage that exceeds the upper output limit and the ideal output voltage based on the input code.

2.7 TSN Characteristics

Table 2.50 TSN characteristics

Conditions: VCC = AVCC0 = 2.0 to 5.5 V

Parameter	Symbol	Min	Тур	Мах	Unit	Test conditions
Relative accuracy	-	-	±1.5	-	°C	2.4 V or above
		-	±2.0	-	°C	Below 2.4 V
Temperature slope	-	-	-3.65	-	mV/°C	-
Output voltage (at 25°C)	-	-	1.05	-	V	VCC = 3.3 V
Temperature sensor start time	t _{START}	-	-	5	μs	-
Sampling time	-	5	-	-	μs	

2.8 OSC Stop Detect Characteristics

Table 2.51 Oscillation stop detection circuit characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Detection time	t _{dr}	-	-	1	ms	Figure 2.65

Main clock	
OSTDSR.OSTDF	f
MOCO clock	
ICLK	

Figure 2.65 Oscillation stop detection timing

