

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	CSIO, I ² C, LINbus, UART/USART, USB
Peripherals	I ² S, LVD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/s6e1c31c0agv20000

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- □ Generating START, EOM, ACK automatically to output CEC transmission by setting 1 byte data
- □ Generating transmission status interrupt when transmitting 1 block (1 byte data and EOM/ACK)
- ■HDMI-CEC receiver □ Automatic ACK reply function available □ Line error detection function available
- Remote control receiver
 4 bytes reception buffer
 Repeat code detection function available

Smart Card Interface (Max 1 Channel)

- Compliant with ISO7816-3 specification
- Card Reader only/B class card only
- Available protocols
 □ Transmitter: 8E2, 8O2, 8N2
 □ Receiver: 8E1, 8O1, 8N2, 8N1, 9N1
 □ Inverse mode
- TX/RX FIFO integrated (RX: 16-bytes, TX:16-bytes)

Clock and Reset

Clocks

A clock can be selected from five clock sources (two external oscillators, two built-in CR oscillator, and main PLL).

	, ,
□ Main clock:	8 MHz to 48 MHz
□ Sub clock:	32.768 kHz
□ Built-in high-speed CR clock:	: 8 MHz
□ Built-in low-speed CR clock:	100 kHz
□ Main PLL clock	8MHz to 16MHz (Input), 75MHz to 150MHz (Output)

Resets

□ Reset request from the INITX pin □ Power on reset □ Software reset

- □ Software reset
- Watchdog timer reset
 Low-voltage detection reset
- Low-voltage detection rese
- Clock supervisor reset

Clock Supervisor (CSV)

The Clock Supervisor monitors the failure of external clocks with a clock generated by a built-in CR oscillator.

- If an external clock failure (clock stop) is detected, a reset is asserted.
- If an external frequency anomaly is detected, an interrupt or a reset is asserted.

Low-Voltage Detector (LVD)

This series monitors the voltage on the VCC pin with a 2-stage mechanism. When the voltage falls below a designated voltage, the Low-voltage Detector generates an interrupt or a reset.

- LVD1: monitor V_{CC} and error reporting via an interrupt
- ■LVD2: auto-reset operation

Low Power Consumption Mode

This series has six low power consumption modes.

- ■Sleep
- ■Timer
- ■RTC
- Stop
- Deep standby RTC (selectable between keeping the value of RAM and not)
- Deep standby Stop (selectable between keeping the value of RAM and not)

Peripheral Clock Gating

The system can reduce the current consumption of the total system with gating the operation clocks of peripheral functions not used.

Debug

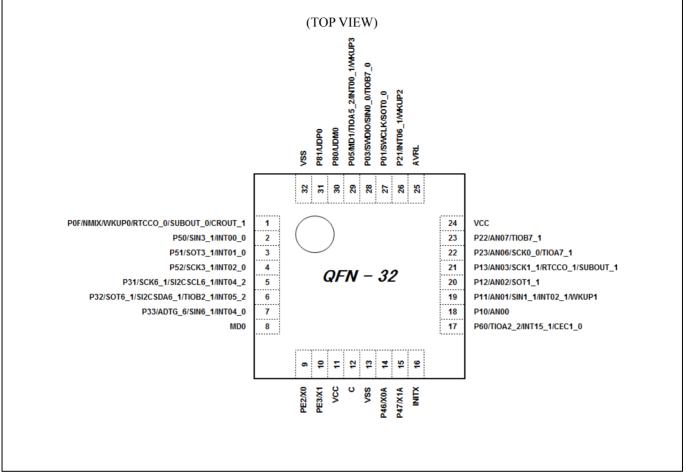
- ■Serial Wire Debug Port (SW-DP)
- ■Micro Trace Buffer (MTB)

Unique ID

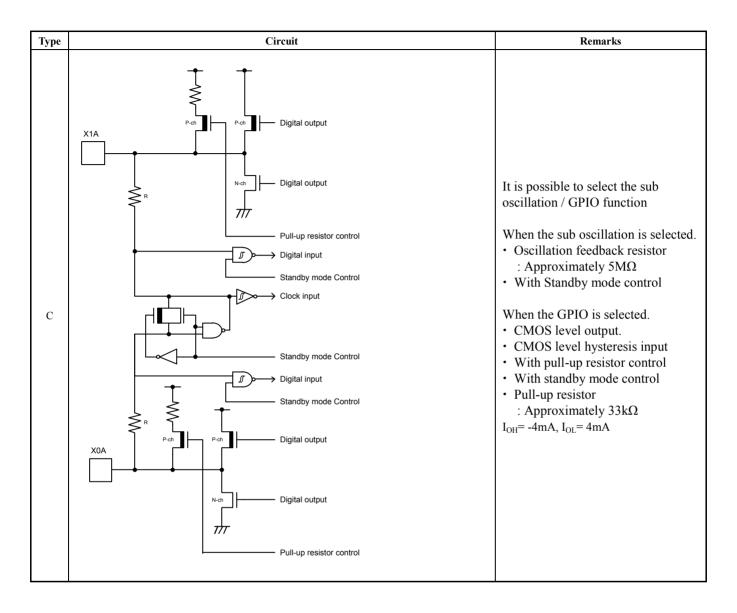
A 41-bit unique value of the device has been set.

Power Supply

■Wide voltage range: VCC = 1.65V to 3.6 V

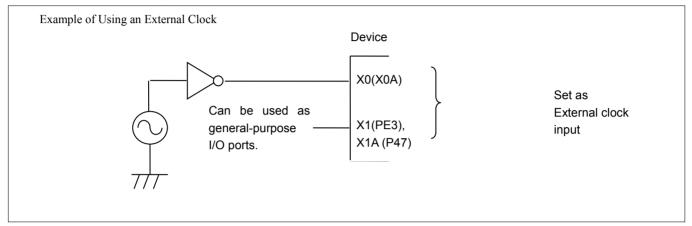

VCC = 3.0V to 3.6V (when USB is used)

Sales, Solutions, and Legal Information


LCC-32P-M73

Note:

The number after the underscore ("_") in a pin name such as XXX_1 and XXX_2 indicates the relocated port number. The channel on such pin has multiple functions, each of which has its own pin name. Use the Extended Port Function Register (EPFR) to select the pin to be used.



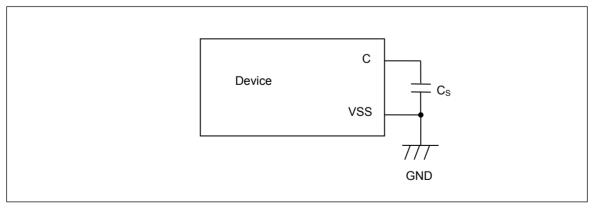
Using an External Clock

When using an external clock as an input of the main clock, set X0/X1 to the external clock input, and input the clock to X0. X1(PE3) can be used as a general-purpose I/O port.

Similarly, when using an external clock as an input of the sub clock, set X0A/X1A to the external clock input, and input the clock to X0A. X1A (P47) can be used as a general-purpose I/O port.

However in the Deep Standby mode, an external clock as an input of the sub clock cannot be used.

Handling when Using Multi-Function Serial Pin as I²C Pin

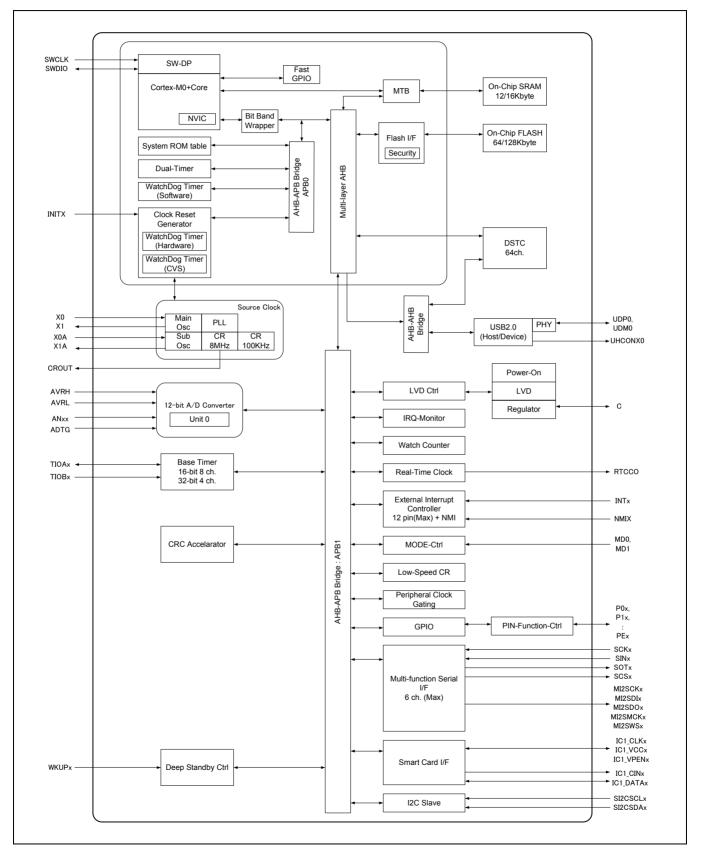

If it is using the multi-function serial pin as I^2C pins, P-ch transistor of digital output is always disabled. However, I^2C pins need to keep the electrical characteristic like other pins and not to connect to the external I^2C bus system with power OFF.

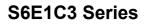
C Pin

This series contains the regulator. Be sure to connect a smoothing capacitor (C_S) for the regulator between the C pin and the GND pin. Please use a ceramic capacitor or a capacitor of equivalent frequency characteristics as a smoothing capacitor. However, some laminated ceramic capacitors have the characteristics of capacitance variation due to thermal fluctuation (F characteristics and Y5V characteristics). Please select the capacitor that meets the specifications in the operating conditions to use by evaluating the temperature characteristics of a capacitor.

A smoothing capacitor of about 4.7 μ F would be recommended for this series.

Incidentally, the C pin becomes floating in Deep standby mode.




Mode Pins (MD0)

Connect the MD pin (MD0) directly to VCC or VSS pins. Design the printed circuit board such that the pull-up/down resistance stays low, as well as the distance between the mode pins and VCC pins or VSS pins is as short as possible and the connection impedance is low, when the pins are pulled-up/down such as for switching the pin level and rewriting the Flash memory data. It is because of preventing the device erroneously switching to test mode due to noise.

8. Block Diagram

Memory Map (2)

	S6E1C31B0A S6E1C31C0A S6E1C31D0A	S6E1C32B0A S6E1C32C0A S6E1C32D0A
0x2008_0000	Reserved	0x2008_0000 Reserved
0x2000_4000		0x2000_4000
0x2000_3000	SRAM 4K byte	SRAM _{0x2000_3000} 4K byte
0x2000_1000	SRAM 8K byte	SRAM 12K byte
	Reserved	0x2000_0000 Reserved
0x0010_0004 0x0010_0000	CR trimming Security	0x0010_0004 CR trimming 0x0010_0000 Security
	Reserved	Reserved
0-0000 FFF0		0x0001_FFF0
0x0000_FFF0	Flash 65520 Byte (64Kbyte - 16Byte) *	Flash 131056 Byte (128Kbyte - 16Byte) [*]
0x0000_0000	(entoyie fobyie)	0×0000_0000

*: See "S6E1C1/C3 Series Flash Programming Manual" to check details of the Flash memory.

	Symbol			Va	lue			
Parameter	(Pin Name)	Co	nditions	Тур	Max	Unit	Remarks	
			Ta=25°C Vcc=3.3 V	12.4	52.4	μA	*1, *2	
	I _{ССН} (VCC)	Stop mode	Ta=25°C Vcc=1.65 V	12.0	52.0	μA	*1, *2	
			Ta=105°C Vcc=3.6 V	-	597	μA	*1, *2	
I _{CCT} (VCC)		Ta=25°C Vcc=3.3 V 32 kHz Crystal oscillation	15.6	55.6	μA	*1, *2		
			Ta=25°C Vcc=1.65 V 32 kHz Crystal oscillation	15.0	55.0	μA	*1, *2	
supply current	supply current		Ta=105°C Vcc=3.6 V 32 kHz Crystal oscillation	-	601	μA	*1, *2	
			Ta=25°C Vcc=3.3 V 32 kHz Crystal oscillation	13.2	53.2	μA	*1, *2	
	I _{CCR} (VCC)	RTC mode	Ta=25°C Vcc=1.65 V 32 kHz Crystal oscillation	12.7	52.7	μA	*1, *2	
			Ta=105℃ Vcc=3.6 V 32 kHz Crystal oscillation	-	598	μA	*1, *2	

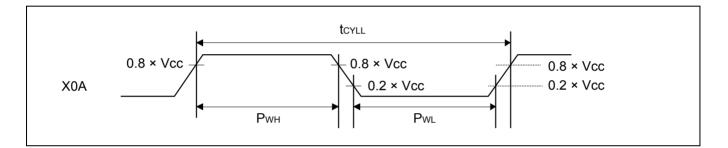
*1: All ports are fixed. LVD off. Flash off.

*2: When CALDONE bit(CAL_CTL:CALDONE) is "1". In case of "0", Bipolar Vref current is added.

	Symbol		Va	alue				
Parameter	(Pin Name)		Conditions				Unit	Remarks
				Ta=25°C Vcc=3.3 V	0.58	1.85	μA	*1, *2
			RAM off	Ta=25°C Vcc=1.65 V	0.56	1.83	μA	*1, *2
	I _{CCHD}	Deep standby		Ta=105°C Vcc=3.6 V	-	46	μA	*1, *2
	(VCC) Stop mode	Stop mode		Ta=25°C Vcc=3.3 V	0.78	6.6	μA	*1, *2
		RAM on	Ta=25°C Vcc=1.65 V	0.76	6.6	μA	*1, *2	
Power				Ta=105°C Vcc=3.6 V	-	88	μA	*1, *2
supply current			RAM off	Ta=25°C Vcc=3.3 V	1.16	2.4	μA	*1, *2
				Ta=25°C Vcc=1.65 V	1.15	2.4	μA	*1, *2
	Deep standby		Ta=105°C Vcc=3.6 V	-	46	μA	*1, *2	
	RTC mode		Ta=25°C Vcc=3.3 V	1.37	7.2	μA	*1, *2	
		RAM on	Ta=25°C Vcc=1.65 V	1.35	7.2	μA	*1, *2	
				Ta=105°C Vcc=3.6 V	-	88	μA	*1, *2

*1: All ports are fixed. LVD off.

*2: When CALDONE bit(CAL_CTL:CALDONE) is "1". In case of "0", Bipolar Vref current is added.



11.4.2 Sub Clock Input Characteristics

(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Parameter	Symbol	Pin	Conditions	Value			Unit	Remarks	
Falameter	Symbol	Name	Name		Тур	Max	Onit	Remarks	
Input frequency	f _{CL}		-	-	32.768	-	kHz	When the crystal oscillator is connected	
		X0A,	X0A, X1A	-	32	-	100	kHz	When the external clock is used
Input clock cycle	t _{CYLL}	AIA	-	10	-	31.25	μs	When the external clock is used	
Input clock pulse width	-		Pwh/tcyll, Pwl/tcyll	45	-	55	%	When the external clock is used	

*: See "Sub crystal oscillator" in "7. Handling Devices" for the crystal oscillator used.

11.4.9 CSIO/SPI/UART Timing

CSIO (SPI=0, SCINV=0)

				(V _{CC} = 1.6	65 V to 3.6	V, V _{SS} = 0 V	, T _A =- 40°0	C to +10
Parameter	Symbol	Pin	Conditions	V _{cc} < 2.7 V		V _{cc} ≥ 2.7 V		Unit
i didineter	Oymbol	name	oonaniona	Min	Max	Min	Max	Unit
Serial clock cycle time	t _{SCYC}	SCKx		4 t _{CYCP}	-	4 t _{CYCP}	-	ns
$\text{SCK} \downarrow \rightarrow \text{SOT}$ delay time	t _{SLOVI}	SCKx, SOTx		- 30	+ 30	- 20	+ 20	ns
$SIN \to SCK \uparrow setup \ time$	t _{ivshi}	SCKx, SINx	Master mode	50	-	36	-	ns
$SCK \uparrow \to SIN \text{ hold time}$	t _{shixi}	SCKx, SINx		0	-	0	-	ns
Serial clock "L" pulse width	t _{sLSH}	SCKx		2 t _{CYCP} - 10	-	2 t _{CYCP} - 10	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCKx		t _{CYCP} + 10	-	t _{CYCP} + 10	-	ns
$SCK \downarrow \to SOT \text{ delay time}$	t _{SLOVE}	SCKx, SOTx	Slave mode	-	50	-	30	ns
$SIN \to SCK \uparrow setup \ time$	t _{IVSHE}	SCKx, SINx	Slave mode	10	-	10	-	ns
$SCK \uparrow \to SIN \text{ hold time}$	t _{SHIXE}	SCKx, SINx		20	-	20	-	ns
SCK falling time	tF	SCKx		-	5	-	5	ns
SCK rising time	tR	SCKx	1	-	5	-	5	ns

Notes:

- The above AC characteristics are for clock synchronous mode.

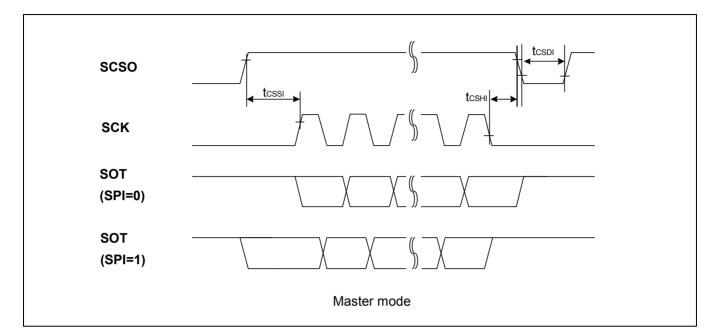
t_{CYCP} represents the APB bus clock cycle time.
 For the number of the APB bus to which Multi-function Serial has been connected, see "8. Block Diagram".

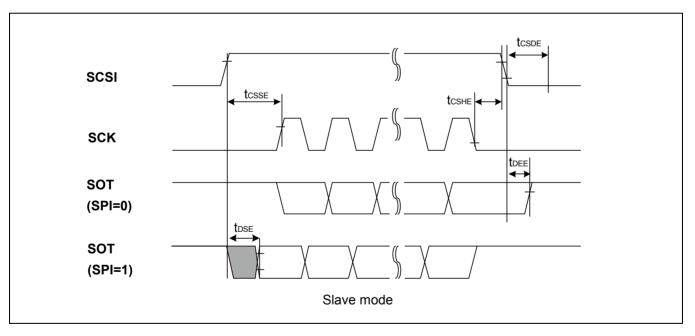
- The characteristics are only applicable when the relocate port numbers are the same. For instance, they are not applicable for the combination of SCKx_0 and SOTx_1.
- External load capacitance C_L=30 pF

SPI (SPI=1, SCINV=0)

_		Pin		V _{cc} < 2	7 V	V _{cc} ≥	2 7 V	
Parameter	Symbol	name	Conditions	Min	Max	Min	Max	Unit
Serial clock cycle time	tscyc	SCKx		4 t _{CYCP}	-	4 t _{CYCP}	-	ns
$SCK \uparrow \to SOT \text{ delay time}$	t _{shovi}	SCKx, SOTx		- 30	+ 30	- 20	+ 20	ns
$SIN \to SCK \downarrow setup time$	t _{IVSLI}	SCKx, SINx	Master mode	50	-	36	-	ns
$SCK \downarrow \to SIN \text{ hold time}$	t _{sLixi}	SCKx, SINx		0	-	0	-	ns
$\text{SOT} \rightarrow \text{SCK} \downarrow \text{delay time}$	t _{SOVLI}	SCKx, SOTx		2 t _{CYCP} - 30	-	2 t _{CYCP} - 30	-	ns
Serial clock "L" pulse width	t _{sLSH}	SCKx		2 t _{CYCP} - 10	-	2 t _{CYCP} - 10	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCKx		t _{CYCP} + 10	-	t _{CYCP} + 10	-	ns
$SCK \uparrow \to SOT$ delay time	t _{shove}	SCKx, SOTx		-	50	-	33	ns
$SIN \to SCK \downarrow setup time$	t _{IVSLE}	SCKx, SINx	Slave mode	10	-	10	-	ns
$SCK \downarrow \to SIN \text{ hold time}$	t _{SLIXE}	SCKx, SINx		20	-	20	-	ns
SCK falling time	tF	SCKx	1	-	5	-	5	ns
SCK rising time	tR	SCKx]	-	5	-	5	ns

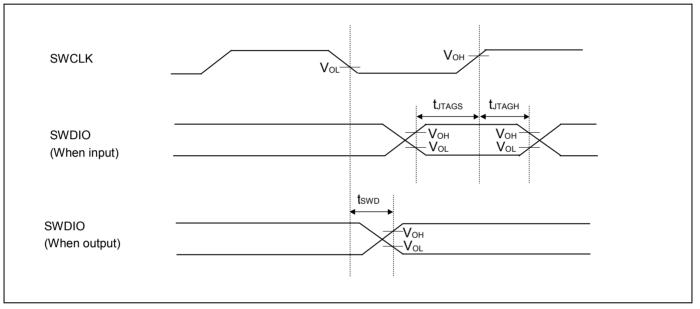
(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)


Notes:

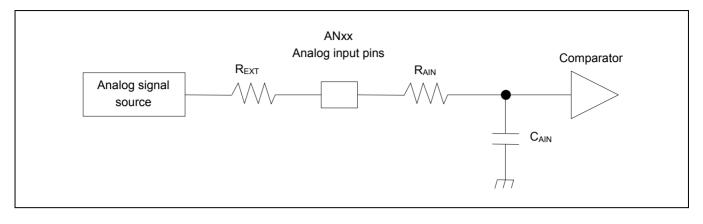

- The above AC characteristics are for clock synchronous mode.

t_{CYCP} represents the APB bus clock cycle time.
 For the number of the APB bus to which Multi-function Serial has been connected, see "8. Block Diagram".

- The characteristics are only applicable when the relocate port numbers are the same. For instance, they are not applicable for the combination of SCKx_0 and SOTx_1.
- External load capacitance C_L=30 pF

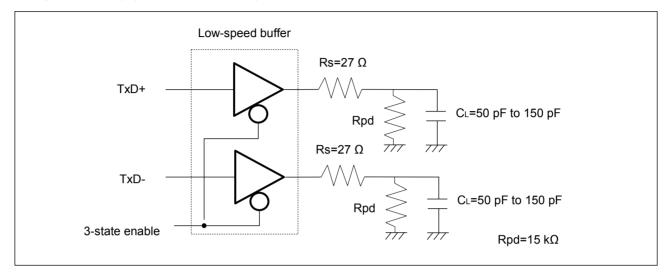

11.4.14 SW-DP Timing

(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

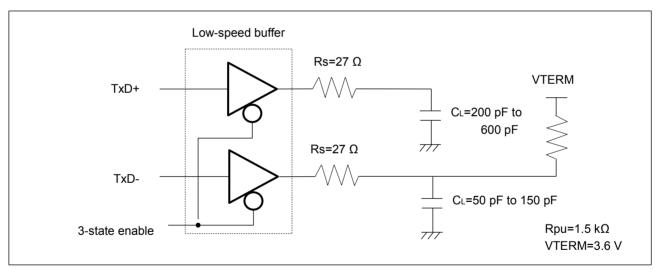

Parameter	Symbol	Pin Name	Conditions	Value		Unit	Remarks
Faranieter	Symbol	Fill Name	Conditions	Min	Max	Unit	Reillarks
SWDIO setup time	t _{sws}	SWCLK, SWDIO	-	15	-	ns	
SWDIO hold time	t _{SWH}	SWCLK, SWDIO	-	15	-	ns	
SWDIO delay time	t _{SWD}	SWCLK, SWDIO	-	-	45	ns	

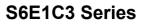
Note:

- External load capacitance C_L=30 pF



(Equation	1) t _S ≥	(R _{AIN} +	R _{EXT})	$\times C_{AIN} \times 9$	
-----------	---------------------	---------------------	--------------------	---------------------------	--


t _s :	Sampling time
R _{AIN} :	Input resistance of A/D Converter = 2.2 k Ω with 2.7 \leq VCC \leq 3.6
	Input resistance of A/D Converter = 5.5 k Ω with 1.8 \leq VCC \leq 2.7
	Input resistance of A/D Converter = 10.5 k Ω with 1.65 \leq VCC \leq 1.8
C _{AIN} :	Input capacitance of A/D Converter = 7.5 pF with 1.65 < VCC < 3.6
utput impedance of	external circuit
_{ск} × 14	
t _C :	Compare time
t _{сск} :	Compare clock cycle
	R_{AIN} : C_{AIN} : utput impedance of $_{CK} \times 14$ t_{C} :



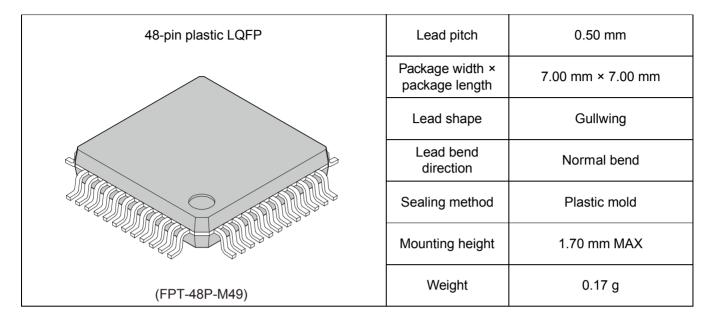
· Low-Speed Load (Upstream Port Load) – Reference 1

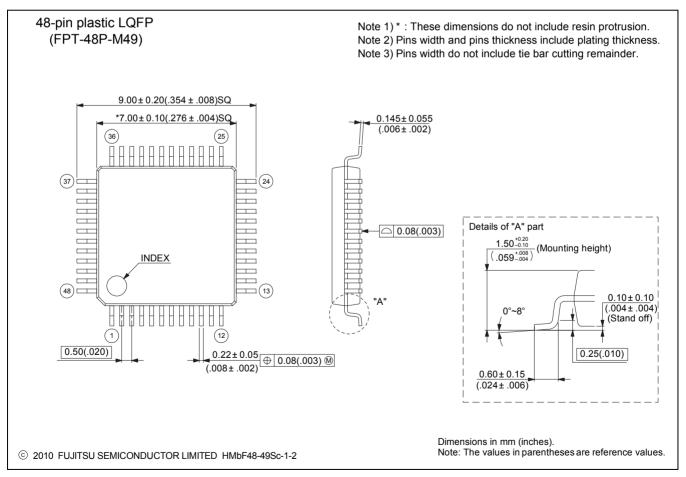
· Low-Speed Load (Downstream Port Load) – Reference 2

11.7.2 Low-Voltage Detection Interrupt

(T_A=-40°C to +105°C)

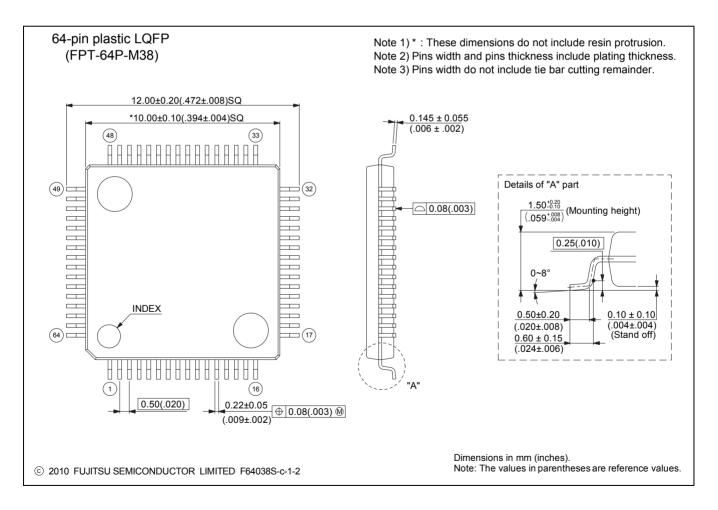
Parameter	Symbo	Conditions	Value			Uni	Domorko
	1		Min	Тур	Max	t	Remarks
Detected voltage	VDL	SVHI=00100	1.56	1.70	1.84	V	When voltage drops
Released voltage	VDH		1.61	1.75	1.89	V	When voltage rises
Detected voltage	VDL	SVHI=00101	1.61	1.75	1.89	V	When voltage drops
Released voltage	VDH		1.66	1.80	1.94	V	When voltage rises
Detected voltage	VDL	SVHI=00110	1.66	1.80	1.94	V	When voltage drops
Released voltage	VDH		1.70	1.85	2.00	V	When voltage rises
Detected voltage	VDL	SVHI=00111	1.70	1.85	2.00	V	When voltage drops
Released voltage	VDH		1.75	1.90	2.05	V	When voltage rises
Detected voltage	VDL	SVHI=01000	1.75	1.90	2.05	V	When voltage drops
Released voltage	VDH		1.79	1.95	2.11	V	When voltage rises
Detected voltage	VDL	SVHI=01001	1.79	1.95	2.11	V	When voltage drops
Released voltage	VDH		1.84	2.00	2.16	V	When voltage rises
Detected voltage	VDL	SVHI=01010	1.84	2.00	2.16	V	When voltage drops
Released voltage	VDH		1.89	2.05	2.21	V	When voltage rises
Detected voltage	VDL	SVHI=01011	1.89	2.05	2.21	V	When voltage drops
Released voltage	VDH		1.93	2.10	2.27	V	When voltage rises
Detected voltage	VDL	SVHI=01100	2.30	2.50	2.70	V	When voltage drops
Released voltage	VDH		2.39	2.60	2.81	V	When voltage rises
Detected voltage	VDL	SVHI=01101	2.39	2.60	2.81	V	When voltage drops
Released voltage	VDH		2.48	2.70	2.92	V	When voltage rises
Detected voltage	VDL	SVHI=01110	2.48	2.70	2.92	V	When voltage drops
Released voltage	VDH		2.58	2.80	3.02	V	When voltage rises
Detected voltage	VDL	SVHI=01111	2.58	2.80	3.02	V	When voltage drops
Released voltage	VDH		2.67	2.90	3.13	V	When voltage rises
Detected voltage	VDL	SVHI=10000	2.67	2.90	3.13	V	When voltage drops
Released voltage	VDH		2.76	3.00	3.24	V	When voltage rises
Detected voltage	VDL	SVHI=10001	2.76	3.00	3.24	V	When voltage drops
Released voltage	VDH		2.85	3.10	3.35	V	When voltage rises
Detected voltage	VDL	SVHI=10010	2.85	3.10	3.35	V	When voltage drops
Released voltage	VDH		2.94	3.20	3.46	V	When voltage rises
Detected voltage	VDL	SVHI=10011	2.94	3.20	3.46	V	When voltage drops
Released voltage	VDH		3.04	3.30	3.56	V	When voltage rises
LVD stabilization wait time	T _{LVDW}	-	-	-	8160 × t _{CYCP} *	μs	
LVD detection delay time	T _{LVDDL}	-	-	-	200	μs	


*: t_{CYCP} represents the APB1 bus clock cycle time.



12. Ordering Information

Part number	On-chip Flash memory [Kbyte]	On-Chip SRAM [Kbyte]	Package	Packing
S6E1C32D0AGV20000	128	16	Plastic • LQFP (0.50 mm pitch), 64 pins	Trov
S6E1C31D0AGV20000	64	12	(FPT-64P-M38)	Tray
S6E1C32C0AGV20000	128	16	Plastic • LQFP (0.50 mm pitch), 48 pins	Tray
S6E1C31C0AGV20000	64	12	(FPT-48P-M49)	
S6E1C32B0AGP20000	128	16	Plastic • LQFP (0.80 mm pitch), 32 pins	Tray
S6E1C31B0AGP20000	64	12	(FPT-32P-M30)	
S6E1C32D0AGN20000	128	16	Plastic • QFN64 (0.50 mm pitch), 64 pins	Tray
S6E1C31D0AGN20000	64	12	(LCC-64P-M25)	
S6E1C32C0AGN20000	128	16	Plastic • QFN48 (0.50 mm pitch), 48 pins	Tray
S6E1C31C0AGN20000	64	12	(LCC-48P-M74)	
S6E1C32B0AGN20000	128	16	Plastic • QFN32 (0.50 mm pitch), 32 pins	Tray
S6E1C31B0AGN20000	64	12	(LCC-32P-M73)	_
(TBD)	128	16	WLCSP (TBD)	(TBD)



64-pin plastic LQFP	Lead pitch	0.50 mm	
	Package width × package length	10.00 mm × 10.00 mm	
	Lead shape	Gullwing	
	Lead bend direction	Normal bend	
	Sealing method	Plastic mold	
	Mounting height	1.70 mm MAX	
(FPT-64P-M38)	Weight	0.32 g	

