

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	CSIO, I ² C, LINbus, UART/USART, USB
Peripherals	LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 6x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/s6e1c32b0agp20000

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Sales, Solutions, and Legal Information

3. Pin Assignment

FPT-64P-M38

Note:

The number after the underscore ("_") in a pin name such as XXX_1 and XXX_2 indicates the relocated port number. The channel on such pin has multiple functions, each of which has its own pin name. Use the Extended Port Function Register (EPFR) to select the pin to be used.

				Pin no.					
Pin function	Pin name	Function description	LQFP-64	LQFP-48	LQFP-32	WLCSP			
			QFN-64	QFN-48	QFN-32	(TBD)			
	MI2SDI4_1	I2S Serial Data Input pin (operation mode 2).	38	-	-	-			
	MI2SDO4_1	I2S Serial Data Output pin (operation mode 2).	37	-	-	-			
	MI2SCK4_1	I2S Serial Clock Output pin (operation mode 2).	36	-	-	-			
	MI2SWS4_1	I2S Word Select Output pin (operation mode 2).	35	-	-	-			
	MI2SMCK4_1	I2S Master Clock Input/output pin (operation mode 2).	34	-	-	-			
123(14153)	MI2SDI6_1	I2S Serial Data Input pin (operation mode 2).	8	8	-	-			
	MI2SDO6_1	I2S Serial Data Output pin (operation mode 2).	7	7	-	-			
	MI2SCK6_1	I2S Serial Clock Output pin (operation mode 2).	6	6	-	-			
	MI2SWS6_1	I2S Word Select Output pin (operation mode 2).	5	5	-	-			
	MI2SMCK6_1	I2S Master Clock Input/output pin (operation mode 2).	9	9	-	-			
	IC1_CIN_0	Smart Card insert detection output pin	11	-	-	-			
Smort Cord	IC1_CLK_0	Smart Card serial interface clock output pin	16	-	-	-			
Smart Card	IC1_DATA_0	Smart Card serial interface data input pin	12	-	-	-			
Interface	IC1_RST_0	Smart Card reset output pin	13	-	-	-			
	IC1_VCC_0	Smart Card power enable output pin	15	-	-	-			
	IC1_VPEN_0	Smart Card programming output pin	14	-	-	-			
	UDM0	USB function/host D – pin	58	44	30	-			
USB	UDP0	USB function/host D + pin	59	45	31	-			
	UHCONX0	USB external pull-up control pin	61	47	-	-			
	RTCCO_0	0.5 seconds pulse output pip of	64	48	1	-			
	RTCCO_1	real-time clock	43	31	21	-			
Real-time	RTCCO_2		11	10	-	-			
Clock	SUBOUT_0		64	48	1	-			
	SUBOUT_1	Sub clock output pin	43	31	21	-			
	SUBOUT_2		11	10	-	-			
HDMI-CEC/Re	CEC0_0	HDMI-CEC/Remote Control Reception ch.0 input/output pin	38	27	-	-			
Reception	CEC1_0	HDMI-CEC/Remote Control Reception ch.1 input/output pin	33	25	17	-			

5. I/O Circuit Type

Notes on Power-on

Turn power on/off in the following order or at the same time.

Turning on : VCC \rightarrow AVRH Turning off : AVRH \rightarrow VCC

Serial Communication

There is a possibility to receive wrong data due to the noise or other causes on the serial communication.

Therefore, design a printed circuit board so as to avoid noise.

Consider the case of receiving wrong data due to noise; perform error detection such as by applying a checksum of data at the end. If an error is detected, retransmit the data.

Differences in Features Among the Products with Different Memory Sizes and Between Flash Memory Products and MASK Products

The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and oscillation characteristics among the products with different memory sizes and between Flash memory products and MASK products are different because chip layout and memory structures are different.

If you are switching to use a different product of the same series, please make sure to evaluate the electric characteristics.

Pull-Up Function of 5 V Tolerant I/O

Please do not input the signal more than VCC voltage at the time of Pull-Up function use of 5 V tolerant I/O.

Handling when Using Debug Pins

When debug pins (SWDIO/SWCLK) are set to GPIO or other peripheral functions, set them as output only; do not set them as input.

Memory Map (2)

	S6E1C31B0A S6E1C31C0A S6E1C31D0A		S6E1C32B0A S6E1C32C0A S6E1C32D0A	
0x2008_0000		0x2008_0000		
	Reserved		Reserved	
0x2000_4000	0.5.4.4	0x2000_4000	0.5.4.4	
	SRAM		SRAM	
0×2000_3000	4K byte	0x2000_3000	4K byle	
0x2000 1000	SRAM 8K byte		SRAM 12K byte	
			1210 byte	
	Reserved	0x2000_0000		
			Reserved	
0x0010 0004	CR trimming	0x0010 0004	CR trimming	
0x0010 0000	Security	0x0010 0000	Security	
	Reserved		Reserved	
0x0000 FFF0		0x0001_FFF0_	Flash	
(64	Flash 65520 Byte 4Kbyte - 16Byte) *	(131056 Byte 128Kbyte - 16Byte) [*]	
0x0000_0000		0x0000_0000		

*: See "S6E1C1/C3 Series Flash Programming Manual" to check details of the Flash memory.

Each term in above table have the following meanings.

Туре

This indicates a pin status type that is shown in "pin list table" in "4. List of Pin Functions"

Selected Pin function

This indicates a pin function that is selected by user program.

CPU state

This indicates a state of the CPU that is shown below.

- (1) Reset state. CPU is initialized by Power-on reset or a reset due to low Power voltage supply.
- (2) Reset state. CPU is initialized by INITX input signal or system initialization after power on reset.
- (3) Run mode or SLEEP mode state.
- (4) Timer mode, RTC mode or STOP mode state.
- The standby pin level setting bit (SPL) in the Standby Mode Control Register (STB_CTL) is set to "0". Timer mode, RTC mode or STOP mode state.
- (5) The standby pin level setting bit (SPL) in the Standby Mode Control Register (STB_CTL) is set to "1".
- (6) Deep standby STOP mode or Deep standby RTC mode state,
- The standby pin level setting bit (SPL) in the Standby Mode Control Register (STB_CTL) is set to "0" Deep standby STOP mode or Deep standby RTC mode state,
- (7) The standby pin level setting bit (SPL) in the Standby Mode Control Register (STB_CTL) is set to "1"
 Run mode state after returning from Deep Standby mode.
- (8) (I/O state hold function(CONTX) is fixed at 1)

11.2 Recommended Operating Conditions

(V _{SS} =	0.0) V)

Paramotor	Symbol	Conditions	Va	lue	Unit	Pomarke	
Falalletei	Symbol	Conditions	Min	Max	Unit	itemaiks	
Power supply voltage	Vee	Vac		3.6	V		
Tower supply voltage	VCC	-	3.0	3.6	V	*1	
	AVRH	-	2.7	Vcc	V	V _{CC} ≥2.7 V	
Analog reference voltage			V _{CC}	V _{CC}	V	V _{CC} < 2.7 V	
	AVRL	-	VSS	VSS	V		
Smoothing capacitor	Cs	-	1	10	μF	For regulator* ²	
Operating temperature	Та	-	- 40	+ 105	С°		

*1: When P81/UDP0 and P80/UDM0 pins are used as USB (UDP0, UDM0).

*2: See "C Pin" in "7. Handling Devices" for the connection of the smoothing capacitor.

*3: In between less than the minimum power supply voltage reset / interrupt detection voltage or more, instruction execution and low voltage detection function by built-in High-speed CR (including Main PLL is used) or built-in Low-speed CR is possible to operate only.

<WARNING>

1. The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

- 2. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
- 3. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet.
- 4. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

LVD Current

(V_{CC}=1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Poromotor	Symbol	Pin	Conditiono	Va	ue	Unit	Bomorko
Falametei	Symbol	Name	Conditions	Тур	Max	Unit	Relliarks
Low-Voltage				0.15	0.3	μA	For occurrence of reset
detection circuit (LVD) power supply current	ICCLVD	VCC	At operation	0.10	0.3	μA	For occurrence of interrupt

Bipolar Vref Current

(V_{CC}=1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Paramotor	Symbol	Pin	Conditions	Va	Value		Pomarks
Falameter	Symbol	Name	Conditions	Тур	Max	Unit	Remarks
Bipolar Vref Current	I _{CCBGR}	VCC	At operation	100	200	μA	

Flash Memory Current

(V_{CC}=1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Paramotor	Symbol	Pin	Conditions	Value		Unit	Pomarks
Falameter	Symbol	Name	Conditions	Тур	Max	Unit	Remarks
Flash memory write/erase current	I _{CCFLASH}	VCC	At Write/Erase	4.4	5.6	mA	

A/D converter Current

(V_{CC}=1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Paramotor	Symbol	Pin	Conditions	Va	ue	Unit	Pomarks
Falameter	Symbol	Name	conditions	Тур	Max	Onit	itellia ks
Power supply current	I _{CCAD}	VCC	At operation	0.5	0.75	mA	
Reference power supply			At operation	0.69	1.3	mA	AVRH=3.6 V
current (AVRH)	ICCAVRH	AVAL	At stop	0.1	1.3	μA	

11.4.2 Sub Clock Input Characteristics

(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Parameter	Symbol	Pin	Conditions		Value		Unit	Pomarks	
Falameter	Symbol	Name	ne Min Typ Ma		Мах	Onit	Kennarks		
Input frequency	f _{CL}		-	-	32.768	-	kHz	When the crystal oscillator is connected	
		X0A,	X0A, X1A	-	32	-	100	kHz	When the external clock is used
Input clock cycle	t _{CYLL}	AIA	-	10	-	31.25	μs	When the external clock is used	
Input clock pulse width	-		Pwh/tcyll, Pwl/tcyll	45	-	55	%	When the external clock is used	

*: See "Sub crystal oscillator" in "7. Handling Devices" for the crystal oscillator used.

11.4.3 Built-in CR Oscillation Characteristics

Built-in High-Speed CR

(V_{CC}= 1.65 V to 3.6 V, V_{SS} = 0 V, T_A=- 40°C to +105°C)

Paramatar	Symbol	Conditions		Value		Unit	Bomorko
Parameter	Symbol	Conditions	Min	Тур	Мах	Unit	Remarks
Clock frequency	F _{CRH}	Ta = - 40°C to + 105°C,	7.84	8	8.16	MHz	After trimming *1
Frequency stabilization time	t _{CRWT}	-	-	-	300	μs	*2

*1: In the case of using the values in CR trimming area of Flash memory at shipment for frequency trimming/temperature trimming.

*2: This is time from the trim value setting to stable of the frequency of the High-speed CR clock. After setting the trim value, the period when the frequency stability time passes can use the High-speed CR clock as a source clock.

Built-in Low-Speed CR

(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Paramotor	Symbol Conditions			Value		Unit	Pomarke	
Farameter	Symbol	Conditions	Min	Тур	Max	Onit	Remarks	
Clock frequency	f _{CRL}	-	50	100	150	kHz		

SPI (SPI=1, SCINV=1)

Deremeter	Symphol	Pin Conditions		V _{cc} < 2	2.7 V	V _{cc} ≥2	L lus i t	
Parameter	Symbol	name	Conditions	Min	Max	Min	Max	Unit
Serial clock cycle time	tscyc	SCKx		4 t _{CYCP}	-	4 t _{CYCP}	-	ns
$SCK \downarrow \to SOT \text{ delay time}$	t _{sLOVI}	SCKx, SOTx		- 30	+ 30	- 20	+ 20	ns
$SIN \to SCK \uparrow setup time$	tıvs∺ı	SCKx, SINx	Master mode	50	-	36	-	ns
$SCK \uparrow \to SIN \text{ hold time}$	t _{SHIXI}	SCKx, SINx		0	-	0	-	ns
$SOT \to SCK \uparrow delay \text{ time}$	t _{sovнi}	SCKx, SOTx		2 t _{CYCP} - 30	-	2 t _{CYCP} - 30	-	ns
Serial clock "L" pulse width	t _{SLSH}	SCKx		2 t _{CYCP} - 10	-	2 t _{CYCP} - 10	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCKx		t _{CYCP} + 10	-	t _{CYCP} + 10	-	ns
$SCK \downarrow \to SOT \text{ delay time}$	t _{SLOVE}	SCKx, SOTx		-	50	-	33	ns
$SIN \to SCK \uparrow setup time$	t _{IVSHE}	SCKx, SINx	Slave mode	10	-	10	-	ns
$SCK \uparrow \to SIN \text{ hold time}$	t _{SHIXE}	SCKx, SINx		20	-	20	-	ns
SCK falling time	tF	SCKx		-	5	-	5	ns
SCK rising time	tR	SCKx		-	5	-	5	ns

(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Notes:

- The above AC characteristics are for clock synchronous mode.

t_{CYCP} represents the APB bus clock cycle time.
 For the number of the APB bus to which Multi-function Serial has been connected, see "8. Block Diagram".

- The characteristics are only applicable when the relocate port numbers are the same. For instance, they are not applicable for the combination of SCKx_0 and SOTx_1.

- External load capacitance C_L=30 pF

When Using CSIO/SPI Chip Select (SCINV=1, CSLVL=1)

(Vcc=	1 65 \	/ to 3.6	V	Vcc=	0 V	T ₄ =-	40°	°C.	to	+105	°C)
	VCC-	1.00 V	10 0.0	v,	vss-	υν,	I A		\circ	ιU	100	Ο,

Paramotor	Symbol	Conditions	V _{cc} < 2	2.7 V	V _{cc} ≥ 2	Unit	
Falameter	Symbol	Conditions	Min	Max	Min	Мах	Unit
$SCS \downarrow \rightarrow SCK \uparrow$ setup time	t _{cssi}		(*1)-50	(*1)+0	(*1)-50	(*1)+0	ns
SCK↓→SCS↑ hold time	t _{CSHI}	Master mode	(*2)+0	(*2)+50	(*2)+0	(*2)+50	ns
SCS deselect time	t _{CSDI}		(*3)-50	(*3)+50	(*3)-50	(*3)+50	ns
SCS↓→SCK↑ setup time	t _{CSSE}		3t _{CYCP} +30	-	3t _{CYCP} +30	-	ns
$SCK \downarrow \rightarrow SCS \uparrow$ hold time	t _{CSHE}		0	-	0	-	ns
SCS deselect time	t _{CSDE}	Slave mode	3t _{CYCP} +30	-	3t _{CYCP} +30	-	ns
SCS↓→SOT delay time	t _{DSE}		-	55	-	40	ns
SCS↑→SOT delay time	t _{DEE}		0	-	0	-	ns

*1: CSSU bit value × serial chip select timing operating clock cycle.

*2: CSHD bit value × serial chip select timing operating clock cycle.

*3: CSDS bit value × serial chip select timing operating clock cycle. Irrespective of CSDS bit setting, 5t_{CYCP} or more are required for the period the time when the serial chip select pin becomes inactive to the time when the serial chip select pin becomes active again.

Notes:

- t_{CYCP} indicates the APB bus clock cycle time.
 For information about the APB bus number which Multi-function Serial is connected to, see "8. Block Diagram".
- For information about CSSU, CSHD, CSDS, serial chip select timing operating clock, see "FM0+ Family Peripheral Manual".
- These characteristics only guarantee the same relocate port number.
 For example, the combination of SCKx_0 and SCSIx_1 is not guaranteed.
- When the external load capacitance C_L =30 pF.

11.4.12 I²S Timing (MFS-I2S Timing)

Master Mode Timing

(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Paramotor	Symbo	Pin	Conditions	V _{cc} < 2.7 V		V _{cc} ≥ 2.7 V		Unit
Farameter	Ī	Name	Conditions	Min	Max	Min	Max	Unit
MI2SCK max frequency (*1)	F _{MI2SCK}	MI2SCKx		-	6.144	-	6.144	MHz
I ² S clock cycle time (*1)	t _{ICYC}	MI2SCKx		4 t _{CYCP}	-	4 t _{CYCP}	-	ns
I ² S clock Duty cycle	Δ	MI2SCKx		45%	55%	45%	55%	
		MI2SCKx						
$MI2SCK \downarrow \rightarrow MI2SWS delay$	town	,		30	+30	20	+20	nc
time	ISWDI	MI2SWS		-30	+30	-20	+20	115
		х						
		MI2SCKx						
$MI2SCK \downarrow \rightarrow MI2SDO \text{ delay}$	teppt	,		-30	+30	-20	+20	ns
time	SDDT	MI2SDO	C _L =30 pF	00	.00	20	.20	115
		х						
MI2SDI → MI2SCK ↑ setup		MI2SCKx						
time	t _{DSST}	,		50	-	36	-	ns
		MI2SDIx						
MI2SCK $\uparrow \rightarrow$ MI2SDI hold		MI2SCKx						
time	t _{SDHT}	,		0	-	0	-	ns
		MI2SDIx						
MI2SCK falling time	tF	MI2SCKx		-	5	-	5	ns
MI2SCK rising time	tR	MI2SCKx		-	5	-	5	ns

*1: I²S clock should meet the multiple of PCLK(t_{ICYC}) and the frequency less than F_{MI2SCK} meantime. The detail information please refer to Chapter I²S of Communication Macro Part of Peripheral Manual.

Definitions of 12-bit A/D Converter Terms

Resolution:

Analog variation that is recognized by an A/D converter.

Deviation of the line between the zero-transition point (0b00000000000 $\leftrightarrow \rightarrow$ 0b00000000001) and the ■Integral Nonlinearity: full-scale transition point (0b1111111110 $\leftarrow \rightarrow 0b11111111111)$ from the actual conversion characteristics.

Differential Nonlinearity: Deviation from the ideal value of the input voltage that is required to change the output code by 1 LSB.

· Low-Speed Load (Upstream Port Load) – Reference 1

· Low-Speed Load (Downstream Port Load) – Reference 2

11.7 Low-Voltage Detection Characteristics

11.7.1 Low-Voltage Detection Reset

(T_A=-40°C to +105°C)

Paramotor	Symbol	Conditions		Value		Unit	Pomarks
Falameter	Symbol	Conditions	Min	Min Typ M		Unit	Itellia K5
Detected voltage	VDL	Eived ^{*1}	1.38	1.50	1.60	V	When voltage drops
Released voltage	VDH	Fixeu	1.43	1.55	1.65	V	When voltage rises
LVD stabilization wait time	T _{LVDW}	-	-	-	8160× t _{CYCP} *2	μs	
LVD detection delay time	T _{LVDDL}	-	-	-	200	μs	

*1: The value of low voltage detection reset is always fixed.

*2: t_{CYCP} indicates the APB1 bus clock cycle time.

11.9.2 Return Factor: Reset

The return time from Low-Power consumption mode is indicated as follows. It is from releasing reset to starting the program operation.

Return Count Time

 $(V_{CC}=1.65 \text{ V to } 3.6 \text{ V}, T_{A}=-40^{\circ}\text{C to } +105^{\circ}\text{C})$

Param	eter	Symbol	Va	lue	Unit	Domorko
Current Mode	Mode to return	Symbol	Тур	Max*	Unit	Remarks
High-speed CR Sleep mode Main Sleep mode PLL Sleep mode			20	22	μs	When High-speed CR is enabled
Low-speed CR Sleep mode			50	106	μs	When High-speed CR is enabled
Sub Sleep mode			112	137	μs	When High-speed CR is enabled
High-speed CR Timer mode Main Timer mode PLL Timer mode	High-speed CR Run mode	t _{rcnt}	20	22	μs	When High-speed CR is enabled
Low-speed CR Timer mode			87	159	μs	
Sub Timer mode			148	209	μs	
Stop mode RTC mode			45	68	μs	
Deep Standby RTC mode Deep Standby Stop mode			43	281	μs	

*: The maximum value depends on the accuracy of built-in CR.

Operation Example of Return from Low-Power Consumption Mode (by INITX)

