

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	XCore
Core Size	32-Bit 8-Core
Speed	1000MIPS
Connectivity	USB
Peripherals	-
Number of I/O	33
Program Memory Size	·
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	0.95V ~ 3.6V
Data Converters	·
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	128-TQFP Exposed Pad
Supplier Device Package	128-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/xmos/xu208-128-tq128-c10

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

xCORE Multicore Microcontrollers 1

The xCORE-200 Series is a comprehensive range of 32-bit multicore microcontrollers that brings the low latency and timing determinism of the xCORE architecture to mainstream embedded applications. Unlike conventional microcontrollers. xCORE multicore microcontrollers execute multiple real-time tasks simultaneously and communicate between tasks using a high speed network. Because xCORE multicore microcontrollers are completely deterministic, you can write software to implement functions that traditionally require dedicated hardware.

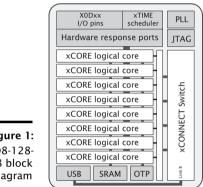


Figure 1: XU208-128-TO128 block diagram

Kev features of the XU208-128-TO128 include:

- ▶ **Tiles**: Devices consist of one or more xCORE tiles. Each tile contains between five and eight 32-bit xCOREs with highly integrated I/O and on-chip memory.
- Logical cores Each logical core can execute tasks such as computational code, DSP code, control software (including logic decisions and executing a state machine) or software that handles I/O. Section 6.1
- xTIME scheduler The xTIME scheduler performs functions similar to an RTOS. in hardware. It services and synchronizes events in a core, so there is no requirement for interrupt handler routines. The xTIME scheduler triggers cores on events generated by hardware resources such as the I/O pins, communication channels and timers. Once triggered, a core runs independently and concurrently to other cores, until it pauses to wait for more events. Section 6.2
- Channels and channel ends Tasks running on logical cores communicate using channels formed between two channel ends. Data can be passed synchronously or asynchronously between the channel ends assigned to the communicating tasks. Section 6.5
- xCONNECT Switch and Links Between tiles, channel communications are implemented over a high performance network of xCONNECT Links and routed through a hardware xCONNECT Switch. Section 6.6

-XM()S

2

2 XU208-128-TQ128 Features

► Multicore Microcontroller with Advanced Multi-Core RISC Architecture

- Eight real-time logical cores
- Core share up to 500 MIPS
 - Up to 1000 MIPS in dual issue mode
- Each logical core has:
 - Guaranteed throughput of between 1/5 and 1/8 of tile MIPS
 - 16x32bit dedicated registers
- 167 high-density 16/32-bit instructions
 - All have single clock-cycle execution (except for divide)
 - 32x32 ${\rightarrow}64$ bit MAC instructions for DSP, arithmetic and user-definable cryptographic functions

▶ USB PHY, fully compliant with USB 2.0 specification

Programmable I/O

- 33 general-purpose I/O pins, configurable as input or output
 - Up to 25 x 1bit port, 12 x 4bit port, 8 x 8bit port, 4 x 16bit port
 - 1 xCONNECT link
- Port sampling rates of up to 60 MHz with respect to an external clock
- 32 channel ends for communication with other cores, on or off-chip

Memory

- 128KB internal single-cycle SRAM for code and data storage
- 8KB internal OTP for application boot code

Hardware resources

- 6 clock blocks
- 10 timers
- 4 locks
- JTAG Module for On-Chip Debug

Security Features

• Programming lock disables debug and prevents read-back of memory contents

-XM()S

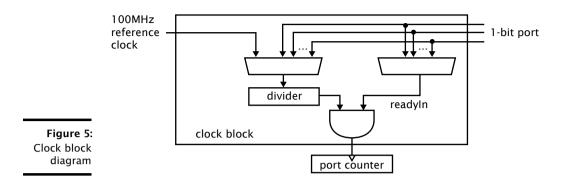
• AES bootloader ensures secrecy of IP held on external flash memory

► Ambient Temperature Range

- Commercial qualification: 0°C to 70°C
- Industrial qualification: -40 °C to 85 °C
- Speed Grade
 - 10: 500 MIPS
- Power Consumption
 - 570 mA (typical)
- 128-pin TQFP package 0.4 mm pitch

4 Signal Description

This section lists the signals and I/O pins available on the XU208-128-TQ128. The device provides a combination of 1 bit, 4bit, 8bit and 16bit ports, as well as wider ports that are fully or partially (gray) bonded out. All pins of a port provide either output or input, but signals in different directions cannot be mapped onto the same port.


Pins may have one or more of the following properties:

- PD/PU: The IO pin has a weak pull-down or pull-up resistor. On GPIO pins this resistor can be enabled. This resistor is designed to ensure defined logic input state for unconnected pins. It should not be used to pull external circuitry. Note that the resistors are highly non-linear and only a maximum pull current is specified in Section 13.2.
- ST: The IO pin has a Schmitt Trigger on its input.
- IOL/IOT/IOR: The IO pin is powered from VDDIOL, VDDIOT, and VDDIOR respectively

Power pins (10)												
Signal	Function	Туре	Properties									
GND	Digital ground	GND										
OTP_VCC	OTP power supply	PWR										
PLL_AGND	Analog ground for PLL	PWR										
PLL_AVDD	Analog PLL power	PWR										
USB_VDD	Digital tile power	PWR										
USB_VDD33	USB Analog power	PWR										
VDD	Digital tile power	PWR										
VDDIOL	Digital I/O power (left)	PWR										
VDDIOR	Digital I/O power (right)	PWR										
VDDIOT	Digital I/O power (top)	PWR										

	JTAG pins (6)													
Signal	Function	Туре	Properties											
RST_N	Global reset input	Input	IOL, PU, ST											
ТСК	Test clock	Input	IOL, PD, ST											
TDI	Test data input	Input	IOL, PU											
TDO	Test data output	Output	IOL, PD											
TMS	Test mode select	Input	IOL, PU											
TRST_N	Test reset input	Input	IOL, PU, ST											

-XM()S

A clock block can use a 1-bit port as its clock source allowing external application clocks to be used to drive the input and output interfaces. xCORE-200 clock blocks optionally divide the clock input from a 1-bit port.

In many cases I/O signals are accompanied by strobing signals. The xCORE ports can input and interpret strobe (known as readyIn and readyOut) signals generated by external sources, and ports can generate strobe signals to accompany output data.

On reset, each port is connected to clock block 0, which runs from the xCORE Tile reference clock.

6.5 Channels and Channel Ends

Logical cores communicate using point-to-point connections, formed between two channel ends. A channel-end is a resource on an xCORE tile, that is allocated by the program. Each channel-end has a unique system-wide identifier that comprises a unique number and their tile identifier. Data is transmitted to a channel-end by an output-instruction; and the other side executes an input-instruction. Data can be passed synchronously or asynchronously between the channel ends.

6.6 xCONNECT Switch and Links

XMOS devices provide a scalable architecture, where multiple xCORE devices can be connected together to form one system. Each xCORE device has an xCONNECT interconnect that provides a communication infrastructure for all tasks that run on the various xCORE tiles on the system.

The interconnect relies on a collection of switches and XMOS links. Each xCORE device has an on-chip switch that can set up circuits or route data. The switches are connected by xConnect Links. An XMOS link provides a physical connection between two switches. The switch has a routing algorithm that supports many different topologies, including lines, meshes, trees, and hypercubes.

The links operate in either 2 wires per direction or 5 wires per direction mode, depending on the amount of bandwidth required. Circuit switched, streaming

- ► A 32-bit program size *s* in words.
- Program consisting of $s \times 4$ bytes.
- A 32-bit CRC, or the value 0x0D15AB1E to indicate that no CRC check should be performed.

The program size and CRC are stored least significant byte first. The program is loaded into the lowest memory address of RAM, and the program is started from that address. The CRC is calculated over the byte stream represented by the program size and the program itself. The polynomial used is 0xEDB88320 (IEEE 802.3); the CRC register is initialized with 0xFFFFFFFF and the residue is inverted to produce the CRC.

8.1 Boot from QSPI master

If set to boot from QSPI master, the processor enables the six pins specified in Figure 10, and drives the SPI clock at 50 MHz (assuming a 400 MHz core clock). A READ command is issued with a 24-bit address 0x000000. The clock polarity and phase are 0 / 0.

	Pin	Signal	Description
	X0D01	SS	Slave Select
Figure 10:	X0D04X0D07	SPIO	Data
QSPI pins	X0D10	SCLK	Clock

The xCORE Tile expects each byte to be transferred with the *least-significant nibble first*. Programmers who write bytes into an QSPI interface using the most significant nibble first may have to reverse the nibbles in each byte of the image stored in the QSPI device.

The pins used for QSPI boot are hardcoded in the boot ROM and cannot be changed. If required, an QSPI boot program can be burned into OTP that uses different pins.

8.2 Boot from SPI master

If set to boot from SPI master, the processor enables the four pins specified in Figure 11, and drives the SPI clock at 2.5 MHz (assuming a 400 MHz core clock). A READ command is issued with a 24-bit address 0x000000. The clock polarity and phase are 0 / 0.

	Pin	Signal	Description
	X0D00	MISO	Master In Slave Out (Data)
Figure 11:	X0D01	SS	Slave Select
SPI master	X0D10	SCLK	Clock
pins	X0D11	MOSI	Master Out Slave In (Data)

The xCORE Tile expects each byte to be transferred with the *least-significant bit first*. Programmers who write bytes into an SPI interface using the most significant

boundary scan of the I/O pins. The chip TAP provides access into the xCORE Tile, switch and OTP for loading code and debugging.

The TRST_N pin must be asserted low during and after power up for 100 ns. If JTAG is not required, the TRST_N pin can be tied to ground to hold the JTAG module in reset.

The JTAG device identification register can be read by using the IDCODE instruction. Its contents are specified in Figure 16.

Figure 16: IDCODE return value

Bi	Bit31 Device Identification Register Bit0																															
	Version Part Number										Manufacturer Identity								1													
0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	1	0	0	0	1	1	0	0	1	1
		0			0 0						()			. (5		6 3							1	3						

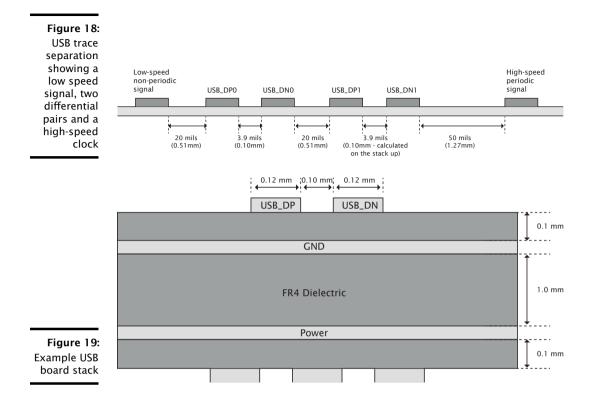
The JTAG usercode register can be read by using the USERCODE instruction. Its contents are specified in Figure 17. The OTP User ID field is read from bits [22:31] of the security register , *see* §9.1 (all zero on unprogrammed devices).

Figure 17: USERCODE return value

. 17.	Bit	31												l	Jser	code	Reg	jiste	r												В	it0
e 17:				0	TP U	ser	D					Unu	sed									Silio	on l	Revis	sion							
ODE value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
alue		()			()			()			2	2			1	8			. ()			()			()	

12 Board Integration

The device has the following power supply pins:

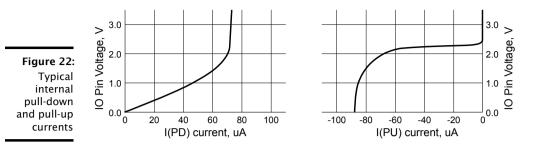

- ▶ VDD pins for the xCORE Tile, including a USB_VDD pin that powers the USB PHY
- VDDIO pins for the I/O lines. Separate I/O supplies are provided for the left, top, and right side of the package; different I/O voltages may be supplied on those. The signal description (Section 4) specifies which I/O is powered from which power-supply
- PLL_AVDD pins for the PLL
- ▶ OTP_VCC pins for the OTP
- ► A USB_VDD33 pin for the analogue supply to the USB-PHY

-XM()S

Several pins of each type are provided to minimize the effect of inductance within the package, all of which must be connected. The power supplies must be brought up monotonically and input voltages must not exceed specification at any time.

The VDD supply must ramp from 0V to its final value within 10 ms to ensure correct startup.

The VDDIO and OTP_VCC supply must ramp to its final value before VDD reaches 0.4 V.


For best results, most of the routing should be done on the top layer (assuming the USB connector and XS2-U8A-128-TQ128 are on the top layer) closest to GND. Reference planes should be below the transmission lines in order to maintain control of the trace impedance.

We recommend that the high-speed clock and high-speed USB differential pairs are routed first before any other routing. When routing high speed USB signals, the following guidelines should be followed:

▶ High speed differential pairs should be routed together.

•XMOS

- ▶ High-speed USB signal pair traces should be trace-length matched. Maximum trace-length mismatch should be no greater than 4mm.
- ▶ Ensure that high speed signals (clocks, USB differential pairs) are routed as far away from off-board connectors as possible.
- ▶ High-speed clock and periodic signal traces that run parallel should be at least 1.27mm away from USB_DP/USB_DN (see Figure 18).

13.3 ESD Stress Voltage

Figure 23 ESD stress voltage

23:	Symbol	Parameter	MIN	ТҮР	MAX	UNITS	Notes
ess	HBM	Human body model	-2.00		2.00	KV	
ige	CDM	Charged Device Model	-500		500	V	

13.4 Reset Timing

	Symbol	Parameters	MIN	TYP	MAX	UNITS	Notes
Figure 24:	T(RST)	Reset pulse width	5			μs	
Reset timing	T(INIT)	Initialization time			150	μs	А
	A Shows the	time taken to start booting after PST N b	and done	high			

A Shows the time taken to start booting after RST_N has gone high.

13.5 Power Consumption

Symbol	Parameter	MIN	TYP	MAX	UNITS	Notes
I(DDCQ)	Quiescent VDD current		45		mA	A, B, C
PD	Tile power dissipation		325		µW/MIPS	A, D, E, F
IDD	Active VDD current		570	700	mA	A, G
I(ADDPLL)	PLL_AVDD current		5	7	mA	Н
I(VDD33)	VDD33 current		26.7		mA	I
I(USB_VDD)	USB_VDD current		8.27		mA	J

A Use for budgetary purposes only.

- B Assumes typical tile and I/O voltages with no switching activity.
- C Includes PLL current.
- D Assumes typical tile and I/O voltages with nominal switching activity.
- E Assumes 1 MHz = 1 MIPS.
- F PD(TYP) value is the usage power consumption under typical operating conditions.
- G Measurement conditions: VDD = 1.0 V, VDDIO = 3.3 V, 25 °C, 500 MHz, average device resource usage.
- H PLL_AVDD = 1.0 V
- I HS mode transmitting while driving all 0's data (constant JKJK on DP/DM). Loading of 10 pF. Transfers do not include any interpacket delay.
- J HS receive mode; no traffic.

Figure 25: xCORE Tile currents

The tile power consumption of the device is highly application dependent and should be used for budgetary purposes only.

More detailed power analysis can be found in the XS1-U Power Consumption document,

13.6	Clock

Figure 26: Clock

Symbol	Parameter	MIN	TYP	MAX	UNITS	Notes
f	Frequency	9	24	25	MHz	
SR	Slew rate	0.10			V/ns	
TJ(LT)	Long term jitter (pk-pk)			2	%	А
f(MAX)	Processor clock frequency			500	MHz	В

A Percentage of CLK period.

B Assumes typical tile and I/O voltages with nominal activity.

Further details can be found in the XS1-U Clock Frequency Control document,

Appendices

A Configuration of the XU208-128-TQ128

The device is configured through banks of registers, as shown in Figure 32.

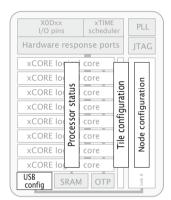


Figure 32: Registers

> The following communication sequences specify how to access those registers. Any messages transmitted contain the most significant 24 bits of the channel-end to which a response is to be sent. This comprises the node-identifier and the channel number within the node. if no response is required on a write operation, supply 24-bits with the last 8-bits set, which suppresses the reply message. Any multi-byte data is sent most significant byte first.

A.1 Accessing a processor status register

The processor status registers are accessed directly from the processor instruction set. The instructions GETPS and SETPS read and write a word. The register number should be translated into a processor-status resource identifier by shifting the register number left 8 places, and ORing it with 0x0B. Alternatively, the functions getps(reg) and setps(reg,value) can be used from XC.

A.2 Accessing an xCORE Tile configuration register

xCORE Tile configuration registers can be accessed through the interconnect using the functions write_tile_config_reg(tileref, ...) and read_tile_config_reg(tile \rightarrow ref, ...), where tileref is the name of the xCORE Tile, e.g. tile[1]. These functions implement the protocols described below.

Instead of using the functions above, a channel-end can be allocated to communicate with the xCORE tile configuration registers. The destination of the channel-end should be set to 0xnnnnC20C where nnnnnn is the tile-identifier.

A write message comprises the following:

0x30 .. 0x33: Instruction breakpoint address

ction point	Bits	Perm	Init	Description
dress	31:0	DRW		Value.

B.22 Instruction breakpoint control: 0x40 .. 0x43

This register controls which logical cores may take an instruction breakpoint, and under which condition.

	Bits	Perm	Init	Description
	31:24	RO	-	Reserved
	23:16	DRW	0	A bit for each thread in the machine allowing the breakpoint to be enabled individually for each thread.
3:	15:2	RO	-	Reserved
on nt	1	DRW	0	When 0 break when PC == IBREAK_ADDR. When 1 = break when PC != IBREAK_ADDR.
ol	0	DRW	0	When 1 the instruction breakpoint is enabled.

0x40 .. 0x43 Instruction breakpoint control

B.23 Data watchpoint address 1: 0x50 ... 0x53

This set of registers contains the first address for the four data watchpoints.

0x50 0x53: Data watchpoint				
watchpoint	Bits	Perm	Init	Description
address 1	31:0	DRW		Value.

B.24 Data watchpoint address 2: 0x60 .. 0x63

This set of registers contains the second address for the four data watchpoints.

0x60 0x63: Data				
watchpoint	Bits	Perm	Init	Description
address 2	31:0	DRW		Value.

-XMOS-

0x62: SR of logical core 2

Bits	Perm	Init	Description
31:0	CRO		Value.

C.20 SR of logical core 3: 0x63

Value of the SR of logical core 3

0x63: SR of logical core 3

Bits	Perm	Init	Description
31:0	CRO		Value.

C.21 SR of logical core 4: 0x64

Value of the SR of logical core 4

 Ox64: SR of logical core 4
 Bits
 Perm
 Init
 Description

 31:0
 CRO
 Value.

C.22 SR of logical core 5: 0x65

Value of the SR of logical core 5

0x65 SR of logical core 5

)x65: gical	Bits	Perm	Init	Description
ore 5	31:0	CRO		Value.

C.23 SR of logical core 6: 0x66

Value of the SR of logical core 6

0x66: SR of logical core 6

Bits	Perm	Init	Description
31:0	CRO		Value.

D.2 System switch description: 0x01

This register specifies the number of processors and links that are connected to this switch.

0x01 System switch description

	Bits	Perm	Init	Description
-	31:24	RO	-	Reserved
l:	23:16	RO		Number of SLinks on the SSwitch.
h	15:8	RO		Number of processors on the SSwitch.
n	7:0	RO		Number of processors on the device.

D.3 Switch configuration: 0x04

This register enables the setting of two security modes (that disable updates to the PLL or any other registers) and the header-mode.

Bits	Perm	Init	Description
31	RW	0	0 = SSCTL registers have write access. $1 = SSCTL$ registers can not be written to.
30:9	RO	-	Reserved
8	RW	0	0 = PLL_CTL_REG has write access. 1 = PLL_CTL_REG can not be written to.
7:1	RO	-	Reserved
0	RW	0	0 = 2-byte headers, $1 = 1$ -byte headers (reset as 0).

0x04: Switch configuration

D.4 Switch node identifier: 0x05

This register contains the node identifier.

0x05 Switch node identifier

(05:	Bits	Perm	Init	Description
ode	31:16	RO	-	Reserved
fier	15:0	RW	0	The unique ID of this node.

D.5 PLL settings: 0x06

An on-chip PLL multiplies the input clock up to a higher frequency clock, used to clock the I/O, processor, and switch, see Oscillator. Note: a write to this register will cause the tile to be reset.

D.18 Static link configuration: 0xA0 .. 0xA7

These registers are used for static (ie, non-routed) links. When a link is made static, all traffic is forwarded to the designated channel end and no routing is attempted. The registers control links C, D, A, B, G, H, E, and F in that order.

Bits	Perm	Init	Description
31	RW	0	Enable static forwarding.
30:9	RO	-	Reserved
8	RW	0	The destination processor on this node that packets received in static mode are forwarded to.
7:5	RO	-	Reserved
4:0	RW	0	The destination channel end on this node that packets received in static mode are forwarded to.

0xA0 .. 0xA7: Static link configuration

E USB Node Configuration

The USB node control registers can be accessed using configuration reads and writes (use write_node_config_reg(device, ...) and read_node_config_reg(device, ...) for reads and writes).

Number	Perm	Description			
0x00	RO	Device identification register			
0x04	RW	Node configuration register			
0x05	RW	Node identifier			
0x51	RW	System clock frequency			
0x80	RW	Link Control and Status			

Figure 36: Summary

E.1 Device identification register: 0x00

This register contains version information, and information on power-on behavior.

0x00: Device identification register

Bits	Perm	Init	Description
31:24	RO	0x0F	Chip identifier
23:16	RO	-	Reserved
15:8	RO	0x02	Revision number of the USB block
7:0	RO	0x00	Version number of the USB block

E.2 Node configuration register: 0x04

This register is used to set the communication model to use (1 or 3 byte headers), and to prevent any further updates.

0x04: Node configuration register

	Bits	Perm	Init	Description
04: de	31	RW	0	Set to 1 to disable further updates to the node configuration and link control and status registers.
on	30:1	RO	-	Reserved
ter	0	RW	0	Header mode. 0: 3-byte headers; 1: 1-byte headers.

-XMOS

XS2-U8A-128-TQ128

E.3 Node identifier: 0x05

0x05: Node identifier

0x51: System clock frequency

Bits	Perm	Init	Description
31:16	RO	-	Reserved
15:0	RW	0	16-bit node identifier. This does not need to be set, and present for compatibility with XS1-switches.

E.4 System clock frequency: 0x51

Bits	Perm	Init	Description
31:7	RO	-	Reserved
6:0	RW	25	Oscillator clock frequency in MHz rounded up to the nearest integer value. Only values between 5 and 100 MHz are valid - writes outside this range are ignored and will be NACKed. This field must be set on start up of the device and any time that the input oscillator clock frequency is changed. It must contain the system clock frequency in MHz rounded up to the nearest integer value.

E.5 Link Control and Status: 0x80

Bits	Perm	Init	Description	
31:28	RO	-	Reserved	
27	RO		Rx buffer overflow or illegal token encoding received.	
26	RO	0	This end of the xlink has issued credit to allow the remote end to transmit	
25	RO	0	This end of the xlink has credit to allow it to transmit.	
24	WO		Clear this end of the xlink's credit and issue a HELLO token.	
23	WO		Reset the receiver. The next symbol that is detected will be the first symbol in a token.	
22	RO	-	Reserved	
21:11	RW	1	Specify min. number of idle system clocks between two contin- uous symbols witin a transmit token -1.	
10:0	RW	1	Specify min. number of idle system clocks between two contin- uous transmit tokens -1.	

-XMOS

0x80: Link Control and Status is

F USB PHY Configuration

The USB PHY is connected to the ports shown in section 10.

The USB PHY is peripheral 1. The control registers are accessed using 32-bit reads and writes (use write_periph_32(device, 1, ...) and read_periph_32(device, \rightarrow 1, ...) for reads and writes).

Number	Perm	Description		
0x00	WO	UIFM reset		
0x04	RW	UIFM IFM control		
0x08	RW	UIFM Device Address		
0x0C	RW	UIFM functional control		
0x10	RW	UIFM on-the-go control		
0x14	RO	UIFM on-the-go flags		
0x18	RW	UIFM Serial Control		
0x1C	RW	UIFM signal flags		
0x20	RW	UIFM Sticky flags		
0x24	RW	UIFM port masks		
0x28	RW	UIFM SOF value		
0x2C	RO	UIFM PID		
0x30	RO	UIFM Endpoint		
0x34	RW	UIFM Endpoint match		
0x38	RW	OTG Flags mask		
0x3C	RW	UIFM power signalling		
0x40	RW	UIFM PHY control		

Figure 37: Summary

F.1 UIFM reset: 0x00

A write to this register with any data resets all UIFM state, but does not otherwise affect the phy.

0x00:	Bits	Perm	Init	Description
UIFM reset	31:0	WO		Value.

F.2 UIFM IFM control: 0x04

General settings of the UIFM IFM state machine.

Bits	Perm	Init	Description
31:8	RO	-	Reserved
7	RW	0	Set to 1 to enable XEVACKMODE mode.
6	RW	0	Set to 1 to enable SOFISTOKEN mode.
5	RW	0	Set to 1 to enable UIFM power signalling mode.
4	RW	0	Set to 1 to enable IF timing mode.
3	RO	-	Reserved
2	RW	0	Set to 1 to enable UIFM linestate decoder.
1	RW	0	Set to 1 to enable UIFM CHECKTOKENS mode.
0	RW	0	Set to 1 to enable UIFM DOTOKENS mode.

0x04: UIFM IFM control

F.3 UIFM Device Address: 0x08

The device address whose packets should be received. 0 until enumeration, it should be set to the assigned value after enumeration.

0x08: UIFM Device Address

	Bits	Perm	Init	Description
:	31:7	RO	-	Reserved
:	6:0	RW	0	The enumerated USB device address must be stored here. Only packets to this address are passed on.

F.4 UIFM functional control: 0x0C

0x0C: UIFM functional control

Bits	Perm	Init	Description
31:5	RO	-	Reserved
4:2	RW	1	Set to 0 to disable UIFM to UTMI+ OPMODE mode.
1	RW	1	Set to 1 to switch UIFM to UTMI+ TERMSELECT mode.
0	RW	1	Set to 1 to switch UIFM to UTMI+ XCVRSELECT mode.

F.5 UIFM on-the-go control: 0x10

This register is used to negotiate an on-the-go connection.

-XMOS[®]

	Bits	Perm	Init	Description
0x2C:	31:4	RO	-	Reserved
UIFM PID	3:0	RO	0	Value of the last received PID.

F.13 UIFM Endpoint: 0x30

The last endpoint seen

0x30 UIFM Endpoint

	Bits	Perm	Init	Description	
0:	31:5	RO	-	Reserved	
О . М	4	RO	0	1 if endpoint contains a valid value.	
nt	3:0	RO	0	A copy of the last received endpoint.	

F.14 UIFM Endpoint match: 0x34

This register can be used to mark UIFM endpoints as special.

0x34: UIFM Endpoint match

Bits	Perm	Init	Description
31:16	RO	-	Reserved
15:0	RW	0	This register contains a bit for each endpoint. If its bit is set, the endpoint will be supplied on the RX port when ORed with 0x10.

F.15 OTG Flags mask: 0x38

0x38: OTG Flags mask

Jx38: Flags	Bits	Perm	Init	Description		
mask	31:0	RW	0	Data		

F.16 UIFM power signalling: 0x3C

	Bits	Perm	Init	Description
0x3C:	31:9	RO	-	Reserved
UIFM power	8	RW	0	Valid
signalling	7:0	RW	0	Data

H Schematics Design Check List

✓ This section is a checklist for use by schematics designers using the XU208-128-TQ128. Each of the following sections contains items to check for each design.

H.1 Power supplies

- □ VDDIO and OTP_VCC supply is within specification before the VDD (core) supply is turned on. Specifically, the VDDIO and OTP_VCC supply is within specification before VDD (core) reaches 0.4V (Section 12).
- The VDD (core) supply ramps monotonically (rises constantly) from 0V to its final value (0.95V 1.05V) within 10ms (Section 12).
- The VDD (core) supply is capable of supplying 700 mA (Section 12 and Figure 21).
- PLL_AVDD is filtered with a low pass filter, for example an RC filter, see Section 12

H.2 Power supply decoupling

- □ The design has multiple decoupling capacitors per supply, for example at least four0402 or 0603 size surface mount capacitors of 100nF in value, per supply (Section 12).
- □ A bulk decoupling capacitor of at least 10uF is placed on each supply (Section 12).

H.3 Power on reset

The RST_N and TRST_N pins are asserted (low) during or after power up. The device is not used until these resets have taken place.

H.4 Clock

- The CLK input pin is supplied with a clock with monotonic rising edges and low jitter.
- You have chosen an input clock frequency that is supported by the device (Section 7).