

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 11x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	16-UQFN Exposed Pad
Supplier Device Package	16-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f15325-e-jq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1 Automatic Interrupt Context Saving

During interrupts, certain registers are automatically saved in shadow registers and restored when returning from the interrupt. This saves stack space and user code. See **Section 10.5 "Automatic Context Saving"** for more information.

3.2 16-Level Stack with Overflow and Underflow

These devices have a hardware stack memory 15 bits wide and 16 words deep. A Stack Overflow or Underflow will set the appropriate bit (STKOVF or STKUNF) in the PCON register, and if enabled, will cause a software Reset. See **Section 4.5 "Stack**" for more details.

3.3 File Select Registers

There are two 16-bit File Select Registers (FSR). FSRs can access all file registers and program memory, which allows one Data Pointer for all memory. When an FSR points to program memory, there is one additional instruction cycle in instructions using INDF to allow the data to be fetched. General purpose memory can also be addressed linearly, providing the ability to access contiguous data larger than 80 bytes. See **Section 4.6 "Indirect Addressing"** for more details.

3.4 Instruction Set

There are 48 instructions for the enhanced mid-range CPU to support the features of the CPU. See **Section 36.0 "Instruction Set Summary**" for more details.

4.0 MEMORY ORGANIZATION

These devices contain the following types of memory:

- Program Memory
 - Configuration Words
 - Device ID
 - User ID
 - Program Flash Memory
 - Device Information Area (DIA)
 - Device Configuration Information (DCI)
 - Revision ID
- Data Memory
 - Core Registers
 - Special Function Registers
 - General Purpose RAM
 - Common RAM

The following features are associated with access and control of program memory and data memory:

- PCL and PCLATH
- Stack
- Indirect Addressing
- NVMREG access

TABLE 4-1: DEVICE SIZES AND ADDRESSES

Device	Program Memory Size (Words)	Last Program Memory Address
PIC16(L)F15325/45	8192	1FFFh

4.1 **Program Memory Organization**

The enhanced mid-range core has a 15-bit program counter capable of addressing $32K \times 14$ program memory space. Table 4-1 shows the memory sizes implemented. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figure 4-1).

4.6.2 LINEAR DATA MEMORY

The linear data memory is the region from FSR address 0x2000 to FSR address 0X2FEF. This region is a virtual region that points back to the 80-byte blocks of GPR memory in all the banks. Refer to Figure 4-10 for the Linear Data Memory Map.

Note: The address range 0x2000 to 0x2FF0 represents the complete addressable Linear Data Memory up to Bank 50. The actual implemented Linear Data Memory will differ from one device to the other in a family. Confirm the memory limits on every device.

Unimplemented memory reads as $0 \ge 00$. Use of the linear data memory region allows buffers to be larger than 80 bytes because incrementing the FSR beyond one bank will go directly to the GPR memory of the next bank.

The 16 bytes of common memory are not included in the linear data memory region.

FIGURE 4-10: LINEAR DATA MEMORY MAP

4.6.3 PROGRAM FLASH MEMORY

To make constant data access easier, the entire Program Flash Memory is mapped to the upper half of the FSR address space. When the MSB of FSRnH is set, the lower 15 bits are the address in program memory which will be accessed through INDF. Only the lower eight bits of each memory location is accessible via INDF. Writing to the Program Flash Memory cannot be accomplished via the FSR/INDF interface. All instructions that access Program Flash Memory via the FSR/INDF interface will require one additional instruction cycle to complete.

FIGURE 4-11: PROGRAM FLASH MEMORY MAP

REGISTER 1	10-13: PIR3:	PERIPHERA	L INTERRUF	PT REQUES	T REGISTER	3	
R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0
RC2IF	TX2IF	RC1IF	TX1IF	—		BCL1IF	SSP1IF
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is uncl	hanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	HS = Hardwa	re clearable		
bit 7	RC2IF: EUSA 1 = The EUS 0 = The EUS	ART2 Receive I SART2 receive SART2 receive	nterrupt Flag (buffer is not er buffer is empty	(Read-Only) bi npty (contains	t <mark>(1)</mark> at least one by	rte)	
bit 6	TX2IF: EUSA 1 = The EUS 0 = The EUS TXxREG	ART2 Transmit SART2 transmit SART2 transmi	nterrupt Flag buffer contain t buffer is cu	(Read-Only) b is at least one rrently full. Th	unoccupied spa ne application f	ace îrmware should	d not write to
bit 5	RC1IF: EUSA 1 = The EUS 0 = The EUS	ART1 Receive I SART1 receive SART1 receive	nterrupt Flag (buffer is not er buffer is empty	(read-only) bit mpty (contains ⁄	(1) at least one by	rte)	
bit 4	TX1IF: EUSA	RT1 Transmit	nterrupt Flag	(read-only) bit	(2)		
	1 = The EUS 0 = The EUS TXxREG	SART1 transmi SART1 transm Gagain, until me	t buffer contain it buffer is cu ore room becc	ns at least one irrently full. Th omes available	unoccupied sp ne application in the transmit	ace firmware shoul buffer.	d not write t
bit 3-2	Unimplemen	ted: Read as ')'				
bit 1	BCL1IF: MSS	SP1 Bus Collisi	on Interrupt Fl	ag bit			
	1 = A bus co 0 = No bus c	llision was dete collision was de	ected (must be tected	cleared in sol	tware)		
bit 0	SSP1IF: Synd 1 = The Tran 0 = Waiting fr	chronous Seria ismission/Rece for the Transmis	I Port (MSSP1 ption/Bus Con ssion/Receptic	l) Interrupt Fla ndition is comp on/Bus Conditi	g bit lete (must be c on in progress	leared in softwa	are)
Note 1: Th tim	e RCxIF flag is a nes to remove al	a read-only bit. Il bytes from the	To clear the Ferric receive buffe	RCxIF flag, the er.	firmware must	read from RCx	REG enough
2: Th the TX	e TXxIF flag is a e firmware must XxIF flag does no	a read-only bit, write enough d ot indicate trans	indicating if th ata to TXxRE mit completio	ere is room in G to complete n (use TRMT f	the transmit bu y fill all availab or this purpose	ffer. To clear th e bytes in the b instead).	e TX1IF flag, ouffer. The
Note: Int	errupt flag bits a	are set when an	interrupt				

Interrupt flag bits are set when an interrupt								
condition occurs, regardless of the state of								
its corresponding enable bit or the Global								
Enable bit, GIE, of the INTCON register.								
User software should ensure the								
appropriate interrupt flag bits are clear								
prior to enabling an interrupt.								

14.2.6 ANALOG CONTROL

The ANSELA register (Register 14-4) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELA bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELA bits has no effect on digital output functions. A pin with its TRIS bit clear and its ANSEL bit set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELA bits default to the Analog						
	mode after Reset. To use any pins as						
	digital general purpose or peripheral						
	inputs, the corresponding ANSEL bits						
	must be initialized to '0' by user software.						

14.2.7 WEAK PULL-UP CONTROL

The WPUA register (Register 14-5) controls the individual weak pull-ups for each PORT pin.

14.2.8 PORTA FUNCTIONS AND OUTPUT PRIORITIES

Each PORTA pin is multiplexed with other functions.

Each pin defaults to the PORT latch data after Reset. Other output functions are selected with the peripheral pin select logic or by enabling an analog output, such as the DAC. See **Section 15.0 "Peripheral Pin Select (PPS) Module"** for more information.

Analog input functions, such as ADC and comparator inputs are not shown in the peripheral pin select lists. Digital output functions may continue to control the pin when it is in Analog mode.

U-0

bit 0

		-	_				
R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	U-0	U-0	U-0	
LATB7	LATB6	LATB5	LATB4	—	—	_	
bit 7							

REGISTER 14-11: LATB: PORTB DATA LATCH REGISTER

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	LATB<7:4>: RB<7:4> Output Latch Value bits ⁽¹⁾
---------	---

bit 3-0 Unimplemented: Read as '0'

Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register returns actual I/O pin values.

REGISTER 14-12: ANSELB: PORTB ANALOG SELECT REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0
ANSB7	ANSB6	ANSB5	ANSB4	—	—	_	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 **ANSB<7:4>**: Analog Select between Analog or Digital Function on pins RB<7:4>, respectively

- 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.
- 0 = Digital I/O. Pin is assigned to port or digital special function.

bit 3-0 Unimplemented: Read as '0'

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
PPSLOCK	—	_	—	—	-	—		PPSLOCKED	200
INTPPS	_	_			INT	PPS<5:0>		•	199
TOCKIPPS	—	_			TOCK	(IPPS<5:0>			199
T1CKIPPS	—	—			T1Ck	(IPPS<5:0>			199
T1GPPS	—	—			T1G	PPS<5:0>			199
T2AINPPS					T2All	NPPS<5:0>			199
CCP1PPS	—	—			CCP	1PPS<5:0>			199
CCP2PPS	—	—			CCP	2PPS<5:0>			199
CWG1PPS	—	—			CWG	1PPS<5:0>			199
SSP1CLKPPS	—	—			SSP1C	LKPPS<5:0	>		199
SSP1DATPPS	—	—			SSP1D	ATPPS<5:0	>		199
SSP1SSPPS	—	—			SSP18	SSPPS<5:0>			199
RX1PPS	—	—		RXPPS<5:0>					200
TX1PPS	—	—		TXPPS<5:0>					199
CLCIN0PPS	—	—		CLCIN0PPS<5:0>					199
CLCIN1PPS	—	_		CLCIN1PPS<5:0>					199
CLCIN2PPS	—	—		CLCIN2PPS<5:0>					199
CLCIN3PPS	—	—			CLCIN	\3PPS<5:0>			199
RX2PPS	—	—			RX2	PPS<5:0>			199
TX2PPS	—	—			TX2	PPS<5:0>			199
ADACTPPS	—	—			ADAC	TPPS<5:0>			199
RA0PPS	—	—	—			RA0PPS<4	4:0>		200
RA1PPS	—	—	—			RA1PPS<4	4:0>		200
RA2PPS	—	—	—			RA2PPS<4	4:0>		200
RA3PPS	—	—	—			RA3PPS<4	4:0>		200
RA4PPS	—	—	—	— RA4PPS<4:0>				200	
RA5PPS	—	—	—	— RA5PPS<4:0>				200	
RB4PPS ⁽¹⁾	—	—	—	— RB4PPS<4:0>				200	
RB5PPS ⁽¹⁾	—	_	—			RB5PPS<4	4:0>		200
RB6PPS ⁽¹⁾	—	_	—			RB6PPS<	4:0>		200
RB7PPS ⁽¹⁾	—	—	—			RB7PPS<4	4:0>		200
RC0PPS	—	_	—			RC0PPS<	4:0>		200

TABLE 15-6:	SUMMARY OF REGISTERS	ASSOCIATED WITH	THE PPS MODULE
-------------	----------------------	------------------------	----------------

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the PPS module.

Note 1: Present on PIC16(L)F15345 only.

EXAMPLE 24-1:

VRMS = 120 VPEAK =VRMS* $\sqrt{2}$ = 169.7 f = 60 Hz C = 0.1 uF Z = VPEAK/3x10⁻⁴ = 169.7/(3x10⁻⁴) = 565.7 kOhms Xc = 1/(2 Π fC) = 1/(2 Π *60*1*10⁻⁷) = 26.53 kOhms R = $\sqrt{(Z^2 - Xc^2)}$ = 565.1 kOhms (computed) R = 560 kOhms (used) ZR = $\sqrt{(R^2 + Xc^2)}$ = 560.6 kOhms (using actual resistor) IPEAK = VPEAK/ZR = 302.7*10⁻⁶ VC = Xc* IPEAK = 8.0 V Φ = Tan⁻¹(Xc/R) = 0.047 radians T $_{\Phi}$ = $\Phi/(2\Pi$ f) = 125.6 us

24.5.2 CORRECTION BY OFFSET CURRENT

When the waveform is varying relative to Vss, then the zero cross is detected too early as the waveform falls and too late as the waveform rises. When the waveform is varying relative to VDD, then the zero cross is detected too late as the waveform rises and too early as the waveform falls. The actual offset time can be determined for sinusoidal waveforms with the corresponding equations shown in Equation 24-3.

EQUATION 24-3: ZCD EVENT OFFSET

When External Voltage Source is relative to Vss:

$$TOFFSET = \frac{\operatorname{asin}\left(\frac{Vcpinv}{VPEAK}\right)}{2\pi \bullet Freq}$$

When External Voltage Source is relative to VDD:

$$TOFFSET = \frac{\operatorname{asin}\left(\frac{VDD - Vcpinv}{VPEAK}\right)}{2\pi \bullet Freq}$$

This offset time can be compensated for by adding a pull-up or pull-down biasing resistor to the ZCD pin. A pull-up resistor is used when the external voltage source is varying relative to Vss. A pull-down resistor is used when the voltage is varying relative to VDD. The resistor adds a bias to the ZCD pin so that the target external voltage source must go to zero to pull the pin voltage to the VCPINV switching voltage. The pull-up or pull-down value can be determined with the equation shown in Equation 24-4.

EQUATION 24-4: ZCD PULL-UP/DOWN

When External Signal is relative to Vss:

$$R_{PULLUP} = \frac{R_{SERIES}(V_{PULLUP} - V_{cpinv})}{V_{cpinv}}$$

When External Signal is relative to VDD:

$$\left(RPULLDOWN = \frac{RSERIES \times (Vcpinv)}{(VDD - Vcpinv)}\right)$$

24.6 Handling VPEAK variations

If the peak amplitude of the external voltage is expected to vary, the series resistor must be selected to keep the ZCD current source and sink below the design maximum range of $\pm 600 \,\mu$ A and above a reasonable minimum range. A general rule of thumb is that the maximum peak voltage can be no more than six times the minimum peak voltage. To ensure that the maximum current does not exceed $\pm 600 \,\mu$ A and the minimum is at least $\pm 100 \,\mu$ A, compute the series resistance as shown in Equation 24-5. The compensating pull-up for this series resistance can be determined with Equation 24-4 because the pull-up value is not dependent from the peak voltage.

EQUATION 24-5: SERIES R FOR V RANGE

$$R_{SERIES} = \frac{V_{MAXPEAK} + V_{MINPEAK}}{7 \times 10^{-4}}$$

26.1 Timer1 Operation

The Timer1 modules are 16-bit incrementing counters which are accessed through the TMR1H:TMR1L register pairs. Writes to TMR1H or TMR1L directly update the counter.

When used with an internal clock source, the module is a timer and increments on every instruction cycle. When used with an external clock source, the module can be used as either a timer or counter and increments on every selected edge of the external source.

The timer is enabled by configuring the TMR1ON and GE bits in the T1CON and T1GCON registers, respectively. Table 26-1 displays the Timer1 enable selections.

TABLE 26-1: TIMER1 ENABLE SELECTIONS

TMR10N	TMR1GE	Timer1 Operation
1	1	Count Enabled
1	0	Always On
0	1	Off
0	0	Off

26.2 Clock Source Selection

The T1CLK register is used to select the clock source for the timer. Register 26-3 shows the possible clock sources that may be selected to make the timer increment.

26.2.1 INTERNAL CLOCK SOURCE

When the internal clock source Fosc is selected, the TMR1H:TMR1L register pair will increment on multiples of Fosc as determined by the respective Timer1 prescaler.

When the Fosc internal clock source is selected, the timer register value will increment by four counts every instruction clock cycle. Due to this condition, a 2 LSB error in resolution will occur when reading the TMR1H:TMR1L value. To utilize the full resolution of the timer in this mode, an asynchronous input signal must be used to gate the timer clock input.

Out of the total timer gate signal sources, the following subset of sources can be asynchronous and may be useful for this purpose:

- CLC4 output
- CLC3 output
- CLC2 output
- CLC1 output
- · Zero-Cross Detect output
- · Comparator2 output
- Comparator1 output
- TxG PPS remappable input pin

26.2.2 EXTERNAL CLOCK SOURCE

When the timer is enabled and the external clock input source (ex: T1CKI PPS remappable input) is selected as the clock source, the timer will increment on the rising edge of the external clock input.

When using an external clock source, the timer can be configured to run synchronously or asynchronously, as described in Section 26.5 "Timer Operation in Asynchronous Counter Mode".

When used as a timer with a clock oscillator, an external 32.768 kHz crystal can be used connected to the SOSCI/SOSCO pins.

- **Note:** In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge after any one or more of the following conditions:
 - · The timer is first enabled after POR
 - Firmware writes to TMR1H or TMR1L
 - · The timer is disabled
 - The timer is re-enabled (e.g., TMR1ON-->1) when the T1CKI signal is currently logic low.

REGISTER 28-4: CCPRxH REGISTER: CCPx REGISTER HIGH BYTE

| R/W-x/x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | CCPRx | <15:8> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Reset
'1' = Bit is set	'0' = Bit is cleared	

CCPxMODE = Capture mode
CCPRxH<7:0>: Captured value of TMR1H
CCPxMODE = Compare mode
CCPRxH<7:0>: MS Byte compared to TMR1H
CCPxMODE = PWM modes when CCPxFMT = 0:
CCPRxH<7:2>: Not used
CCPRxH<1:0>: Pulse-width Most Significant two bits
CCPxMODE = PWM modes when CCPxFMT = 1:
CCPRxH<7:0>: Pulse-width Most Significant eight bits

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	—	_	_	—	—	INTEDG	124
PIR5	CLC4IF	CLC3IF	CLC2IF	CLC1IF	—	_	_	TMR1GIF	138
PIE5	CLC4IE	CLC4IE	CLC2IE	CLC1IE	—	—	—	TMR1GIE	130
CLC1CON	LC1EN	_	LC10UT	LC1INTP	LC1INTN		LC1MODE<2:0>	>	365
CLC1POL	LC1POL	_	_	-	LC1G4POL	LC1G3POL	LC1G2POL	LC1G1POL	366
CLC1SEL0	_	_			LC1D	1S<5:0>			367
CLC1SEL1	—	_			LC1D	2S<5:0>			367
CLC1SEL2	_	_			LC1D	3S<5:0>			367
CLC1SEL3	—	_			LC1D	4S<5:0>			367
CLC1GLS0	_	_	LC1G1D3T	LC1G1D3N	LC1G1D2T	LC1G1D2N	LC1G1D1T	LC1G1D1N	368
CLC1GLS1	_	_	LC1G2D3T	LC1G2D3N	LC1G2D2T	LC1G2D2N	LC1G2D1T	LC1G2D1N	369
CLC1GLS2	_	_	LC1G3D3T	LC1G3D3N	LC1G3D2T	LC1G3D2N	LC1G3D1T	LC1G3D1N	370
CLC1GLS3	_	_	LC1G4D3T	LC1G4D3N	LC1G4D2T	LC1G4D2N	LC1G4D1T	LC1G4D1N	371
CLC2CON	LC2EN	—	LC2OUT	LC2INTP	LC2INTN		LC2MODE<2:0>	>	365
CLC2POL	LC2POL	_	_	_	LC2G4POL	LC2G3POL	LC2G2POL	LC2G1POL	366
CLC2SEL0	_	—		•	LC2D	1S<5:0>			367
CLC2SEL1	_	_		LC2D2S<5:0>				367	
CLC2SEL2	_	—			LC2D	3S<5:0>			367
CLC2SEL3	_	—			LC2D	4S<5:0>			367
CLC2GLS0	_	_	LC2G1D3T	LC2G1D3N	LC2G1D2T	LC2G1D2N	LC2G1D1T	LC2G1D1N	368
CLC2GLS1	_	—	LC2G2D3T	LC2G2D3N	LC2G2D2T	LC2G2D2N	LC2G2D1T	LC2G2D1N	369
CLC2GLS2	_	—	LC2G3D3T	LC2G3D3N	LC2G3D2T	LC2G3D2N	LC2G3D1T	LC2G3D1N	370
CLC2GLS3	_	—	LC2G4D3T	LC2G4D3N	LC2G4D2T	LC2G4D2N	LC2G4D1T	LC2G4D1N	371
CLC3CON	LC3EN	_	LC3OUT	LC3INTP	LC3INTN		LC3MODE<2:0>	>	365
CLC3POL	LC3POL	—	_	_	LC3G4POL	LC3G3POL	LC3G2POL	LC3G1POL	366
CLC3SEL0	_	—			LC3D	1S<5:0>			367
CLC3SEL1	_	—			LC3D	2S<5:0>			367
CLC3SEL2	_	—			LC3D	3S<5:0>			367
CLC3SEL3	_	—			LC3D	4S<5:0>			367
CLC3GLS0	_	—	LC3G1D3T	LC3G1D3N	LC3G1D2T	LC3G1D2N	LC3G1D1T	LC3G1D1N	368
CLC3GLS1	_	—	LC3G2D3T	LC3G2D3N	LC3G2D2T	LC3G2D2N	LC3G2D1T	LC3G2D1N	369
CLC3GLS2	_	_	LC3G3D3T	LC3G3D3N	LC3G3D2T	LC3G3D2N	LC3G3D1T	LC3G3D1N	370
CLC3GLS3	_	_	LC3G4D3T	LC3G4D3N	LC3G4D2T	LC3G4D2N	LC3G4D1T	LC3G4D1N	371
CLC4CON	LC4EN	—	LC4OUT	LC4INTP	LC4INTN		LC4MODE<2:0>	>	365
CLC4POL	LC4POL	_	—	-	LC4G4POL	LC4G3POL	LC4G2POL	LC4G1POL	366
CLC4SEL0	—	—	LC4D1S<5:0>			367			
CLC4SEL1	—	—			LC4D	2S<5:0>			367
CLC4SEL2	—	—			LC4D	3S<5:0>			367
CLC4SEL3	—	—			LC4D	4S<5:0>			367
CLC4GLS0	—	—	LC4G1D3T	LC4G1D3N	LC4G1D2T	LC4G1D2N	LC4G1D1T	LC4G1D1N	368

TABLE 31-4: SUMMARY OF REGISTERS ASSOCIATED WITH CLCx

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the CLCx modules.

FIGURE 32-3: MSSP BLOCK DIAGRAM (I²C SLAVE MODE)

REGISTER 32-2: SSP1CON1: SSP1 CONTROL REGISTER 1

R/C/HS-0/0	R/C/HS-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
WCOL	SSPOV ⁽¹⁾	SSPEN	CKP		SSPI	И<3:0>	
bit 7	I	1	1				bit 0
							,
Legend:							
R = Readable b	bit	W = Writable bit			ted bit, read as '0'		
u = Bit is uncha	anged	yed x = Bit is unknown			OR and BOR/Value	at all other Resets	
'1' = Bit is set		'0' = Bit is cleared	d	HS = Bit is set by	hardware	C = User cleared	
bit 7	WCOL: Write Co 1 = The SSP1E 0 = No collision	llision Detect bit (Ti 8UF register is writter า	ransmit mode onl ו while it is still tran	y) smitting the previous	word (must be clear	ed in software)	
bit 6	SSPOV: Receive In SPI mode: 1 = A new byte lost. Overfice avoid settin to the SSP ² 0 = No overflow In I ² C mode: 1 = A byte is re (must be cl 0 = No overflow	e Overflow Indicator is received while the ow can only occur in g overflow. In Maste IBUF register (must v eccived while the S leared in software). v	r bit ⁽¹⁾ e SSP1BUF regist Slave mode. In S r mode, the overfic be cleared in soft SP1BUF register	ter is still holding the plave mode, the user is wold, the user is work standard ware).	previous data. In ca must read the SSP1 each new reception previous byte. SSP	se of overflow, the da BUF, even if only trar (and transmission) is DV is a "don't care"	ta in SSP1SR is nsmitting data, to initiated by writing in Transmit mode
bit 5	SSPEN: Synchro In both modes, w <u>In SPI mode:</u> 1 = Enables se 0 = Disables so <u>In I²C mode:</u> 1 = Enables the 0 = Disables so	nous Serial Port E when enabled, the for rial port and configue erial port and config e serial port and config erial port and config	nable bit ollowing pins mus res SCK, SDO, SI gures these pins a figures the SDA ar gures these pins a	t be properly configued DI and SS as the sou as I/O port pins ad SCL pins as the so as I/O port pins	ured as input or ou rce of the serial port urce of the serial po	tput pins ⁽²⁾ rt pins ⁽³⁾	
bit 4	CKP: Clock Polarity Select bit In SPI mode: 1 = Idle state for clock is a high level 0 = Idle state for clock is a low level In I ² C Slave mode: SCL release control 1 = Enable clock 0 = Holds clock low (clock stretch). (Used to ensure data setup time.) In I ² C Master mode: Unused in this mode						
bit 3-0	SSPM<3:0>: Syn 1111 = I ² C Slava 1101 = Reserver 1001 = Reserver 1001 = SPI Mas 1001 = Reserver 1000 = I ² C Mast 0111 = I ² C Slava 0110 = SPI Slav 0100 = SPI Slav 0101 = SPI Mas 0001 = SPI Mas 0001 = SPI Mas 0001 = SPI Mas	nchronous Serial Pre e mode, 10-bit addre d mode, 7-bit addre d d vare controlled Mas ter mode, clock = F e mode, clock = F e mode, clock = K e mode, 10-bit addre e mode, clock = SC ter mode, clock = SC ter mode, clock = F ter mode, clock = F ter mode, clock = F ter mode, clock = F	ort Mode Select b ress with Start and ss with Start and ter mode (slave i losc/(4 * (SSP1A) osc / (4 * (SSP1A) osc / (4 * (SSP1A) ress SK pin, <u>SS</u> pin cor 2_match/2 osc/64 losc/16 osc/4	its d Stop bit interrupts e Stop bit interrupts e dle) DD+1)) ⁽⁵⁾ ADD+1)) ⁽⁴⁾ htrol disabled, SS ca htrol enabled	enabled nabled an be used as I/O p	in	
Note 1: Ir 2: V F	n Master mode, the ov When enabled, these p RxyPPS to select the p	erflow bit is not set ins must be proper ins.	since each new r ly configured as in	reception (and transing the second transing the second transition of th	mission) is initiated SSP1SSPPS, SSP	by writing to the SS 1CLKPPS, SSP1DA	P1BUF register. TPPS, and

- When enabled, the SDA and SCL pins must be configured as inputs. Use SSP1CLKPPS, SSP1DATPPS, and RxyPPS to select the pins.
 SSP1ADD values of 0, 1 or 2 are not supported for I²C mode.
 SSP1ADD value of '0' is not supported. Use SSPM = 0000 instead.

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
			SSP1M	ISK<7:0>			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unch	= Bit is unchanged x = Bit is unknown			-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set	' = Bit is set '0' = Bit is cleared						
bit 7-1	SSP1MSK<	7:1>: Mask bits					
	1 = The received address bit n is compared to SSP1ADD <n> to detect I²C address match</n>						atch
	0 = The received address bit n is not used to detect I ² C address match						
bit 0 SSP1MSK<0>: Mask bit for I ² C Slave mode, 10-bit Address							
I ² C Slave mode, 10-bit address (SSPM<3:0> = 0111 or 1111):							
	1 = The received address bit 0 is compared to SSP1ADD<0> to detect I ² C address match						
	0 = The rec	eived address b	it 0 is not use	ed to detect I ² C	address match		
	l ² C Slave mode, 7-bit address:						

REGISTER 32-5: SSP1MSK: SSP1 MASK REGISTER

MSK0 bit is ignored.

REGISTER 32-6: SSP1ADD: MSSP1 ADDRESS AND BAUD RATE REGISTER (I²C MODE)

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | SSP1AD |)D<7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

Master mode:

bit 7-0	SSP1ADD<7:0>: Baud Rate Clock Divider bits
	SCL pin clock period = ((ADD<7:0> + 1) *4)/Fosc

<u>10-Bit Slave mode – Most Significant Address Byte:</u>

- bit 7-3 **Not used:** Unused for Most Significant Address Byte. Bit state of this register is a "don't care". Bit pattern sent by master is fixed by I²C specification and must be equal to '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 SSP1ADD<2:1>: Two Most Significant bits of 10-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

<u>10-Bit Slave mode – Least Significant Address Byte:</u>

bit 7-0 SSP1ADD<7:0>: Eight Least Significant bits of 10-bit address

7-Bit Slave mode:

- bit 7-1 SSP1ADD<7:1>: 7-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

33.4 EUSART Synchronous Mode

Synchronous serial communications are typically used in systems with a single master and one or more slaves. The master device contains the necessary circuitry for baud rate generation and supplies the clock for all devices in the system. Slave devices can take advantage of the master clock by eliminating the internal clock generation circuitry.

There are two signal lines in Synchronous mode: a bidirectional data line and a clock line. Slaves use the external clock supplied by the master to shift the serial data into and out of their respective receive and transmit shift registers. Since the data line is bidirectional, synchronous operation is half-duplex only. Half-duplex refers to the fact that master and slave devices can receive and transmit data but not both simultaneously. The EUSART can operate as either a master or slave device.

Start and Stop bits are not used in synchronous transmissions.

33.4.1 SYNCHRONOUS MASTER MODE

The following bits are used to configure the EUSART for synchronous master operation:

- SYNC = 1
- CSRC = 1
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXxSTA register configures the device for synchronous operation. Setting the CSRC bit of the TXxSTA register configures the device as a master. Clearing the SREN and CREN bits of the RCxSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCxSTA register enables the EUSART.

33.4.1.1 Master Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a master transmits the clock on the TX/CK line. The TX/CK pin output driver is automatically enabled when the EUSART is configured for synchronous transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One clock cycle is generated for each data bit. Only as many clock cycles are generated as there are data bits.

33.4.1.2 Clock Polarity

A clock polarity option is provided for Microwire compatibility. Clock polarity is selected with the SCKP bit of the BAUDxCON register. Setting the SCKP bit sets the clock Idle state as high. When the SCKP bit is set, the data changes on the falling edge of each clock. Clearing the SCKP bit sets the Idle state as low. When the SCKP bit is cleared, the data changes on the rising edge of each clock.

33.4.1.3 Synchronous Master Transmission

Data is transferred out of the device on the RX/DT pin. The RX/DT and TX/CK pin output drivers are automatically enabled when the EUSART is configured for synchronous master transmit operation.

A transmission is initiated by writing a character to the TXxREG register. If the TSR still contains all or part of a previous character the new character data is held in the TXxREG until the last bit of the previous character has been transmitted. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXxREG is immediately transferred to the TSR. The transmission of the character commences immediately following the transfer of the data to the TSR from the TXxREG.

Each data bit changes on the leading edge of the master clock and remains valid until the subsequent leading clock edge.

Note:	The TSR register is not mapped in data
	memory, so it is not available to the user.

- 33.4.1.4 Synchronous Master Transmission Set-up:
- Initialize the SPxBRGH, SPxBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 33.3 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Disable Receive mode by clearing bits SREN and CREN.
- 4. Enable Transmit mode by setting the TXEN bit.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. If interrupts are desired, set the TXxIE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded in the TX9D bit.
- 8. Start transmission by loading data to the TXxREG register.

TABLE 37-10:	I/O AND CLKOUT TIMING SPECIFICATIONS
--------------	--------------------------------------

Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
IO1*	T _{CLKOUTH}	CLKOUT rising edge delay (rising edge Fosc (Q1 cycle) to falling edge CLKOUT	> -	—	70	ns				
IO2*	T _{CLKOUTL}	CLKOUT falling edge delay (rising edge Fosc (Q3 cycle) to rising edge CLKOUT	_	_	72	ns				
IO3*	T _{IO_VALID}	Port output valid time (rising edge Fose (Q1 cycle) to port valid)	—	50	70	ns				
IO4*	T _{IO_SETUP}	Port input setup time (Setup time before rising edge Fosc – Q2 cycle)	20	—		ns				
IO5*	T _{IO_HOLD}	Port input hold time (Hold time after rising edge Fosc – Q2 cycle)	50	_		ns				
IO6*	TIOR_SLREN	Port I/O rise time, slew rate enabled		25		ns	VDD = 3.0V			
107*	TIOR SLRDIS	Port I/O rise time, slew rate disabled		5		ns	VDD = 3.0V			
108*	FIOR SLREN	Port I/O fall time, slew rate enabled	—	25	_	ns	VDD = 3.0V			
109*		Port I/O fall time, slew rate disabled	—	5	_	ns	VDD = 3.0V			
1010*	FINT	INT pin high or low time to trigger an interrupt	25	—		ns				
IO11*	A ^{foc}	Interrupt-on-Change minimum high or low time to trigger interrupt	25	—	—	ns				
*These parameters are characterized but not tested.										

Standard Operating Conditions (unloss otherwise of	Loto	2	\angle
Standard Operating Conditions (unless otherwise si	tate	a)	

TABLE 37-11: RESET, WDT, OSCILLATOR START-UP TIMER, POWER-UP TIMER, BROWN-OUT RESET AND LOW-POWER BROWN-OUT RESET SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)										
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
RST01*	TMCLR	MCLR Pulse Width Low to ensure Reset	2	_	—	μS				
RST02*	Tioz	I/O high-impedance from Reset detection	_	_	2	μs				
RST03	TWDT	Watchdog Timer Time-out Period	—	16	—	ms	16 ms Wominal-Reset Time			
RST04*	TPWRT	Power-up Timer Period	_	65	_	ms				
RST05	Tost	Oscillator Start-up Timer Period ^(1,2)	_	1024	—	/TOSC	$\left \right\rangle$			
RST06	VBOR	Brown-out Reset Voltage ⁽⁴⁾	2.55	2.70	2.85	<u>7</u> 7	BORV = 0			
			2.30	2.45	2.60		BORV = ∕I (F devices)			
			1.80	1.90	2.05	∖v∨	BORV = 1 (LF devices)			
RST07	VBORHYS	Brown-out Reset Hysteresis	_	40 🧹	$\overline{)}$	m∖V ′				
RST08	TBORDC	Brown-out Reset Response Time	_	3	$\langle - \rangle$	μs				
RST09	VLPBOR	Low-Power Brown-out Reset Voltage	1.8	/ 1.9	2.2	V V	LF Devices Only			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 37-12: ANALOG-TO-DIGITAL CONVERTER (ADC) ACCURACY SPECIFICATIONS^(1,2):

Standard Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C									
Param. No.	Sym.	Characteristic	Min.	Турт	Max.	Units	Conditions		
AD01	NR	Resolution	\sim	I	10	bit			
AD02	EIL	Integral Error	$\supset -$	±0.1	±1.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V		
AD03	Edl	Differential Error	- /	±0.1	±1.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V		
AD04	EOFF	Offset Error	_	0.5	2.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V		
AD05	Egn	Gain Error 🗸 🖊 📈	_	±0.2	±1.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V		
AD06	VADREF	ADC Reference Voltage (ADREF+ - ADREF-)	1.8		Vdd	V			
AD07	VAIN	Full-Scale Range	ADREF-	_	ADREF+	V			
AD08	ZAIN	Recommended Impedance of Analog Voltage Source	_	10		kΩ			
AD09	RVREF	ADC Voltage Reference Ladder	_	50		kΩ	Note 3		

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error is the sum of the offset, gain and integral non-linearity (INL) errors.

2: The ADC conversion result never decreases with an increase in the input and has no missing codes.

3: This is the impedance seen by the VREF pads when the external reference pads are selected.

<sup>Note 1: By design, the Oscillator Start-up Timer (OST) counts the first 1024 cycles, independent of frequency.
2: To ensure these voltage tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible.</sup> 0.1 μF and 0.01 μF values in parallel are recommended.

TABLE 37-13: ANALOG-TO-DIGITAL CONVERTER (ADC) CONVERSION TIMING SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)								
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
AD20	Tad	ADC Clock Period	1		9	μs	The requirement is to set ADCCS correctly to produce this period/frequency.	
AD21			1	2	6	μs	Using FRC as the ADC clock source ADOSC = 1	
AD22	TCNV	Conversion Time	-	11	-	TAD	Set of GO/DONE bit to Clear of GO/DONE bit	
AD23	TACQ	Acquisition Time		2	$\frac{1}{2}$	μs	×	
AD24	Тнср	Sample and Hold Capacitor Disconnect Time	_		_/	μs	Fosc-based clock source FRc-based clock source	

* These parameters are characterized but not tested.

+ Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 37-10: ADC CONVERSION TIMING (AQC CLOCK Fosc-BASED)

© 2016 Microchip Technology Inc.

TABLE 37-24: I²C BUS START/STOP BITS REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Symbol	Characteristic			Min.	Тур	Max.	Units	Conditions
SP90*	TSU:STA	Start condition	100 kHz m	iode //	4700	Ŵ		ns	Only relevant for Repeated Start
		Setup time	400 kHz-0	iode /	600	_	_		condition
SP91*	THD:STA	Start condition	106 kH2m	iode	4000		_	ns	After this period, the first clock
		Hold time	400 kHz m	iode	600		_		pulse is generated
SP92*	Tsu:sto	Stop condition	100 kHz m	iòde 📏	4700	_	_	ns	
		Setup time	400 kHz m	ode	600	-	_		
SP93	THD:STO	Stop condition	100 kHz m	ide	4000		_	ns	
		Hold time	400 kHz m	iode	600		_		

* These parameters are characterized but not tested.

FIGURE 37-22: /I²C BUS DATA TIMING

