Microchip Technology - PIC16F15325-E/P Datasheet

E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 11x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	14-DIP (0.300", 7.62mm)
Supplier Device Package	14-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f15325-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-2: MEMORY ACCESS PARTITION

			Part	tition	
REG	Address	<u>BBEN</u> = 1 SAFEN = 1	<u>BBEN</u> = 1 SAFEN = 0	<u>BBEN</u> = 0 SAFEN = 1	<u>BBEN</u> = 0 SAFEN = 0
	00 0000h ••• Last Boot Block Memory Address		APPLICATION	BOOT BLOCK ⁽⁴⁾	BOOT BLOCK ⁽⁴⁾
PFM	Last Boot Block Memory Address + 1 ⁽¹⁾ ••• Last Program Memory Address - 80h	APPLICATION BLOCK ⁽⁴⁾	BLOCK ⁽⁴⁾	APPLICATION	APPLICATION BLOCK ⁽⁴⁾
	Last Program Memory Address - 7Fh ⁽²⁾ ••• Last Program Memory Address		SAF ⁽⁴⁾	BLOCK ⁽⁴⁾	SAF ⁽⁴⁾
CONF IG	Config Memory Address ⁽³⁾		COI	NFIG	1

Note 1: Last Boot Block Memory Address is based on BBSIZE<2:0> given in Table 5-1.

2: Last Program Memory Address is the Flash size given in Table 4-1.

3: Config Memory Address are the address locations of the Configuration Words given in Table 13-2.

4: Each memory block has a corresponding write protection fuse defined by the WRTAPP, WRTB and WRTC bits in the Configuration Word (Register 5-4).

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 0		•	•		•	•		•			
				CPU COF	RE REGISTERS;	see Table 4-9 for	specifics				
00Ch	PORTA	_		RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	uu uuuu
00Dh	PORTB ⁽¹⁾	RB7	RB6	RB5	RB4	—	_	_	_	xxxx	uuuu
00Eh	PORTC	RC7 ⁽¹⁾	RC6 ⁽¹⁾	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
00Fh	_		Unimplemented								_
010h	_		Unimplemented								_
011h	_				Unimple	mented					
012h	TRISA	_	_	TRISA5	TRISA4	—	TRISA2	TRISA1	TRISA0	11 1111	11 1111
013h	TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	—	_	—	_	xxxx	uuuu
014h	TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
015h	—				Unimple	mented				—	_
016h	—				Unimple	mented				—	—
017h	—				Unimple	mented				—	—
018h	LATA	—	—	LATA5	LATA4	—	LATA2	LATA1	LATA0	xx xxxx	uu uuuu
019h	LATB ⁽¹⁾	LATB7	LATB6	LATB5	LATB4	—		—		xxxx	uuuu
01Ah	LATC	LATC7 ⁽¹⁾	LATC6 ⁽¹⁾	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx xxxx	uuuu uuuu
01Eh	—		Unimplemented							—	—
01Fh	_		Unimplemented							_	_

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Present only in PIC16(L)F15345.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 61											
				CPU COF	RE REGISTERS	; see Table 4-3 for	specifics				
1E8Ch	_				Unimple	emented				_	_
1E8Dh	_				Unimple	emented				—	—
1E8Eh	_				Unimple	emented				—	—
1E8Fh	PPSLOCK	—	—	—	—	—	—	—	PPSLOCKED	0	0
1E90h	INTPPS	—	—			INTP	PS<5:0>			00 1000	uu uuuu
1E91h	T0CKIPPS	—	—			TOCKI	PPS<5:0>			00 0100	uu uuuu
1E92h	T1CKIPPS	—	—			TICKI	PPS<5:0>			01 0000	uu uuuu
1E93h	T1GPPS	_	—			T1GF	PPS<5:0>			00 1101	uu uuuu
1E94h 1E9Bh	_	Unimplemented						-	-		
1E9Ch	T2INPPS	_	_		T2INPPS<5:0>					01 0011	uu uuuu
1E9Dh 1EA0h	_	Unimplemented						_	_		
1EA1h	CCP1PPS	_	_			CCP1	PPS<5:0>			01 0010	uu uuuu
1EA2h	CCP2PPS	_	_			CCP2	PPS<5:0>			01 0001	uu uuuu
1EA3h 1EB0h	_				Unimple	emented				_	_
1EB1h	CWG1PPS	_	_			CWG1	PPS<5:0>			00 1000	uu uuuu
1EB2h 1EBAh	_		·		Unimple	emented				_	_
1EBBh	CLCIN0PPS	_	_			CLCIN	0PPS<5:0>			00 0000	uu uuuu
1EBCh	CLCIN1PPS	_	_			CLCIN	1PPS<5:0>			00 0001	uu uuuu
1EBDh	CLCIN2PPS		_			CLCIN	2PPS<5:0>			00 1110	uu uuuu
1EBEh	CLCIN3PPS	_	- CLCIN3PPS<5:0>						00 1111	uu uuuu	
1EBFh 1EC2h	_		Unimplemented						_	-	
1EC3h	ADACTPPS	_	_			CLCIN	3PPS<5:0>			001100	uuuuuu
1EC4h	_			·	Unimplemented						

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

8.3 Register Definitions: Brown-out Reset Control

Legend:

REGISTER 8-1: BORCON: BROWN-OUT RESET CONTROL REGISTER

R/W-1/u	U-0	U-0	U-0	U-0	U-0	U-0	R-q/u
SBOREN ⁽¹⁾	_	—	—	—	—	—	BORRDY
bit 7							bit 0

Logona.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	SBOREN: Software Brown-out Reset Enable bit ⁽¹⁾
	If BOREN <1:0> in Configuration Words $\neq 01$:
	SBOREN is read/write, but has no effect on the BOR.
	If BOREN <1:0> in Configuration Words = 01:
	1 = BOR Enabled
	0 = BOR Disabled
bit 6-1	Unimplemented: Read as '0'
bit 0	BORRDY: Brown-out Reset Circuit Ready Status bit
	1 = The Brown-out Reset circuit is active

0 = The Brown-out Reset circuit is inactive

Note 1: BOREN<1:0> bits are located in Configuration Words.

8.13 Determining the Cause of a Reset

Upon any Reset, multiple bits in the STATUS and PCON registers are updated to indicate the cause of the Reset. Table 8-3 and Table 8-4 show the Reset conditions of these registers.

STOVF	STKUNF	RWDT	RMCLR	RI	POR	BOR	<u>10</u>	DA	MEMV	Condition
0	0	1	1	1	0	x	1	1	1	Power-on Reset
0	0	1	1	1	0	x	0	x	u	Illegal, TO is set on POR
0	0	1	1	1	0	x	x	0	u	Illegal, PD is set on POR
0	0	u	1	1	u	0	1	1	u	Brown-out Reset
u	u	0	u	u	u	u	0	u	u	WWDT Reset
u	u	u	u	u	u	u	0	0	u	WWDT Wake-up from Sleep
u	u	u	u	u	u	u	1	0	u	Interrupt Wake-up from Sleep
u	u	u	0	u	u	u	u	u	1	MCLR Reset during normal operation
u	u	u	0	u	u	u	1	0	u	MCLR Reset during Sleep
u	u	u	u	0	u	u	u	u	u	RESET Instruction Executed
1	u	u	u	u	u	u	u	u	u	Stack Overflow Reset (STVREN = 1)
u	1	u	u	u	u	u	u	u	u	Stack Underflow Reset (STVREN = 1)
u	u	u	u	u	u	u	u	u	0	Memory violation Reset

TABLE 8-3: RESET STATUS BITS AND THEIR SIGNIFICANCE

TABLE 8-4: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON0 Register	PCON1 Register
Power-on Reset	0000h	1 1000	0011 110x	1-
MCLR Reset during normal operation	0000h	u uuuu	uuuu Ouuu	1-
MCLR Reset during Sleep	0000h	1 Ouuu	uuuu Ouuu	u-
WWDT Timeout Reset	0000h	0 uuuu	uuu0 uuuu	u-
WWDT Wake-up from Sleep	PC + 1	0 Ouuu	uuuu uuuu	u-
WWDT Window Violation	0000h	u uuuu	uu0u uuuu	u-
Brown-out Reset	0000h	1 1000	0011 11u0	u-
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	1 Ouuu	uuuu uuuu	u-
RESET Instruction Executed	0000h	u uuuu	uuuu u0uu	u-
Stack Overflow Reset (STVREN = 1)	0000h	u uuuu	luuu uuuu	u-
Stack Underflow Reset (STVREN = 1)	0000h	u uuuu	uluu uuuu	u-
Memory Violation Reset ($\overline{MEMV} = 0$)	0	-uuu uuuu	uuuu uuuu	0-

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and Global Enable bit (GIE) is set, the return address is pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

PIC16(L)F15325/45

REGISTER	16-2: PMD	1: PMD CON		STER 1			
R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
NCO1MD		_	_	—	TMR2MD	TMR1MD	TMR0MD
bit 7							bit 0
r							
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
u = Bit is un	changed	x = Bit is unk	nown	-n/n = Value a	t POR and BO	R/Value at all c	other Resets
'1' = Bit is se	et	'0' = Bit is cle	ared	q = Value dep	ends on condit	ion	
bit 7 bit 6-3	1 = NCO1 m 0 = NCO1 m	isable Numeric nodule disabled nodule enabled n ted: Read as '		scillator bit			
bit 2							
bit 1	bit 1 TMR1MD: Disable Timer TMR1 bit 1 = Timer1 module disabled 0 = Timer1 module enabled						
bit 0	1 = Timer0 r	isable Timer TM nodule disabled nodule enabled	1				

R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	U-0	U-0	U-0	U-0		
IOCBF7	IOCBF6	IOCBF5	IOCBF4	_	—	—	_		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set '0' = Bit is cleare		ared	HS - Bit is se	t in hardware					
L:1 7 4									

REGISTER 17-6: IOCBF: INTERRUPT-ON-CHANGE PORTB FLAG REGISTER

bit 7-4	 IOCBF<7:4>: Interrupt-on-Change PORTB Flag bits 1 = An enabled change was detected on the associated pin. Set when IOCBPx = 1 and a rising edge was detected on RBx, or when IOCBNx = 1 and a falling edge was detected on RBx. 0 = No change was detected, or the user cleared the detected change.
bit 3-0	Unimplemented: read as '0'

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1 Bit 0		Register on page	
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFVR<1:0>		ADFVR<1:0>		220	
ADCON0			CHS<	5:0>			GO/DONE	ADON	233	
ADCON1	ADFM		ADCS<2:0>		_	_	ADPRE	F<1:0>	234	
DAC1CON0	DAC1EN	-	DAC10E1	DAC10E2	DAC1PSS<1:0>		_	DAC1NSS	242	

TABLE 18-1: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

Legend: - = unimplemented locations read as '0'. Shaded cells are not used with the Fixed Voltage Reference.

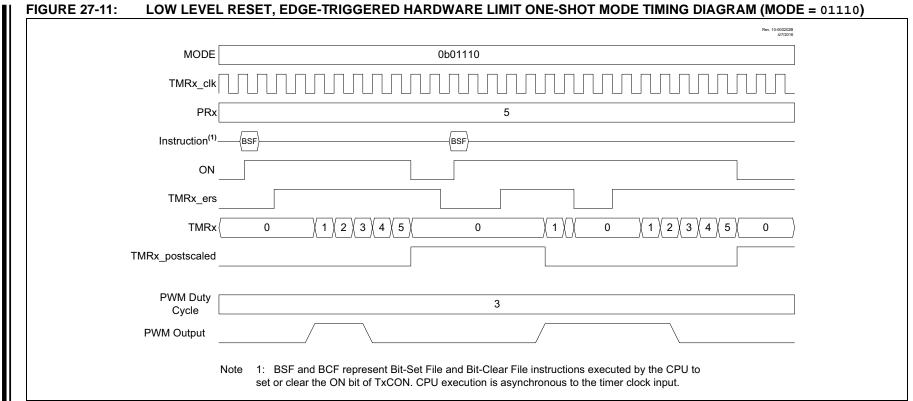
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
TMR0L	Holding Regi	ster for the Le	ast Significa	nt Byte of the 1	6-bit TMR0 Regis	ter			270*
TMR0H	Holding Regi	ster for the Me	ost Significar	t Byte of the 1	6-bit TMR0 Regist	er			270*
T0CON0	T0EN	—	TOOUT	T016BIT		T0OUTPS	<3:0>		273
T0CON1		T0CS<2:0>		T0ASYNC		T0CKPS<	3:0>		274
T0CKIPPS	_	_			T0CKIPPS	<5:0>			199
TMR0PPS	—	_			TMR0PPS<	<5:0>			199
T1GCON	GE	GPOL	GTM	GSPM	GGO/DONE	GVAL		_	285
INTCON	GIE	PEIE	_	_	_	_	— INTEDG		124
PIR0	—	_	TMR0IF	IOCIF	_	_	_	INTF	133
PIE0	—	—	TMR0IE	IOCIE	_	— — — INTE		125	

TABLE 25-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the Timer0 module.

* Page with Register information.

27.5.2 HARDWARE GATE MODE


The Hardware Gate modes operate the same as the Software Gate mode except the TMRx_ers external signal gates the timer. When used with the CCP the gating extends the PWM period. If the timer is stopped when the PWM output is high then the duty cycle is also extended.

When MODE<4:0> = 00001 then the timer is stopped when the external signal is high. When MODE<4:0> = 00010 then the timer is stopped when the external signal is low.

Figure 27-5 illustrates the Hardware Gating mode for MODE<4:0> = 00001 in which a high input level starts the counter.

	Rev. 10.000 1998 \$500/2014	
MODE	0b00001	
TMRx_clk		
TMRx_ers_		
PRx	5	
TMRx($0 \qquad \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$	
TMRx_postscaled_		
PWM Duty Cycle PWM Output	3	

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	—	_	—	—	—	INTEDG	124
PIR4	—	—	—	_	—	_	TMR2IF	TMR1IF	137
PIE4	_	—	—	_	_	_	TMR2IE	TMR1IE	129
CCP1CON	EN	_	OUT	FMT		MODE	=<3:0>		321
CCP1CAP	—	_	—	_	_		CTS<2:0>		323
CCPR1L	Capture/Con	npare/PWM F	Register 1 (LS	B)					323
CCPR1H	Capture/Con	npare/PWM F	Register 1 (MS	ter 1 (MSB)					
CCP2CON	EN	—	OUT	FMT	MODE<3:0>				321
CCP2CAP	—	_	—	_	_		CTS<2:0>		323
CCPR2L	Capture/Con	npare/PWM F	Register 1 (LS	B)					323
CCPR2H	Capture/Con	npare/PWM F	Register 1 (MS	SB)					323
CCP1PPS	_	—			CCP1P	PS<5:0>			199
CCP2PPS	—	—			CCP2P	PS<5:0>			199
RxyPPS	_	_	_			RxyPPS<4:0>	>		200
ADACT	—	_	_	- ADACT<3:0>					235
CLCxSELy	—	—	—			LCxDyS<4:0>	>		367
CWG1ISM	_	_	_	_		IS<	3:0>		356

TABLE 28-5: SUMMARY OF REGISTERS ASSOCIATED WITH CCPx

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the CCP module.

R/W-0/0	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxPOL	—			LCxG4POL	LCxG3POL	LCxG2POL	LCxG1POL
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7		CxOUT Output	5				
		ut of the logic o					
bit 6-4	•	ut of the logic o		nea			
	-	ted: Read as '					
bit 3		Gate 3 Output I	•				
		ut of gate 3 is i ut of gate 3 is r		applied to the	logic cell		
bit 2	•	Gate 2 Output I		rol bit			
		-	-	applied to the	logic cell		
	•	ut of gate 2 is r			5		
bit 1	LCxG2POL:	Gate 1 Output I	Polarity Conti	rol bit			
		ut of gate 1 is i ut of gate 1 is r		applied to the	logic cell		
bit 0	LCxG1POL:	Gate 0 Output I	Polarity Conti	rol bit			
		ut of gate 0 is in ut of gate 0 is r		applied to the	logic cell		

REGISTER 31-2: CLCxPOL: SIGNAL POLARITY CONTROL REGISTER

32.5.2.2 7-bit Reception with AHEN and DHEN

Slave device reception with AHEN and DHEN set operate the same as without these options with extra interrupts and clock stretching added after the eighth falling edge of SCL. These additional interrupts allows time for the slave software to decide whether it wants to ACK the receive address or data byte.

This list describes the steps that need to be taken by slave software to use these options for I^2C communication. Figure 32-16 displays a module using both address and data holding. Figure 32-17 includes the operation with the SEN bit of the SSP1CON2 register set.

- 1. S bit of SSP1STAT is set; SSP1IF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit clear is clocked in. SSP1IF is set and CKP cleared after the eighth falling edge of SCL.
- 3. Slave clears the SSP1IF.
- Slave can look at the ACKTIM bit of the SSP1CON3 register to <u>determine</u> if the SSP1IF was after or before the ACK.
- 5. Slave reads the address value from SSP1BUF, clearing the BF flag.
- 6. Slave sets ACK value clocked out to the master by setting ACKDT.
- 7. Slave releases the clock by setting CKP.
- 8. SSP1IF is set after an \overline{ACK} , not after a NACK.
- 9. If SEN = 1 the slave hardware will stretch the clock after the ACK.
- 10. Slave clears SSP1IF.

Note: SSP1IF is still set after the ninth falling edge of SCL even if there is no clock stretching and BF has been cleared. Only if NACK is sent to master is SSP1IF not set

- 11. SSP1IF set and CKP cleared after eighth falling edge of SCL for a received data byte.
- 12. Slave looks at ACKTIM bit of SSP1CON3 to determine the source of the interrupt.
- 13. Slave reads the received data from SSP1BUF clearing BF.
- 14. Steps 7-14 are the same for each received data byte.
- 15. Communication is ended by either the slave sending an ACK = 1, or the master sending a Stop condition. If a Stop is sent and Interrupt on Stop Detect is disabled, the slave will only know by polling the P bit of the SSP1STAT register.

33.4.2 SYNCHRONOUS SLAVE MODE

The following bits are used to configure the EUSART for synchronous slave operation:

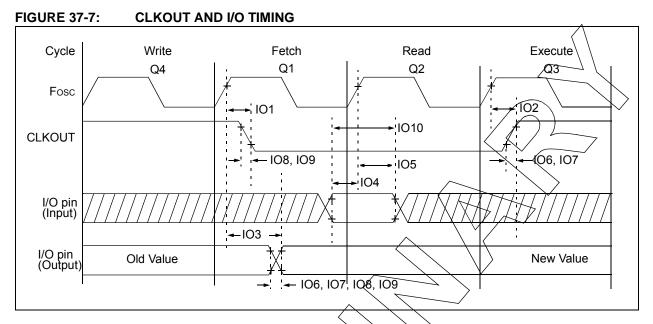
- SYNC = 1
- CSRC = 0
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXxSTA register configures the device for synchronous operation. Clearing the CSRC bit of the TXxSTA register configures the device as a slave. Clearing the SREN and CREN bits of the RCxSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCxSTA register enables the EUSART.

33.4.2.1 EUSART Synchronous Slave Transmit

The operation of the Synchronous Master and Slave modes are identical (see **Section 33.4.1.3 "Synchronous Master Transmission")**, except in the case of the Sleep mode.

If two words are written to the TXxREG and then the SLEEP instruction is executed, the following will occur:

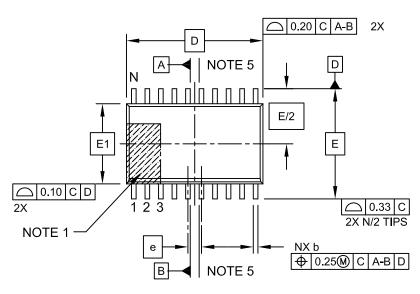

- 1. The first character will immediately transfer to the TSR register and transmit.
- 2. The second word will remain in the TXxREG register.
- 3. The TXxIF bit will not be set.
- After the first character has been shifted out of TSR, the TXxREG register will transfer the second character to the TSR and the TXxIF bit will now be set.
- 5. If the PEIE and TXxIE bits are set, the interrupt will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will call the Interrupt Service Routine.
- 33.4.2.2 Synchronous Slave Transmission Set-up:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for the CK pin (if applicable).
- 3. Clear the CREN and SREN bits.
- 4. If interrupts are desired, set the TXxIE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. Enable transmission by setting the TXEN bit.
- 7. If 9-bit transmission is selected, insert the Most Significant bit into the TX9D bit.
- 8. Start transmission by writing the Least Significant eight bits to the TXxREG register.

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	_	_			CLKRC	LK<3:0>	
bit 7							bit (
Legend:							
R = Readal	ble bit	W = Writable b	bit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is ur	nchanged	x = Bit is unkn	own	-n/n = Value a	at POR and BC	R/Value at all o	other Resets
'1' = Bit is s	-	'0' = Bit is clea	red				
bit 7-4	Unimplem	ented: Read as '0	,				
bit 3-0	CLKRCLK	<	it bits				
	Clock Sele	ction					
	1111 = Re	served					
	•						
	•						
	•						
	1011 = Re						
	1010 = LC 1001 = LC						
	1001 = LC 1000 = LC						
	0111 = LC						
	0110 = NC						
	0101 = SC						
	0100 = MF	INTOSC (31.25 kl	Hz)				
		INTOSC (500 kHz					
	0010 = LF	INTOSC					
	0001 = HF						
	0000 = F O	SC					

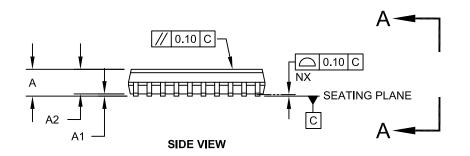
TABLE 34-1: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK REFERENCE OUTPUT

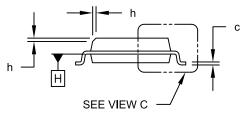
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 2 Bit 1 Bit 0		Register on Page	
CLKRCON	CLKREN	_	_	CLKRD	C<1:0>	C<1:0> CLKRDIV<2:0>				
CLKRCLK	—	—	_	_		CLKRCLK<3:0>				
CLCxSELy	—	—			LCxDyS<5:0>					
RxyPPS	—	_	_		RxyPPS<4:0>					

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the CLKR module.


TABLE 37-10:	I/O AND CLKOUT TIMING SPECIFICATIONS
--------------	--------------------------------------

Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
IO1*	T _{CLKOUTH}	CLKOUT rising edge delay (rising edge Fosc (Q1 cycle) to falling edge CLKOUT	> -	-	70	ns	
102*	T _{CLKOUTL}	CLKOUT falling edge delay (rising edge Fosc (Q3 cycle) to rising edge CLKOUT	_	—	72	ns	
103*	T _{IO_VALID}	Port output valid time (rising edge Fose (Q1 cycle) to port valid)	—	50	70	ns	
104*	T _{IO_SETUP}	Port input setup time (Setup time before rising edge Fosc – Q2 cycle)	20	—	—	ns	
105*	T _{IO_HOLD}	Port input hold time (Hold time after rising edge Fosc – Q2 cycle)	50	—	—	ns	
106*	TIOR_SLREN	Port I/O rise time, slew rate enabled	_	25	—	ns	VDD = 3.0V
107*	TIOR SLADIS	Port I/O rise time, slew rate disabled	_	5	—	ns	VDD = 3.0V
08*	FIOF SLREN	Port I/O fall time, slew rate enabled	_	25	—	ns	VDD = 3.0V
09*/		Port I/O fall time, slew rate disabled	—	5	—	ns	VDD = 3.0V
	FINT	INT pin high or low time to trigger an interrupt	25	-	_	ns	
011*	T.OC	Interrupt-on-Change minimum high or low time to trigger interrupt	25	—	—	ns	


Standard Operating Conditions (unless otherwise st	ate	db	\angle
Standard Operating Conditions (unless otherwise si	ιαις	u)	


20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW A-A

Microchip Technology Drawing C04-094C Sheet 1 of 2

© 2016 Microchip Technology Inc.

THE MICROCHIP WEBSITE

Microchip provides online support via our website at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://www.microchip.com/support

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELoa, KEELoa logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2016, Microchip Technology Incorporated, All Rights Reserved. ISBN: 978-1-5224-1220-5