

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 11x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-UQFN Exposed Pad
Supplier Device Package	16-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f15325-i-jq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The HIGH directive will set bit 7 if a label points to a location in the program memory. This applies to the assembly code Example 4-2 shown below.

EXAMPLE 4-2: ACCESSING PROGRAM MEMORY VIA FSR

constants			
RETLW	DATA0	;Index0	data
RETLW	DATA1	;Index1	data
RETLW	DATA2		
RETLW	DATA3		
my_functi	on		
; LO:	IS OF CODE		
MOVLW	LOW consta	ants	
MOVWF	FSR1L		
MOVLW	HIGH const	ants	
MOVWF	FSR1H		
MOVIW	0[FSR1]		
; THE PROG	RAM MEMORY I	S IN W	
; THE PROG	RAM MEMORY I	S IN W	

4.2 Memory Access Partition (MAP)

User Flash is partitioned into:

- Application Block
- Boot Block, and
- Storage Area Flash (SAF) Block

The user can allocate the memory usage by setting the BBEN bit, selecting the size of the partition defined by BBSIZE[2:0] bits and enabling the Storage Area Flash by the SAFEN bit of the Configuration Word (see Register 5-4). Refer to Table 4-2 for the different user Flash memory partitions.

4.2.1 APPLICATION BLOCK

Default settings of the Configuration bits ($\overline{\text{BBEN}} = 1$ and $\overline{\text{SAFEN}} = 1$) assign all memory in the user Flash area to the Application Block.

4.2.2 BOOT BLOCK

If $\overline{\text{BBEN}} = 1$, the Boot Block is enabled and a specific address range is alloted as the Boot Block based on the value of the BBSIZE bits of Configuration Word (Register 5-4) and the sizes provided in Table 5-1.

4.2.3 STORAGE AREA FLASH

Storage Area Flash (SAF) is enabled by clearing the SAFEN bit of the Configuration Word in Register 5-4. If enabled, the SAF block is placed at the end of memory and spans 128 words. If the Storage Area Flash (SAF) is enabled, the SAF area is not available for program execution.

4.2.4 MEMORY WRITE PROTECTION

All the memory blocks have corresponding write protection fuses WRTAPP, WRTB and WRTC bits in the Configuration Word 4 (Register 5-4). If write-protected locations are written from NVMCON registers, memory is not changed and the WRERR bit defined in Register 12-5 is set as explained in **Section 13.3.8 "WRERR Bit**".

4.2.5 MEMORY VIOLATION

A Memory Execution Violation Reset occurs while executing an instruction that has been fetched from outside a valid execution area, clearing the MEMV bit. Refer to **Section 8.12 "Memory Execution Violation"** for the available valid program execution areas and the PCON1 register definition (Register 8-3) for MEMV bit conditions.

	Bank 60 Bai		Bank 61		Bank 62		Bank 63		
1E41h	_	1EC1h	_	1F41h	—	1FC1h	_		
1E42h	_	1EC2h	_	1F42h	_	1FC2h	_		
1E43h	_	1EC3h	ADACTPPS	1F43h	ANSELB ⁽¹⁾	1FC3h	_		
1E44h	_	1EC4h	_	1F44h	WPUB ⁽¹⁾	1FC4h	_		
1E45h	_	1EC5h	SSP1CLKPPS	1F45h	ODCONB ⁽¹⁾	1FC5h	_		
1E46h	_	1EC6h	SSP1DATPPS	1F46h	SLRCONB ⁽¹⁾	1FC6h	_		
1E47h	_	1EC7h	SSP1SSPPS	1F47h	INLVLB ⁽¹⁾	1FC7h	_		
1E48h	_	1EC8h	_	1F48h	IOCBP ⁽¹⁾	1FC8h	_		
1E49h	_	1EC9h	_	1F49h	IOCBN ⁽¹⁾	1FC9h	_		
1E4Ah	_	1ECAh	_	1F4Ah	IOCBF ⁽¹⁾	1FCAh	_		
1E4Bh	_	1ECBh	RXDT1PPS	1F4Bh	_	1FCBh	_		
1E4Ch	—	1ECCh	TXCK1PPS	1F4Ch	—	1FCCh	—		
1E4Dh	_	1ECDh	RXD2TPPS	1F4Dh	—	1FCDh	_		
1E4Eh	_	1ECEh	TXCK2PPS	1F4Eh	ANSELC	1FCEh	_		
1E4Fh	_	1ECFh	_	1F4Fh	WPUC	1FCFh	_		
1E50h	_	1ED0h	_	1F50h	ODCONC	1FD0h	_		
1E51h	_	1ED1h	—	1F51h	SLRCONC	1FD1h	—		
1E52h	_	1ED2h	—	1F52h	INLVLC	1FD2h	—		
1E53h	—	1ED3h	—	1F53h	IOCCP	1FD3h	—		
1E54h	—	1ED4h	—	1F54h	IOCCN	1FD4h	—		
1E55h	—	1ED5h	—	1F55h	IOCCF	1FD5h	—		
1E56h	—	1ED6h	—	1F56h	—	1FD6h	—		
1E57h	_	1ED7h	_	1F57h	—	1FD7h	_		
1E58h	_	1ED8h	_	1F58h	_	1FD8h	_		
1E59h	_	1ED9h	_	1F59h	_	1FD9h	_		
1E5Ah	_	1EDAh	_	1F5Ah	_	1FDAh	_		
1E5Bh	—	1EDBh	—	1F5Bh	—	1FDBh	—		
1E5Ch	—	1EDCh	—	1F5Ch	—	1FDCh	—		
1E5Dh	—	1EDDh	_	1F5Dh	—	1FDDh	—		
1E5Eh	—	1EDEh	_	1F5Eh	—	1FDEh	_		
1E5Fh	—	1EDFh	_	1F5Fh	—	1FDFh	_		
1E60h	—	1EE0h	_	1F60h	—	1FE0h	_		
1E61h	—	1EE1h	—	1F61h	—	1FE1h	—		
1E62h	_	1EE2h	_	1F62h	—	1FE2h	—		
1E63h	_	1EE3h	_	1F63h	—	1FE3h	BSR_ICDSHAD		
1E64h	_	1EE4h	_	1F64h	—	1FE4h	STATUS_SHAD		
1E65h	_	1EE5h	_	1F65h	—	1FE5h	WREG_SHAD		
1E66h	_	1EE6h	_	1F66h	—	1FE6h	BSR_SHAD		
1E67h	_	1EE7h	_	1F67h	—	1FE7h	PCLATH_SHAD		
1E68h	—	1EE8h	—	1F68h	—	1FE8h	FSR0L_SHAD		
1E69h	—	1EE9h	_	1F69h	—	1FE9h	FSR0H_SHAD		
1E6Ah	—	1EEAh	—	1F6Ah	—	1FEAh	FSR1L_SHAD		
1E6Bh	—	1EEBh	—	1F6Bh	—	1FEBh	FSR1H_SHAD		
1E6Ch	—	1EECh	—	1F6Ch	—	1FECh	—		
1E6Dh	—	1EEDh	—	1F6Dh	—	1FEDh	STKPTR		
1E6Eh	—	1EEEh	—	1F6Eh	_	1FEEh	TOSL		
1E6Fh	_	1EEFh	_	1F6Fh	—	1FEFh	TOSH		

TABLE 4-8:PIC16(L)F15325/45 MEMORY MAP, BANKS 60, 61, 62, AND 63 (CONTINUED)

Legend:

= Unimplemented data memory locations, read as '0'

Note 1: Present only in PIC16(L)F15345.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 60											
				CPU COF	RE REGISTERS;	see Table 4-3 fo	r specifics				
1E0Ch	_				Unimple	mented				_	_
1E0Dh					Unimple	mented				—	—
1E0Eh					Unimple	mented				—	—
1E0Fh	CLCDATA	—	—	—	—	MLC4OUT	MLC3OUT	MLC2OUT	MLC1OUT	xxxx	uuuu
1E10h	CLCCON	LC1EN	—	LC10UT	LC1INTP	LC1INTN		LC1MODE<2:	0>	0-00 0000	0-00 0000
1E11h	CLC1POL	LC1POL	—	—	—	LC1G4POL	LC1G3POL	LC1G2POL	LC1G1POL	0 xxxx	0 uuuu
1E12h	CLC1SEL0	—	—			LC1	D1S<5:0>			xx xxxx	uu uuuu
1E13h	CLC1SEL1	—	_			LC1	02S<5:0>			xx xxxx	uu uuuu
1E14h	CLC1SEL2	—	_			LC1	03S<5:0>			xx xxxx	uu uuuu
1E15h	CLC1SEL3	—	_			LC1	04S<5:0>			xx xxxx	uu uuuu
1E16h	CLC1GLS0	LC1G1D4T	LC1G4D3N	LC1G1D3T	LC1G1D3N	LC1G1D2T	LC1G1D2N	LC1G1D1T	LC1G1D1N	xxxx xxxx	uuuu uuuu
1E17h	CLC1GLS1	LC1G2D4T	LC1G4D3N	LC1G2D3T	LC1G2D3N	LC1G2D2T	LC1G2D2N	LC1G2D1T	LC1G2D1N	xxxx xxxx	uuuu uuuu
1E18h	CLC1GLS2	LC1G3D4T	LC1G4D3N	LC1G3D3T	LC1G3D3N	LC1G3D2T	LC1G3D2N	LC1G3D1T	LC1G3D1N	xxxx xxxx	uuuu uuuu
1E19h	CLC1GLS3	LC1G4D4T	LC1G4D3N	LC1G4D3T	LC1G4D3N	LC1G4D2T	LC1G4D2N	LC1G4D1T	LC1G4D1N	xxxx xxxx	uuuu uuuu
1E1Ah	CLC2CON	LC2EN	_	LC2OUT	LC2INTP	LC2INTN		LC2MODE<2:	0>	0-00 0000	0-00 0000
1E1Bh	CLC2POL	LC2POL	_	—	—	LC2G4POL	LC2G3POL	LC2G2POL	LC2G1POL	0 xxxx	0 uuuu
1E1Ch	CLC2SEL0	—	_			LC2	01S<5:0>	•		xx xxxx	uu uuuu
1E1Dh	CLC2SEL1	_	_			LC2	02S<5:0>			xx xxxx	uu uuuu
1E1Eh	CLC2SEL2	_				LC2	03S<5:0>			xx xxxx	uu uuuu
1E1Fh	CLC2SEL3	_	_			LC2	04S<5:0>			xx xxxx	uu uuuu
1E20h	CLC2GLS0	LC2G1D4T	LC2G4D3N	LC2G1D3T	LC2G1D3N	LC2G1D2T	LC2G1D2N	LC2G1D1T	LC2G1D1N	xxxx xxxx	uuuu uuuu
1E21h	CLC2GLS1	LC2G2D4T	LC2G4D3N	LC2G2D3T	LC2G2D3N	LC2G2D2T	LC2G2D2N	LC2G2D1T	LC2G2D1N	xxxx xxxx	uuuu uuuu
1E22h	CLC2GLS2	LC2G3D4T	LC2G4D3N	LC2G3D3T	LC2G3D3N	LC2G3D2T	LC2G3D2N	LC2G3D1T	LC2G3D1N	xxxx xxxx	uuuu uuuu
1E23h	CLC2GLS3	LC2G4D4T	LC2G4D3N	LC2G4D3T	LC2G4D3N	LC2G4D2T	LC2G4D2N	LC2G4D1T	LC2G4D1N	xxxx xxxx	uuuu uuuu
1E24h	CLC3CON	LC3EN		LC3OUT	LC3INTP	LC3INTN		LC3MODE		0-00 0000	0-00 0000
1E25h	CLC3POL	LC3POL	—	—	—	LC3G4POL	LC3G3POL	LC3G2POL	LC3G1POL	0 xxxx	0 uuuu
1E26h	CLC3SEL0	_			•	LC3E	01S<5:0>			xx xxxx	uu uuuu
1E27h	CLC3SEL1	_	—			LC3	02S<5:0>			xx xxxx	uu uuuu
1E28h	CLC3SEL2	_	_			LC3	03S<5:0>			xx xxxx	uu uuuu
1E29h	CLC3SEL3	—	_			LC3E	04S<5:0>			xx xxxx	uu uuuu
1E2Ah	CLC3GLS0	LC3G1D4T	LC3G4D3N	LC3G1D3T	LC3G1D3N	LC3G1D2T	LC3G1D2N	LC3G1D1T	LC3G1D1N	xxxx xxxx	uuuu uuuu

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

10.0 INTERRUPTS

The interrupt feature allows certain events to preempt normal program flow. Firmware is used to determine the source of the interrupt and act accordingly. Some interrupts can be configured to wake the MCU from Sleep mode.

This chapter contains the following information for Interrupts:

- Operation
- Interrupt Latency
- Interrupts During Sleep
- INT Pin
- · Automatic Context Saving

Many peripherals produce interrupts. Refer to the corresponding chapters for details.

A block diagram of the interrupt logic is shown in Figure 10-1.

FIGURE 10-1: INTERRUPT LOGIC

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	_	_	—	_	_	INTEDG	124
PIE0	_	—	TMR0IE	IOCIE	—	_		INTE	125
PIE1	OSFIE	CSWIE	_	_	—	_	_	ADIE	126
PIE2	_	ZCDIE	_	_	—	_	C2IE	C1IE	127
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	_	_	BCL1IE	SSP1IE	128
PIE4		—	_		—		TMR2IE	TMR1IE	129
PIR0	_	—	TMR0IF	IOCIF	—	_	_	INTF	133
PIR1	OSFIF	CSWIF	_	_	—	_	-	ADIF	134
PIR2	_	ZCDIF		_	_	_	C2IF	C1IF	135
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	_		BCL1IF	SSP1IF	136
PIR4		_	_		_	_	TMR2IF	TMR1IF	137
IOCAP	_		IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	213
IOCAN	_	_	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	213
IOCAF	_	_	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	214
IOCBP ⁽¹⁾		_	_	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	215
IOCBN ⁽¹⁾		_	_	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	215
IOCBF ⁽¹⁾	_	_	_	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	216
IOCCP	IOCCP7 ⁽¹⁾	IOCCP6 ⁽¹⁾	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	217
IOCCN	IOCCN7 ⁽¹⁾	IOCCN6 ⁽¹⁾	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	217
IOCCF	IOCCF7 ⁽¹⁾	IOCCF6 ⁽¹⁾	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	217
STATUS	_	—	_	TO	PD	Z	DC	С	36
VREGCON	_	_	_	_	_		VREGPM	—	146
CPUDOZE	IDLEN	DOZEN	ROI	DOE	— DOZE<2:0>				147
WDTCON0		_		\ \	NDTPS<4:0>	>		SWDTEN	153

TABLE 11-1:	SUMMARY OF REGISTERS	ASSOCIATED WITH POWER-DOWN MODE
-------------	----------------------	---------------------------------

Legend: — = unimplemented location, read as '0'. Shaded cells are not used in Power-Down mode.

Note 1: Present only in PIC16(L)F15345.

-									
U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
_	_	WPUA5	WPUA4	WPUA3 ⁽¹⁾	WPUA2	WPUA1	WPUA0		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets		
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7-6	Unimplemen	ted: Read as 'o	כי						
bit 5-0	it 5-0 WPUA<5:0>: Weak Pull-up Register bits ⁽¹⁾								

REGISTER 14-5: WPUA: WEAK PULL-UP PORTA REGISTER

1 = Pull-up enabled0 = Pull-up disabled

Note 1: If MCLRE = 1, the weak pull-up in RA3 is always enabled; bit WPUA3 is not affected.

2: The weak pull-up device is automatically disabled if the pin is configured as an output.

REGISTER 14-6: ODCONA: PORTA OPEN-DRAIN CONTROL REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	ODCA5	ODCA4	—	ODCA2	ODCA1	ODCA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 bit 5-4	Unimplemented: Read as '0' ODCA<5:4>: PORTA Open-Drain Enable bits For RA<5:4> pins, respectively 1 = Port pin operates as open-drain drive (sink current only) 0 = Port pin operates as standard push-pull drive (source and sink current)
bit 3	Unimplemented: Read as '0'
bit 2-0	ODCA<2:0>: PORTA Open-Drain Enable bits For RA<2:0> pins, respectively 1 = Port pin operates as open-drain drive (sink current only) 0 = Port pin operates as standard push-pull drive (source and sink current)

22.0 NUMERICALLY CONTROLLED OSCILLATOR (NCO) MODULE

The Numerically Controlled Oscillator (NCO) module is a timer that uses overflow from the addition of an increment value to divide the input frequency. The advantage of the addition method over simple counter driven timer is that the output frequency resolution does not vary with the divider value. The NCO is most useful for application that requires frequency accuracy and fine resolution at a fixed duty cycle.

Features of the NCO include:

- 20-bit Increment Function
- Fixed Duty Cycle mode (FDC) mode
- Pulse Frequency (PF) mode
- Output Pulse Width Control
- Multiple Clock Input Sources
- Output Polarity Control
- Interrupt Capability

Figure 22-1 is a simplified block diagram of the NCO module.

23.2 Comparator Control

Each comparator has two control registers: CMxCON0 and CMxCON1.

The CMxCON0 register (see Register 23-1) contains Control and Status bits for the following:

- Enable
- Output
- Output polarity
- · Hysteresis enable
- · Timer1 output synchronization

The CMxCON1 register (see Register 23-2) contains Control bits for the following:

- · Interrupt on positive/negative edge enables
- The CMxNSEL and CMxPSEL (Register 23-3 and Register 23-4) contain control bits for the following:
 - Positive input channel selection
 - Negative input channel selection

23.2.1 COMPARATOR ENABLE

Setting the CxON bit of the CMxCON0 register enables the comparator for operation. Clearing the CxON bit disables the comparator resulting in minimum current consumption.

23.2.2 COMPARATOR OUTPUT

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the MCxOUT bit of the CMOUT register.

The comparator output can also be routed to an external pin through the RxyPPS register (Register 15-2). The corresponding TRIS bit must be clear to enable the pin as an output.

Note 1: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

23.2.3 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CxPOL bit of the CMxCON0 register. Clearing the CxPOL bit results in a non-inverted output.

Table 23-2 shows the output state versus input conditions, including polarity control.

TABLE 23-2: COMPARATOR OUTPUT STATE VS. INPUT CONDITIONS

Input Condition	CxPOL	CxOUT
CxVN > CxVP	0	0
CxVN < CxVP	0	1
CxVN > CxVP	1	1
CxVN < CxVP	1	0

26.11 Register Definitions: Timer1 Control

U-0	U-0	R/W-0/u	R/W-0/u	U-0	R/W-0/u	R/W-0/u	R/W-0/u
	—	CKPS	<1:0>	_	SYNC	RD16	ON
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value	at POR and BC	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6	Unimplemen	ted: Read as '	D'				
bit 5-4	CKPS<1:0>:	Timer1 Input C	lock Prescale	Select bits			
	11 = 1:8 Pres	cale value					
	10 = 1:4 Pres	scale value					
	01 = 12 Pres	scale value					
bit 3	Unimplemen	ted: Read as '	o'				
bit 2	SYNC: Timer	1 Synchronizat	on Control bit				
	When TMR10	CLK = FOSC or	Fosc/4				
	This bit is igno	ored. The timer	uses the inter	rnal clock and	no additional sy	nchronization	is performed.
	ELSE						
	0 = Synchror	nize external clo	ock input with	system clock			
	1 = Do not sy	ynchronize exte	ernal clock inpi	ut			
bit 1	RD16: 16-bit	Read/Write Mo	de Enable bit				
	0 = Enables 1 = Enables	register read/w	rite of Timer 1	in two 8-bit ope	neration		
bit 0)n hit					
Sit U	1 = Enables	Timer1					
	0 = Stops Tin	ner1 and clears	Timer1 gate	flip-flop			
			0				

REGISTER 26-1: T1CON: TIMER1 CONTROL REGISTER

U-0	U-0	U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u
	_	—	_		CS<	3:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	HC = Bit is cle	eared by hardw	/are	
bit 7-4	Unimplemented: Read as '0'						
bit 3-0	CS<3:0>: Timer1 Clock Select bits						
	1111 = Reser	rved					
	1110 = Reser	rved					
	$1101 = LC4_0$	out					
	$1100 = LC3_0$	out					
	$1011 = LC2_0$	out					
	$1010 = LCI_0$	oui O avorflow out	out				
	1001 - 111001		put				
	0111 = SOSC						
	0110 = MFIN	- TOSC (32 kHz)				
	0101 = MFINTOSC (500 kHz)						
0100 = LFINTOSC							
0011 = HFINTOSC							
0010 = Fosc 0001 = Fosc/4							
	0000 = T1CK	IPPS					

REGISTER 26-3: T1CLK TIMER1 CLOCK SELECT REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CCP1CON	EN	—	OUT	FMT		MODE	<3:0>		321
CCP2CON	EN	—	OUT	FMT		MODE	<3:0>		321
INTCON	GIE	PEIE	—	—	—	_		INTEDG	124
PIE1	OSFIE	CSWIE	—	—	—	_	-	ADIE	126
PIR1	OSFIF	CSWIF	—	—	—	—	_	ADIF	134
PR2	Timer2 Module Period Register								
TMR2	Holding Register for the 8-bit TMR2 Register								
T2CON	ON		CKPS<2:0>			OUTPS<3:0>			310
T2CLKCON	—	—	—	_		CS<	3:0>		309
T2RST		—	—	_		RSEL	.<3:0>		312
T2HLT	PSYNC	CKPOL	CKSYNC			MODE<4:0>			311

TABLE 27-2: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Timer2 module.

* Page provides register information.

PIC16(L)F15325/45

REGISTER 28-4: CCPRxH REGISTER: CCPx REGISTER HIGH BYTE

| R/W-x/x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | CCPRx | <15:8> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Reset
'1' = Bit is set	'0' = Bit is cleared	

CCPxMODE = Capture mode
CCPRxH<7:0>: Captured value of TMR1H
CCPxMODE = Compare mode
CCPRxH<7:0>: MS Byte compared to TMR1H
CCPxMODE = PWM modes when CCPxFMT = 0:
CCPRxH<7:2>: Not used
CCPRxH<1:0>: Pulse-width Most Significant two bits
CCPxMODE = PWM modes when CCPxFMT = 1:
CCPRxH<7:0>: Pulse-width Most Significant eight bits

29.0 PULSE-WIDTH MODULATION (PWM)

The PWMx modules generate Pulse-Width Modulated (PWM) signals of varying frequency and duty cycle.

In addition to the CCP modules, the PIC16(L)F15325/45 devices contain four 10-bit PWM modules (PWM3, PWM4, PWM5 and PWM6). The PWM modules reproduce the PWM capability of the CCP modules.

PWM3/4/5/6 modules Note: The are four instances of the same PWM module design. Throughout this section, the lower case 'x' in register and bit names is a generic reference to the PWM module number (which should be substituted with 3, or 4, or, 5 or 6 during code development). For example, the control register is generically described in this chapter as PWMxCON, but the actual device reaisters are PWM3CON. PWM4CON, PWM5CON and PWM6CON. Similarly, the PWMxEN bit represents the PWM3EN, PWM4EN, PWM5EN and PWM6EN bits.

Pulse-Width Modulation (PWM) is a scheme that provides power to a load by switching quickly between fully on and fully off states. The PWM signal resembles a square wave where the high portion of the signal is considered the 'on' state (pulse width), and the low portion of the signal is considered the 'off' state. The term duty cycle describes the proportion of the 'on' time to the 'off' time and is expressed in percentages, where 0% is fully off and 100% is fully on. A lower duty cycle corresponds to less power applied and a higher duty cycle corresponds to more power applied. The PWM period is defined as the duration of one complete cycle or the total amount of on and off time combined.

PWM resolution defines the maximum number of steps that can be present in a single PWM period. A higher resolution allows for more precise control of the pulse width time and, in turn, the power that is applied to the load.

Figure 29-1 shows a typical waveform of the PWM signal.

FIGURE 29-1: PWM OUTPUT

30.13 Register Definitions: CWG Control

Long bit name prefixes for the CWG peripherals are shown in Section 1.1 "Register and Bit Naming Conventions".

REGISTER 30-1: CWG1CON0: CWG1 CONTROL REGISTER 0

R/W-0/0	R/W/HC-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
EN	LD ⁽¹⁾	—	—	—		MODE<2:0>	
bit 7							bit 0

Legend:		
HC = Bit is cleared by hardwa	are	HS = Bit is set by hardware
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	EN: CWG1 Enable bit
	1 = Module is enabled
	0 = Module is disabled
bit 6	LD: CWG1 Load Buffer bits ⁽¹⁾
	1 = Buffers to be loaded on the next rising/falling event
	0 = Buffers not loaded
bit 5-3	Unimplemented: Read as '0'
bit 2-0	MODE<2:0>: CWG1 Mode bits
	111 = Reserved
	110 = Reserved
	101 = CWG outputs operate in Push-Pull mode
	100 = CWG outputs operate in Half-Bridge mode
	011 = CWG outputs operate in Reverse Full-Bridge mode
	010 = CWG outputs operate in Forward Full-Bridge mode
	001 = CWG outputs operate in Synchronous Steering mode
	000 = CWG outputs operate in Steering mode

Note 1: This bit can only be set after EN = 1 and cannot be set in the same instruction that EN is set.

PIC16(L)F15325/45

LSLF	Logical Left Shift				
Syntax:	[<i>label</i>]LSLF f{,d}				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$				
Operation:	$(f<7>) \rightarrow C$ $(f<6:0>) \rightarrow dest<7:1>$ $0 \rightarrow dest<0>$				
Status Affected:	C, Z				
Description:	The contents of register 'f' are shifted one bit to the left through the Carry flag. A '0' is shifted into the LSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.				
	C				

LSRF	Logical Right Shift
Syntax:	[<i>label</i>] LSRF f {,d}
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	$\begin{array}{l} 0 \rightarrow \text{dest}{<7}{>} \\ (\text{f}{<7}{:1}{>}) \rightarrow \text{dest}{<6}{:0}{>}, \\ (\text{f}{<0}{>}) \rightarrow \text{C}, \end{array}$

Status Affected:C, ZDescription:The contents of register 'f' are shifted
one bit to the right through the Carry
flag. A '0' is shifted into the MSb. If 'd' is
'0', the result is placed in W. If 'd' is '1',
the result is stored back in register 'f'.

MOVF	Move f
Syntax:	[<i>label</i>] MOVF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	$(f) \rightarrow (dest)$
Status Affected:	Z
Description:	The contents of register f is moved to a destination dependent upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.
Words:	1
Cycles:	1
Example:	MOVF FSR, 0
	After Instruction W = value in FSR register Z = 1

37.4 AC Characteristics

TABLE 37-17: ZERO CROSS DETECT (ZCD) SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C								
Param. No.	Sym.	Characteristics	Min.	Тур†	Max.	Units	Comments	
ZC01	VPINZC	Voltage on Zero Cross Pin	_	0.75	—	V	\sim	
ZC02	IZCD_MAX	Maximum source or sink current	_	_	600	μΑ)		
ZC03	TRESPH	Response Time, Rising Edge		1	_	ļus		
	TRESPL	Response Time, Falling Edge	_	1	_	μs		

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 37-12: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 37-18:	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
--------------	---

Standard Operating Conditions (unless otherwise stated) Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								\square	
Param. No.	Sym.		Characteristic	c	Min.	Тур†	Max.	Units	Conditions
40*	T⊤0H	T0CKI High I	Pulse Width	No Prescaler	0.5 Tcy + 20		—	ns	$\langle \rangle$
				With Prescaler	10	_	—	/ ns	
41*	TT0L	T0CKI Low F	ulse Width	No Prescaler	0.5 Tcy + 20	_	—/	/ns /	
		With Prescaler		10	_	_/	NS		
42*	TT0P	T0CKI Period			Greater of:	_	—	ns <	N = prescale value
					20 or <u>Tcy + 40</u> N	$\[\]$			\triangleright
45*	T⊤1H	T1CKI High	Synchronous, N	lo Prescaler	0.5 Tcy + 20	_/	N	ns	
		Time	Synchronous, w	vith Prescaler	15	_ /	$\overline{1}/$	715	
			Asynchronous		30 🔨	_		ns	
46*	TT1L	T1CKI Low	Synchronous, N	lo Prescaler	0.5 Tcy + 20	<u> </u>	/_/	ns	
		Time	Synchronous, w	vith Prescaler	15	$\langle - \rangle$	\rightarrow	ns	
			Asynchronous		30	Ž	$\geq -$	ns	
47*	T⊤1P	T1CKI Input Period	Synchronous		Greater of:		/ _	ns	N = prescale value
		i chou		·	N	$\left \right\rangle$			
			Asynchronous	\frown	60	\sim _	—	ns	
48	FT1	Secondary Oscillator Input Frequency Range 32.4 (oscillator enabled by setting bit T1OSCEN)				32.768	33.1	kHz	
49*	TCKEZTMR1	Delay from E	alay from External Clock Edge to Timer 2 Tosc crement			—	7 Tosc	—	Timers in Sync mode

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

© 2016 Microchip Technology Inc.

TABLE 37-21: EUSART SYNCHRONOUS TRANSMISSION CHARACTERISTICS

Standard	Operating Cor		~			
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions
US120	ТскH2dtV	SYNC XMIT (Master and Slave)		80	ns	$3.0V \leq V\text{DD} \leq 5.5V$
		Clock high to data-out valid	$\langle - \rangle$	100	ns	$1.8V \leq V\text{DD} \leq 5.5V$
US121	TCKRF	Clock out rise time and fall time	$\langle - \rangle$	45	ns	$3.0V \le V\text{DD} \le 5.5V$
		(Master mode)		50	ns	$1.8V \leq V\text{DD} \leq 5.5V$
US122	US122 TDTRF Data-out rise time and fall time		$\langle \rangle$	45	ns	$3.0V \leq V\text{DD} \leq 5.5V$
			<u> </u>	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$

FIGURE 37-16: EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 37-22: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)								
Param. No. Symbol	Characteristic	Min.	Max.	Units	Conditions			
US125 TDTV2CKL	SYNC RCV (Master and Slave)	10						
	Data-setup before $CK \neq (DT hold time)$	10		ns				
US126 TCKL2DTL	Data-hold after CK \downarrow (DT hold time)	15	_	ns				

Standard	Operating C	onditions (unless othe	rwise stated)				
Param. No.	Symbol	Characteristic		Min.	Max.	Units	Conditions
SP100*	Тнідн	Clock high time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	-	μs	Device must operate at a minimum of 10 MHz
			SSP module	1.5Tcy	—		
SP101*	TLOW	Clock low time	100 kHz mode	4.7	-	μs	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	-	μs	Device must operate at a minimum of 10 MHz
			SSP module	1.5TCY	—		
SP102*	TR	SDA and SCL rise time	100 kHz mode	—	1000	ns	
			400 kHz mode	20 + 0.1CB	300	ns	CB is specified to be from 10-400 pF
SP103*	TF	SDA and SCL fall time	100 kHz mode	—	250	ns	
			400 kHz mode	20 + 0.1CB	250	ns	CB is specified to be from 10-400 pF
SP106*	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μS	
SP107*	TSU:DAT	DAT Data input setup time	100 kHz mode	250	—	ns	(Note 2)
			400 kHz mode	100	—	ns	
SP109*	ΤΑΑ	Output valid from clock	100 kHz mode	—	3500	ns	(Note 1)
			400 kHz mode	—	—	ns	
SP110*	TBUF	Bus free time	100 kHz mode	4.7	—	μS	Time the bus must be free
			400 kHz mode	1.3	—	μS	before a new transmission can start
SP111	Св	Bus capacitive loading			400	pF	

TABLE 37-25: I²C BUS DATA REQUIREMENTS

* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + Tsu:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.