Microchip Technology - PIC16F15325-I/P Datasheet

E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 11x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	14-DIP (0.300", 7.62mm)
Supplier Device Package	14-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f15325-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

The PIC16(L)F15325/45 are described within this data sheet. The PIC16(L)F15325/45 devices are available in 14/20-pin PDIP, SSOP, SOIC, TSSOP, and UQFN packages. Figure 1-1 and Figure 1-2 shows the block diagrams of the PIC16(L)F15325/45 devices. Table 1-2 and Table 1-3 shows the pinout descriptions.

Reference Table 1-1 for peripherals available per device.

TABLE 1-1: DEVICE PERIPHERAL SUMMARY

JUNIMARI		
Peripheral		PIC16(L)F15325/45
Analog-to-Digital Converter		٠
Digital-to-Analog Converter (DAC1)		٠
Fixed Voltage Reference (FVR)		٠
Enhanced Universal Synchronous/Asynchron Transmitter (EUSART1 and EUSART2)	ous Receiver/	•
Numerically Controlled Oscillator (NCO1)		٠
Temperature Indicator Module (TIM)		٠
Zero-Cross Detect (ZCD1)		٠
Capture/Compare/PWM Modules (CCP)		
	CCP1	٠
	CCP2	٠
Comparator Module (Cx)		
	C1	٠
	C2	٠
Configurable Logic Cell (CLC)	-	
	CLC1	٠
	CLC2	٠
	CLC3	٠
	CLC4	٠
Complementary Waveform Generator (CWG)		
	CWG1	٠
Master Synchronous Serial Ports (MSSP)		
	MSSP1	٠
Pulse-Width Modulator (PWM)		
	PWM3	٠
	PWM4	٠
	PWM5	٠
	PWM6	٠
Timers		
	Timer0	•
	Timer1	٠
	Timer2	٠

	ABLE 4-10. SPECIAL FUNCTION REGISTER SUMMART BAINES 0-03 (CONTINUED)												
Address	Name	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0									V <u>alue o</u> n: MCLR		
Bank 3													
				CPU COF	RE REGISTERS;	see Table 4-3 for	specifics						
18Ch	SSP1BUF	Synchronous Serial Po	ort Receive Buffer/	Transmit Register						xxxx xxxx	xxxx xxxx		
18Dh	SSP1ADD				ADD<	7:0>				0000 0000	0000 0000		
18Eh	SSP1MSK				MSK<	7:0>				1111 1111	1111 1111		
18Fh	SSP1STAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	0000 0000	0000 0000		
190h	SSP1CON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000		
191h	SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000		
192h	SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000 0000	0000 0000		
193h 	_	Unimplemented								_	_		

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

	ABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)												
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR		
Bank 19	iank 19												
	CPU CORE REGISTERS; see Table 4-3 for specifics												
98Ch	_				Unimpler	mented				—	—		
98Dh	98Dh — Unimplemented									—	_		
98Eh	ih — Unimplemented									—	—		
98Fh	CMOUT	—	_	—	—	—	—	MC2OUT	MC1OUT	00	00		
990h	CM1CON0	EN	OUT	—	POL	—	—	HYS	SYNC	00-000	00-000		
991h	CM1CON1	—	_	—	—	—	—	INTP	INTN	00	00		
992h	CM1NCH	—	_	—	—	—		NCH<2:0>		000	000		
993h	CM1PCH	—	_	—	—	—		PCH<2:0>		000	000		
994h	CM2CON0	EN	OUT	—	POL	—	—	HYS	SYNC	00-000	00-000		
995h	CM2CON1	_	_	—	—	_	—	INTP	INTN	00	00		
996h	CM2NCH	—	_	—	_	—		NCH<2:0>		000	000		
997h	CM2PCH	—	_	—	_	_		PCH<2:0>		000	000		
998h									_	_			

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

TABLE 4		AL FUNCTION REGISTER SUMMART BANKS 0-03 (CONTINUED)									
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 62 (C	Continued)										
1F38h	ANSELA	—	_	ANSA5	ANSA4	—	ANSA2	ANSA1	ANSA0	11 1111	11 1111
1F39h	WPUA	_	—	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	00 0000	00 0000
1F3Ah	ODCONA	_	—	ODCA5	ODCA4	_	ODCA2	ODCA1	ODCA0	00 0000	00 0000
1F3Bh	SLRCONA	_	—	SLRA5	SLRA4	_	SLRA2	SLRA1	SLRA0	11 1111	11 1111
1F3Ch	INLVLA	_	—	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	11 1111	11 1111
1F3Dh	IOCAP	_	—	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	00 0000	00 0000
1F3Eh	IOCAN	_	—	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	00 0000	00 0000
1F3Fh	IOCAF	_	_	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	00 0000	00 0000
1F40h	_				Unimple	mented		•		_	—
1F41h	_				Unimple	mented				_	_
1F42h	_				Unimple	mented				_	—
1F43h	ANSELB ⁽¹⁾	ANSB7	ANSB6	ANSB5	ANSB4	_	_	—	_	1 1111	1 1111
1F44h	WPUB ⁽¹⁾	WPUB7	WPUB6	WPUB5	WPUB4	_	_	_	_	0 0000	0 0000
1F45h	ODCONB ⁽¹⁾	ODCB7	ODCB6	ODCB5	ODCB4	_	_	_	_	0 0000	0 0000
1F46h	SLRCONB ⁽¹⁾	SLRB7	SLRB6	SLRB5	SLRB4	_	_	_	_	1 1111	1 1111
1F47h	INLVLB ⁽¹⁾	INLVLB7	INLVLB6	INLVLB5	INLVLB4	_	_	_	_	1 1111	1 1111
1F48h	IOCBP ⁽¹⁾	IOCBP7	IOCBP6	IOCBP5	IOCBP4	_	_	_	_	0 0000	0 0000
1F49h	IOCBN ⁽¹⁾	IOCBN7	IOCBN6	IOCBN5	IOCBN4	_	_	_	_	0 0000	0 0000
1F4Ah	IOCBF ⁽¹⁾	IOCBF7	IOCBF6	IOCBF5	IOCBF4	_	—	_	_	0 0000	0 0000
1F4Bh	_				Unimple	mented				_	_
1F4Ch	_				Unimple	mented				_	_
1F4Dh	_				Unimple	mented				_	_
1F4Eh	ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	1111 1111	1111 1111
1F4Fh	WPUC	WPUC7 ⁽¹⁾	WPUC6 ⁽¹⁾	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	0000 0000	0000 0000
1F50h	ODCONC	ODCC7 ⁽¹⁾	ODCC6 ⁽¹⁾	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	0000 0000	0000 0000
1F51h	SLRCONC	SLRC7 ⁽¹⁾	SLRC6 ⁽¹⁾	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0	1111 1111	1111 1111
1F52h	INLVLC	INLVLC7 ⁽¹⁾	INLVLC6 ⁽¹⁾	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	1111 1111	1111 1111
1F53h	IOCCP	IOCCP7 ⁽¹⁾	IOCCP6 ⁽¹⁾	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	0000 0000	0000 0000
1F54h	IOCCN	IOCCN7 ⁽¹⁾	IOCCN6 ⁽¹⁾	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	0000 0000	0000 0000
1F55h	IOCCF	IOCCF7 ⁽¹⁾	IOCCF6 ⁽¹⁾	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	0000 0000	0000 0000
1F56h 1F6Fh	_										_

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

PIC16(L)F15325/45

Legend:

Note 1:

Present only in PIC16(L)F15345.

6.1 Microchip Unique identifier (MUI)

The PIC16(L)F15325/45 devices are individually encoded during final manufacturing with a Microchip Unique Identifier, or MUI. The MUI cannot be erased by a Bulk Erase command or any other user-accessible means. This feature allows for manufacturing traceability of Microchip Technology devices in applications where this is a required. It may also be used by the application manufacturer for a number of functions that require unverified unique identification, such as:

- Tracking the device
- Unique serial number

The MUI consists of nine program words. When taken together, these fields form a unique identifier. The MUI is stored in nine read-only locations, located between 8100h to 8109h in the DIA space. Table 6-1 lists the addresses of the identifier words.

Note:	For applications that require verified unique
	identification, contact your Microchip Tech-
	nology sales office to create a Serialized
	Quick Turn Programming option.

6.2 External Unique Identifier (EUI)

The EUI data is stored at locations 810Ah to 8111h in the program memory region. This region is an optional space for placing application specific information. The data is coded per customer requirements during manufacturing. The EUI cannot be erased by a Bulk Erase command.

Note: Data is stored in this address range on receiving a request from the customer. The customer may contact the local sales representative or Field Applications Engineer, and provide them the unique identifier information that is required to be stored in this region.

6.3 Analog-to-Digital Conversion Data of the Temperature Sensor

The purpose of the temperature indicator module is to provide a temperature-dependent voltage that can be measured by an analog module. **Section 19.0 "Temperature Indicator Module**" explains the operation of the Temperature Indicator module and defines terms such as the low range and high range settings of the sensor.

The DIA table contains the internal ADC measurement values of the temperature sensor for low and high range at fixed points of reference. The values are measured during test and are unique to each device. The right-justified ADC readings are stored in the DIA memory region. The calibration data can be used to plot the approximate sensor output voltage, VTSENSE vs. Temperature curve.

- **TSLR<3:1>**: Address 8112h to 8114h store the measurements for the low range setting of the temperature sensor at VDD = 3V.
- TSHR<3:1>: Address 8115h to 8117h store the measurements for the high range setting of the temperature sensor at VDD = 3V.

The stored measurements are made by the device ADC using the internal VREF = 2.048V.

6.4 Fixed Voltage Reference Data

The Fixed Voltage Reference, or FVR, is a stable voltage reference, independent of VDD, with 1.024V, 2.048V or 4.096V selectable output levels. The output of the FVR can be configured to supply a reference voltage to the following:

- ADC input channel
- ADC positive reference
- Comparator positive input
- Digital-to-Analog Converter

For more information on the FVR, refer to **Section 18.0 "Fixed Voltage Reference (FVR)"**.

The DIA stores measured FVR voltages for this device in mV for the different buffer settings of 1x, 2x or 4x at program memory locations 8118h to 811Dh.

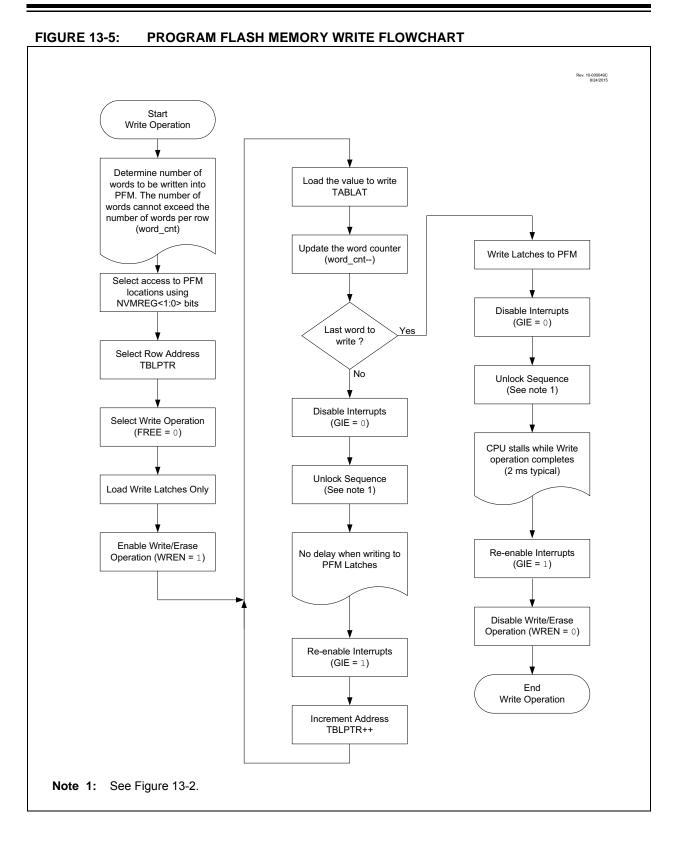
- FVRA1X stores the value of ADC FVR1 Output voltage for 1x setting (in mV)
- FVRA2X stores the value of ADC FVR1 Output Voltage for 2x setting (in mV)
- FVRA4X stores the value of ADC FVR1 Output Voltage for 4x setting (in mV)
- FVRC1X stores the value of Comparator FVR2 output voltage for 1x setting (in mV)
- FVRC2X stores the value of Comparator FVR2 output voltage for 2x setting (in mV)
- FVRC4X stores the value of Comparator FVR2 output voltage for 4x setting (in mV)

R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0
RC2IF	TX2IF	RC1IF	TX1IF	—	_	BCL1IF	SSP1IF
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and B	OR/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	HS = Hardwa	re clearable		
bit 7	RC2IF: EUSA	ART2 Receive I	nterrupt Flag ((Read-Only) b	(1)		
	1 = The EUS	ART2 receive ART2 receive	buffer is not er	npty (contains		oyte)	
bit 6		RT2 Transmit I			it(2)		
	1 = The EUS	ART2 transmit	buffer contain	s at least one	unoccupied s	pace firmware shoul	d not write to
bit 5	RC1IF: EUSA	RT1 Receive I	nterrupt Flag ((read-only) bit	(1)		
	1 = The EUS	ART1 receive ART1 receive	buffer is not er	mpty (contains		oyte)	
bit 4	TX1IF: EUSA	RT1 Transmit I	Interrupt Flag	(read-only) bit	(2)		
	0 = The EUS	SART1 transmi SART1 transm again, until mo	it buffer is cu	rrently full. Th	ne application	firmware shoul	d not write to
bit 3-2	Unimplemen	ted: Read as '	כ'				
bit 1	BCL1IF: MSS	SP1 Bus Collisi	on Interrupt FI	ag bit			
		llision was dete ollision was de		cleared in sof	ťware)		
bit 0	SSP1IF: Sync	chronous Seria	I Port (MSSP1) Interrupt Fla	g bit		
		smission/Rece or the Transmis				cleared in softwa	are)
	RCxIF flag is a s to remove al			0,	firmware mus	t read from RCx	REG enough
2: The the	TXxIF flag is a	a read-only bit, write enough d	indicating if th lata to TXxRE	ere is room in G to complete	y fill all availa	uffer. To clear the ble bytes in the b re instead).	
	rrupt flag bits a	re set when an					

Note:	Interrupt flag bits are set when an interrupt									
	condition occurs, regardless of the state of									
	its corresponding enable bit or the Global									
	Enable bit, GIE, of the INTCON register.									
	User software should ensure the									
	appropriate interrupt flag bits are clear									
	prior to enabling an interrupt.									

R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	U-0	U-0	U-0	R/W/HS-0/0			
CLC4IF	CLC3IF	CLC2IF	CLC1IF	_	_	_	TMR1GIF			
bit 7	·						bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'				
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BOI	R/Value at all	other Resets			
'1' = Bit is set		'0' = Bit is clea	ared	HS = Hardwa	are set					
bit 7		4 Interrupt Flag	-							
	1 = A CLC4OUT interrupt condition has occurred (must be cleared in software)									
	0 = No CLC4 interrupt event has occurred									
bit 6	CLC3IF: CLC3 Interrupt Flag bit									
	 1 = A CLC3OUT interrupt condition has occurred (must be cleared in software) 0 = No CLC3 interrupt event has occurred 									
bit 5		2 Interrupt Flag								
Sit 0	1 = A CLC2OUT interrupt condition has occurred (must be cleared in software)									
	0 = No CLC2 interrupt event has occurred									
bit 4	CLC1IF: CLC	1 Interrupt Flag	g bit							
	1 = A CLC1OUT interrupt condition has occurred (must be cleared in software)									
	0 = No CLC1 interrupt event has occurred									
bit 3-1	Unimplemen	ted: Read as '	o'							
bit 0	TMR1GIF: Tir	mer1 Gate Inte	rrupt Flag bit							
	1 = The Timer1 Gate has gone inactive (the acquisition is complete)									
	0 = The Time	r1 Gate has no	t gone inactive	9						
Note: Inte	errupt flag bits a	re set when an	interrunt							
		egardless of the	-							

REGISTER 10-15: PIR5: PERIPHERAL INTERRUPT REQUEST REGISTER 5


Note:	Interrupt flag bits are set when an interrupt								
	condition occurs, regardless of the state of								
	its corresponding enable bit or the Global								
	Enable bit, GIE, of the INTCON register.								
	User software should ensure the								
	appropriate interrupt flag bits are clear								
	prior to enabling an interrupt.								

12.7 Register Definitions: Windowed Watchdog Timer Control

REGISTER 12-1: WDTCON0: WATCHDOG TIMER CONTROL REGISTER 0

U-0	U-0	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W-0/0				
-	-			WDTPS<4:0>(1)			SWDTEN				
bit 7							bit C				
Legend:											
R = Reada	ble bit	W = Writable b	pit	U = Unimplem	nented bit, read	l as '0'					
u = Bit is u	nchanged	x = Bit is unkno	own	-n/n = Value a	t POR and BO	R/Value at all ot	her Resets				
1' = Bit is s	set	ʻ0' = Bit is clea	red	q = Value dep	ends on condit	ion					
bit 7-6	Unimplome	ntod. Dood oo 'o	3								
	-	ented: Read as '0 0>: Watchdog Tin		alaat hita(1)							
bit 5-1		Prescale Rate	nel Prescale S								
				tom (a) (1.20)							
	•	eserved. Results	in minimum in	iterval (1:32)							
	•										
	•										
	10011 = R	0011 = Reserved. Results in minimum interval (1:32)									
	10010 = 1	10010 = 1:8388608 (2 ²³) (Interval 256s nominal)									
	10001 = 1	= 1:4194304 (2 ²²) (Interval 128s nominal)									
	10000 = 1	:2097152 (2 ²¹) (II	2097152 (2 ²¹) (Interval 64s nominal)								
	01111 = 1	1048576 (2 ²⁰) (Interval 32s nominal)									
	01110 = 1	:524288 (2 ¹⁹) (Int :262144 (2 ¹⁸) (Int	terval 16s nom	inal)							
	01101 = 1	:262144 (2 ¹⁰) (Ini	terval 8s nomin	nal)							
		:131072 (2 ¹⁷) (Int :65536 (Interval 2									
		:32768 (Interval 2		eset value)							
		:16384 (Interval 5	,	d)							
		:8192 (Interval 25									
		:4096 (Interval 12									
	00110 = 1	:2048 (Interval 64	ms nominal)								
		:1024 (Interval 32	,								
		:512 (Interval 16)	,								
		:256 (Interval 8 m	,								
		:128 (Interval 4 m									
		:64 (Interval 2 ms :32 (Interval 1 ms	,								
oit O		Software Enable/		tchdog Timer bi	it						
	If WDTE<1:			U U							
	This bit is ig										
	If WDTE<1:										
	1 = WDT is										
	0 = WDT is										
	If WDTE<1:										
	This bit is ig	nored.									

- **Note 1:** Times are approximate. WDT time is based on 31 kHz LFINTOSC.
 - 2: When WDTCPS <4:0> in CONFIG3 = 11111, the Reset value of WDTPS<4:0> is 01011. Otherwise, the Reset value of WDTPS<4:0> is equal to WDTCPS<4:0> in CONFIG3.
 - **3:** When WDTCPS <4:0> in CONFIG3 \neq 11111, these bits are read-only.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTA	_	—	RA5	RA4	RA3	RA2	RA1	RA0	178
TRISA	_	_	TRISA5	TRISA4	—	TRISA2	TRISA1	TRISA0	178
LATA	_	_	LATA5	LATA4	—	LATA2	LATA1	LATA0	179
ANSELA	_	_	ANSA5	ANSA4	—	ANSA2	ANSA1	ANSA0	179
WPUA	_	_	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	180
ODCONA	_	_	ODCA5	ODCA4	—	ODCA2	ODCA1	ODCA0	180
SLRCONA	_	_	SLRA5	SLRA4	—	SLRA2	SLRA1	SLRA0	181
INLVLA	_	_	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	181

TABLE 14-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

14.6 PORTC Registers

14.6.1 DATA REGISTER

PORTC is a 6 to 8-bit wide bidirectional port. The corresponding data direction register is TRISC (Register 14-18). Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Figure 14-1 shows how to initialize an I/O port.

Reading the PORTC register (Register 14-17) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATC).

The PORT data latch LATC (Register 14-19) holds the output port data, and contains the latest value of a LATC or PORTC write.

14.6.2 DIRECTION CONTROL

The TRISC register (Register 14-18) controls the PORTC pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISC register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

14.6.3 OPEN-DRAIN CONTROL

The ODCONC register (Register 14-22) controls the open-drain feature of the port. Open-drain operation is independently selected for each pin. When an ODCONC bit is set, the corresponding port output becomes an open-drain driver capable of sinking current only. When an ODCONC bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

Note:	It is not necessary to set open-drain control when using the pin for I^2C ; the I^2C
	module controls the pin and makes the pin open-drain.

14.6.4 SLEW RATE CONTROL

The SLRCONC register (Register 14-23) controls the slew rate option for each port pin. Slew rate control is independently selectable for each port pin. When an SLRCONC bit is set, the corresponding port pin drive is slew rate limited. When an SLRCONC bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

14.6.5 INPUT THRESHOLD CONTROL

The INLVLC register (Register 14-24) controls the input voltage threshold for each of the available PORTC input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTC register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See Table 37-4 for more information on threshold levels.

Note: Changing the input threshold selection should be performed while all peripheral modules are disabled. Changing the threshold level during the time a module is active may inadvertently generate a transition associated with an input pin, regardless of the actual voltage level on that pin.

14.6.6 ANALOG CONTROL

The ANSELC register (Register 14-20) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELC bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELC bits has no effect on digital output functions. A pin with TRIS clear and ANSELC set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

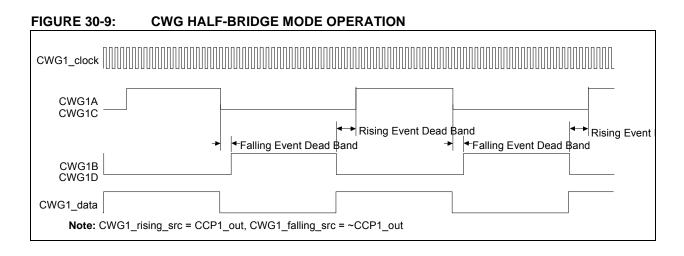
Note:	The ANSELC bits default to the Analog							
	mode after Reset. To use any pins as							
	digital general purpose or peripheral							
	inputs, the corresponding ANSEL bits							
	must be initialized to '0' by user software.							

14.6.7 WEAK PULL-UP CONTROL

The WPUC register (Register 14-21) controls the individual weak pull-ups for each port pin.

14.6.8 PORTC FUNCTIONS AND OUTPUT PRIORITIES

Each pin defaults to the PORT latch data after Reset. Other output functions are selected with the peripheral pin select logic. See **Section 15.0 "Peripheral Pin Select (PPS) Module"** for more information.


Analog input functions, such as ADC and comparator inputs, are not shown in the peripheral pin select lists. Digital output functions may continue to control the pin when it is in Analog mode.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTC	RC7 ⁽¹⁾	RC6 ⁽¹⁾	RC5	RC4	RC3	RC2	RC1	RC0	189
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	189
LATC	LATC7 ⁽¹⁾	LATC6 ⁽¹⁾	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	189
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	190
WPUC	WPUC7 ⁽¹⁾	WPUC6 ⁽¹⁾	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	190
ODCONC	ODCC7 ⁽¹⁾	ODCC6 ⁽¹⁾	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	191
SLRCONC	SLRC7 ⁽¹⁾	SLRC6 ⁽¹⁾	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0	191
INLVLC	INLVLC7 ⁽¹⁾	INLVLC6 ⁽¹⁾	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	191

TABLE 14-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Legend: – = unimplemented locations read as '0'. Shaded cells are not used by PORTC.

Note 1: Present on PIC16(L)F15345 only.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
INTCON	GIE	PEIE	_	_	_	_	_	INTEDG	124	
PIR5	CLC4IF	CLC3IF	CLC2IF	CLC1IF	_	_	_	TMR1GIF	138	
PIE5	CLC4IE	CLC4IE	CLC2IE	CLC1IE	_	_	_	TMR1GIE	130	
CLC1CON	LC1EN	_	LC10UT	LC1INTP	LC1INTN		LC1MODE<2:0	>	365	
CLC1POL	LC1POL	_	_	_	LC1G4POL	LC1G3POL	LC1G2POL	LC1G1POL	366	
CLC1SEL0	_			LC1D1S<5:0>						
CLC1SEL1	_	_			LC1D	2S<5:0>			367	
CLC1SEL2	_	_			LC1D	3S<5:0>			367	
CLC1SEL3	_	_			LC1D	4S<5:0>			367	
CLC1GLS0	_	_	LC1G1D3T	LC1G1D3N	LC1G1D2T	LC1G1D2N	LC1G1D1T	LC1G1D1N	368	
CLC1GLS1	_	_	LC1G2D3T	LC1G2D3N	LC1G2D2T	LC1G2D2N	LC1G2D1T	LC1G2D1N	369	
CLC1GLS2	—	_	LC1G3D3T	LC1G3D3N	LC1G3D2T	LC1G3D2N	LC1G3D1T	LC1G3D1N	370	
CLC1GLS3	_	_	LC1G4D3T	LC1G4D3N	LC1G4D2T	LC1G4D2N	LC1G4D1T	LC1G4D1N	371	
CLC2CON	LC2EN	_	LC2OUT	LC2INTP	LC2INTN		LC2MODE<2:0	>	365	
CLC2POL	LC2POL		_	_	LC2G4POL	LC2G3POL	LC2G2POL	LC2G1POL	366	
CLC2SEL0	_		LC2D1S<5:0>							
CLC2SEL1	_			LC2D2S<5:0>						
CLC2SEL2	_		LC2D3S<5:0>						367	
CLC2SEL3	_			LC2D4S<5:0>						
CLC2GLS0	_	_	LC2G1D3T	LC2G1D3N	LC2G1D2T	LC2G1D2N	LC2G1D1T	LC2G1D1N	368	
CLC2GLS1	_		LC2G2D3T	LC2G2D3N	LC2G2D2T	LC2G2D2N	LC2G2D1T	LC2G2D1N	369	
CLC2GLS2	_		LC2G3D3T	LC2G3D3N	LC2G3D2T	LC2G3D2N	LC2G3D1T	LC2G3D1N	370	
CLC2GLS3	_	_	LC2G4D3T	LC2G4D3N	LC2G4D2T	LC2G4D2N	LC2G4D1T	LC2G4D1N	371	
CLC3CON	LC3EN	_	LC3OUT	LC3INTP	LC3INTN		LC3MODE<2:02	>	365	
CLC3POL	LC3POL	_	_	_	LC3G4POL	LC3G3POL	LC3G2POL	LC3G1POL	366	
CLC3SEL0	_	_		L	LC3D	1S<5:0>	1		367	
CLC3SEL1	_	_			LC3D	2S<5:0>			367	
CLC3SEL2	_	_			LC3D	3S<5:0>			367	
CLC3SEL3	_	_			LC3D	4S<5:0>			367	
CLC3GLS0	—	_	LC3G1D3T	LC3G1D3N	LC3G1D2T	LC3G1D2N	LC3G1D1T	LC3G1D1N	368	
CLC3GLS1	_	_	LC3G2D3T	LC3G2D3N	LC3G2D2T	LC3G2D2N	LC3G2D1T	LC3G2D1N	369	
CLC3GLS2	_	_	LC3G3D3T	LC3G3D3N	LC3G3D2T	LC3G3D2N	LC3G3D1T	LC3G3D1N	370	
CLC3GLS3	_		LC3G4D3T	LC3G4D3N	LC3G4D2T	LC3G4D2N	LC3G4D1T	LC3G4D1N	371	
CLC4CON	LC4EN	_	LC4OUT	LC4INTP	LC4INTN		LC4MODE<2:0	>	365	
CLC4POL	LC4POL	_	_	_	LC4G4POL	LC4G3POL	LC4G2POL	LC4G1POL	366	
CLC4SEL0	_	_			LC4D	1S<5:0>	I	1	367	
CLC4SEL1	_	_			LC4D	2S<5:0>			367	
CLC4SEL2	_	_	LC4D3S<5:0>						367	
CLC4SEL3	_	_	LC4D4S<5:0>						367	
CLC4GLS0	_		LC4G1D3T	LC4G1D3N	LC4G1D2T	LC4G1D2N	LC4G1D1T	LC4G1D1N	368	

TABLE 31-4: SUMMARY OF REGISTERS ASSOCIATED WITH CLCx

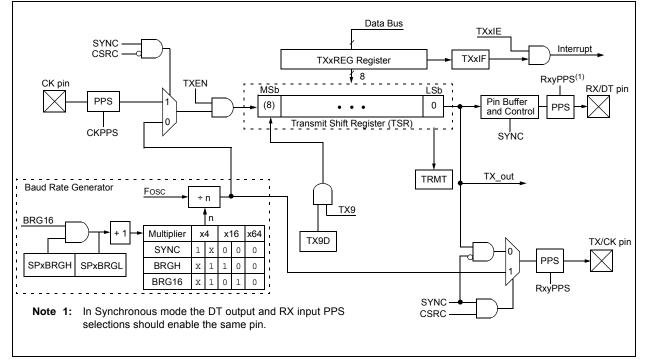
33.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The EUSART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous system. Full-Duplex mode is useful for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device.

Note: Two identical EUSART modules are implemented on this device, EUSART1 and EUSART2. All references to EUSART1 apply to EUSART2 as well. The EUSART module includes the following capabilities:

- · Full-duplex asynchronous transmit and receive
- Two-character input buffer
- One-character output buffer
- · Programmable 8-bit or 9-bit character length
- · Address detection in 9-bit mode
- · Input buffer overrun error detection
- Received character framing error detection
- Half-duplex synchronous master
- · Half-duplex synchronous slave
- Programmable clock polarity in synchronous modes
- Sleep operation

The EUSART module implements the following additional features, making it ideally suited for use in Local Interconnect Network (LIN) bus systems:


- · Automatic detection and calibration of the baud rate
- Wake-up on Break reception
- · 13-bit Break character transmit

Block diagrams of the EUSART transmitter and receiver are shown in Figure 33-1 and Figure 33-2.

The EUSART transmit output (TX_out) is available to the TX/CK pin and internally to the following peripherals:

Configurable Logic Cell (CLC)

FIGURE 33-1: EUSART TRANSMIT BLOCK DIAGRAM

34.0 REFERENCE CLOCK OUTPUT MODULE

The reference clock output module provides the ability to send a clock signal to the clock reference output pin (CLKR).

The reference clock output module has the following features:

- Selectable input clock
- Programmable clock divider
- Selectable duty cycle

34.1 CLOCK SOURCE

The reference clock output module has a selectable clock source. The CLKRCLK register (Register 34-2) controls which input is used.

34.1.1 CLOCK SYNCHRONIZATION

Once the reference clock enable (CLKREN) is set, the module is ensured to be glitch-free at start-up.

When the reference clock output is disabled, the output signal will be disabled immediately.

Clock dividers and clock duty cycles can be changed while the module is enabled, but glitches may occur on the output. To avoid possible glitches, clock dividers and clock duty cycles should be changed only when the CLKREN is clear.

34.2 PROGRAMMABLE CLOCK DIVIDER

The module takes the system clock input and divides it based on the value of the CLKRDIV<2:0> bits of the CLKRCON register (Register 34-1).

The following configurations can be made based on the CLKRDIV<2:0> bits:

- Base clock value
- · Base clock value divided by 2
- · Base clock value divided by 4
- Base clock value divided by 8
- · Base clock value divided by 16
- Base clock value divided by 32
- Base clock value divided by 64
- Base clock value divided by 128

The clock divider values can be changed while the module is enabled; however, in order to prevent glitches on the output, the CLKRDIV<2:0> bits should only be changed when the module is disabled (CLKREN = 0).

34.3 SELECTABLE DUTY CYCLE

The CLKRDC<1:0> bits of the CLKRCON register can be used to modify the duty cycle of the output clock. A duty cycle of 25%, 50%, or 75% can be selected for all clock rates, with the exception of the undivided base Fosc value.

The duty cycle can be changed while the module is enabled; however, in order to prevent glitches on the output, the CLKRDC<1:0> bits should only be changed when the module is disabled (CLKREN = 0).

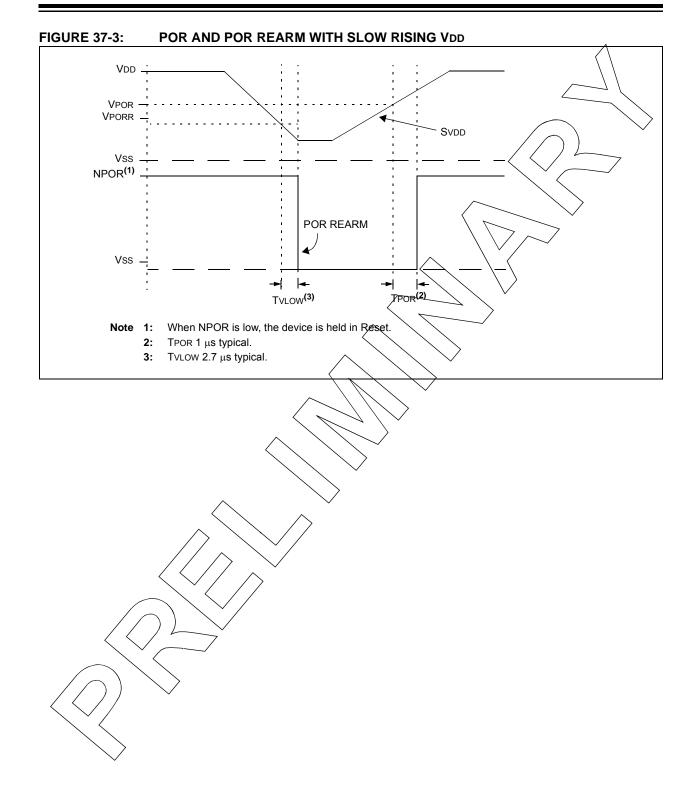
Note: The CLKRDC1 bit is reset to '1'. This makes the default duty cycle 50% and not 0%.

34.4 OPERATION IN SLEEP MODE

The reference clock output module clock is based on the system clock. When the device goes to Sleep, the module outputs will remain in their current state. This will have a direct effect on peripherals using the reference clock output as an input signal.

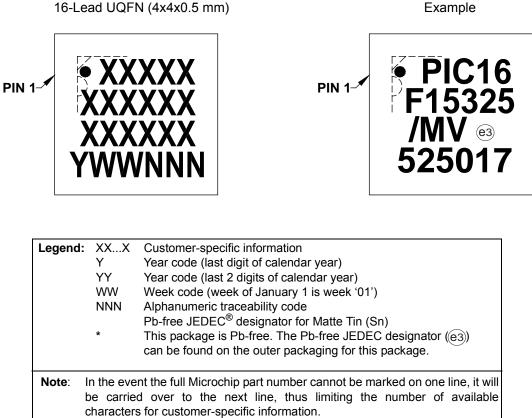
RETLW	Return with literal in W				
Syntax:	[<i>label</i>] RETLW k				
Operands:	$0 \le k \le 255$				
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC				
Status Affected:	None				
Description:	The W register is loaded with the 8-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a 2-cycle instruction.				
Words:	1				
Cycles:	2				
Example:	CALL TABLE;W contains table ;offset value • ;W now has table value				
TABLE	• ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ; • • RETLW kn ; End of table				
	Before Instruction W = 0x07				

W	=	0x07
After Instructi	on	
W	=	value of k8

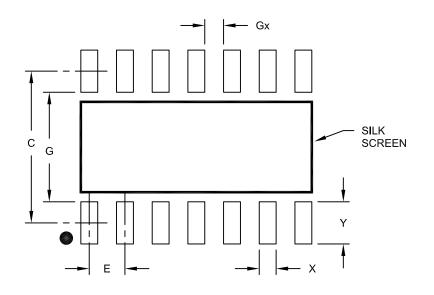

RETURN Return from Subroutine

Syntax:	[label] RETURN
Operands:	None
Operation:	$TOS \rightarrow PC$
Status Affected:	None
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a 2-cycle instruction.

RLF	Rotate Left f through Carry							
Syntax:	[<i>label</i>] RLF f,d							
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$							
Operation:	See description below							
Status Affected:	С							
Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.							
Words:	1							
Cycles:	1							
Example:	RLF REG1,0							
	Before Instruction							
	REG1 = 1110 0110							
	C = 0							
	After Instruction							
	REG1 = 1110 0110							
	$W = 1100 \ 1100$							
	C = 1							
RRF	Rotate Right f through Carry							


RRF	Rotate Right f through Carry
Syntax:	[label] RRF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

© 2016 Microchip Technology Inc.


40.1 Package Marking Information (Continued)

16-Lead UQFN (4x4x0.5 mm)

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS			
Dimension	Dimension Limits		NOM	MAX	
Contact Pitch E			1.27 BSC		
Contact Pad Spacing	С		5.40		
Contact Pad Width	X			0.60	
Contact Pad Length	Y			1.50	
Distance Between Pads	Gx	0.67			
Distance Between Pads	G	3.90			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2065A