

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 11x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f15325-i-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F15325/45

TABLE 1: PIC16(L)F153XX FAMILY TYPES

Device	Data Sheet Index	Program Flash Memory (KW)	Program Flash Memory (KB)	Storage Area Flash (B)	Data SRAM (bytes)	I/OPins	10-bit ADC	5-bit DAC	Comparator	8-bit/ (with HLT) Timer	16-bit Timer	Window Watchdog Timer	CCP/10-bit PWM	CWG	NCO	CLC	Zero-Cross Detect	Temperature Indicator	Memory Access Partition	Device Information Area	EUSART/ I ² C-SPI	Peripheral Pin Select	Peripheral Module Disable	Debug ⁽¹⁾
PIC16(L)F15313	(C)	2	3.5	224	256	6	5	1	1	1	2	Υ	2/4	1	1	4	Y	Y	Y	Y	1/1	Υ	Y	Ι
PIC16(L)F15323	(C)	2	3.5	224	256	12	11	1	2	1	2	Υ	2/4	1	1	4	Y	Υ	Υ	Υ	1/1	Υ	Υ	Ι
PIC16(L)F15324	(D)	4	7	224	512	12	11	1	2	1	2	Υ	2/4	1	1	4	Y	Υ	Υ	Υ	2/1	Υ	Υ	Ι
PIC16(L)F15325	(B)	8	14	224	1024	12	11	1	2	1	2	Υ	2/4	1	1	4	Υ	Υ	Υ	Υ	2/1	Υ	Υ	Ι
PIC16(L)F15344	(D)	4	7	224	512	18	17	1	2	1	2	Y	2/4	1	1	4	Y	Υ	Υ	Υ	2/1	Υ	Υ	Ι
PIC16(L)F15345	(B)	8	14	224	1024	18	17	1	2	1	2	Υ	2/4	1	1	4	Y	Υ	Υ	Υ	2/1	Υ	Υ	Ι
PIC16(L)F15354	(A)	4	7	224	512	25	24	1	2	1	2	Y	2/4	1	1	4	Y	Υ	Υ	Υ	2/2	Υ	Υ	Ι
PIC16(L)F15355	(A)	8	14	224	1024	25	24	1	2	1	2	Y	2/4	1	1	4	Y	Υ	Υ	Υ	2/2	Υ	Υ	Ι
PIC16(L)F15356	(E)	16	28	224	2048	25	24	1	2	1	2	Υ	2/4	1	1	4	Y	Υ	Υ	Υ	2/2	Υ	Υ	Ι
PIC16(L)F15375	(E)	8	14	224	1024	36	35	1	2	1	2	Y	2/4	1	1	4	Y	Υ	Υ	Υ	2/2	Υ	Υ	Ι
PIC16(L)F15376	(E)	16	28	224	2048	36	35	1	2	1	2	Υ	2/4	1	1	4	Y	Υ	Υ	Υ	2/2	Y	Υ	Ι
PIC16(L)F15385	(E)	8	14	224	1024	44	43	1	2	1	2	Υ	2/4	1	1	4	Y	Υ	Y	Υ	2/2	Y	Υ	Ι
PIC16(L)F15386	(E)	16	28	224	2048	44	43	1	2	1	2	Y	2/4	1	1	4	Υ	Υ	Υ	Υ	2/2	Υ	Υ	Ι

Note 1: I - Debugging integrated on chip.

Data Sheet Index:

ote:	For other small form	-factor package availability and marking information, visit v
E:	DS40001866	PIC16(L)F15356/75/76/85/86 Data Sheet, 28/40/48-Pin
D:	Future Release	PIC16(L)F15324/44 Data Sheet, 14/20-Pin
C:	Future Release	PIC16(L)F15313/23 Data Sheet, 8/14-Pin
B:	DS40001865	PIC16(L)F15325/45 Data Sheet, 14/20-Pin
A :	DS40001853	PIC16(L)F15354/5 Data Sheet, 28-Pin

Note: For other small form-factor package availability and marking information, visit www.microchip.com/packaging or contact your local sales office.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 6		·	-								
						and Table 4.0 fe					
				CPUCOR	KE REGISTERS,	see Table 4-3 10	rspecifics				
30Ch	CCPR1L	Capture/Compare/P	NM Register 1 (LS	SB)						xxxx xxxx	uuuu uuuu
30Dh	CCPR1H	Capture/Compare/P	VM Register 1 (M	SB)						xxxx xxxx	uuuu uuuu
30Eh	CCP1CON	EN	—	OUT	FMT		MO	DE<3:0>		0-00 0000	0-00 0000
30Fh	CCP1CAP	—	—	—	—	—		CTS<2:0>		000	000
310h	CCPR2L	Capture/Compare/P\	Capture/Compare/PWM Register 2 (LSB)								uuuu uuuu
311h	CCPR2H	Capture/Compare/PWM Register 2 (MSB)							xxxx xxxx	uuuu uuuu	
312h	CCP2CON	EN	—	OUT	FMT		MO	DE<3:0>		0-00 0000	0-00 0000
313h	CCP2CAP	—	—	—	—	—		CTS<2:0>		000	000
314h	PWM3DCL	DC<1:	0>	—	—	—	—	—	—	xx	uu
315h	PWM3DCH				DC<	9:0>				xxxx xxxx	uuuu uuuu
316h	PWM3CON	EN	—	OUT	POL	—	—	—	—	0-00	0-00
317h	—				Unimple	mented				—	—
318h	PWM4DCL	DC<1:	0>	—	—	—	—	—	—	xx	uu
319h	PWM4DCH				DC<	9:0>				xxxx xxxx	uuuu uuuu
31Ah	PWM4CON	EN	—	OUT	POL	—	—	—	—	0-00	0-00
31Bh	_				Unimple	mented				_	
31Ch	PWM5DCL	DC<1:	0>	_	_	—	-	—	—	xx	uu
31Dh	PWM5DCH				DC<	9:0>				xxxx xxxx	uuuu uuuu
31Eh	PWM5CON	EN	—	OUT	POL	—	-	—	—	0-00	0-00
31Fh	_				Unimple	mented				—	_

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

			REGISTER		DANKS U-			r			r	
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR	
Bank 11									•			
						and Table 4.0 for						
				CPUCOF	KE REGISTERS;	see Table 4-3 for	specifics					
58Ch	NCO1ACCL				NCO1AC	C<7:0>				0000 0000	0000 0000	
58Dh	NCO1ACCH		NCO1ACC<15:8>									
58Eh	NCO1ACCU	NC01ACC<19:16>								0000	0000	
58Fh	NCO1INCL				NCO1IN	C<7:0>				0000 0001	0000 0001	
590h	NCO1INCH				NCO1INC	C<15:8>				0000 0000	0000 0000	
591h	NCO1INCU	—	—	—	—		NCO1I	NC<19:16>		0000	0000	
592h	NCO1CON	N1EN	—	N1OUT	N1POL	—	—	—	N1PFM	0-000	0-000	
593h	NCO1CLK	1	N1PWS<2:0>		—	—		N1CKS<2:0	>	000000	000000	
594h	_				Unimpler	mented				_	_	
595h	_				Unimpler	mented				_	_	
596h	_				Unimpler	mented				_	_	
597h	_				Unimpler	mented				_	_	
598h	_				Unimpler	mented				_	_	
599h	_				Unimpler	mented				_	_	
59Ah	_				Unimpler	mented				_	_	
59Bh	_		Unimplemented							_	_	
59Ch	TMR0L	Holding Register for th	-lolding Register for the Least Significant Byte of the 16-bit TMR0 Register							0000 0000	0000 0000	
59Dh	TMR0H	Holding Register for th	Holding Register for the Most Significant Byte of the 16-bit TMR0 Register							1111 1111	1111 1111	
59Eh	T0CON0	TOEN	_	T0OUT	T016BIT		TOOU	ITPS<3:0>		0-00 0000	0-00 0000	
59Fh	T0CON1		T0CS<2:0> T0ASYNC T0CKPS<3:0> 0000 0000 0000									

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

4.6.2 LINEAR DATA MEMORY

The linear data memory is the region from FSR address 0x2000 to FSR address 0X2FEF. This region is a virtual region that points back to the 80-byte blocks of GPR memory in all the banks. Refer to Figure 4-10 for the Linear Data Memory Map.

Note: The address range 0x2000 to 0x2FF0 represents the complete addressable Linear Data Memory up to Bank 50. The actual implemented Linear Data Memory will differ from one device to the other in a family. Confirm the memory limits on every device.

Unimplemented memory reads as $0 \ge 00$. Use of the linear data memory region allows buffers to be larger than 80 bytes because incrementing the FSR beyond one bank will go directly to the GPR memory of the next bank.

The 16 bytes of common memory are not included in the linear data memory region.

FIGURE 4-10: LINEAR DATA MEMORY MAP

4.6.3 PROGRAM FLASH MEMORY

To make constant data access easier, the entire Program Flash Memory is mapped to the upper half of the FSR address space. When the MSB of FSRnH is set, the lower 15 bits are the address in program memory which will be accessed through INDF. Only the lower eight bits of each memory location is accessible via INDF. Writing to the Program Flash Memory cannot be accomplished via the FSR/INDF interface. All instructions that access Program Flash Memory via the FSR/INDF interface will require one additional instruction cycle to complete.

FIGURE 4-11: PROGRAM FLASH MEMORY MAP

REGISTER 10-11: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

R/W/HS-0/0	R/W/HS-0/0	U-0	U-0	U-0	U-0	U-0	R/W/HS-0/0					
OSFIF	CSWIF	—	—	—	—	_	ADIF					
bit 7							bit 0					
Legend:												
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'								
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all c	other Resets					
'1' = Bit is set		'0' = Bit is clea	ared	HS = Hardwa	ire set							
bit 7	OSFIF : Oscilla 1 = Oscillator 0 = No oscilla	ator Fail-Safe I fail-safe interru tor fail-safe inte	nterrupt Flag I upt has occurr errupt	oit ed (must be cl	eared in softwar	re)						
bit 6	CSWIF: Clock 1 = The clock operation 0 = The clock	Switch Comp switch module (must be clear switch does no	lete Interrupt I indicates an i red in software ot indicate an	Flag bit nterrupt condit ≳) interrupt condi	ion and is ready tion	to complete th	e clock switch					
bit 5-1	Unimplemen	ted: Read as '	0'									
bit 0	ADIF : Analog 1 = An A/D co 0 = An A/D co	-to-Digital Conv onversion or co onversion or co	verter (ADC) I mplex operati omplex operat	nterrupt Flag b on has comple ion is not comp	hit Hed (must be cle plete	eared in softwa	ıre)					
Note: Inte cor its En: Us app prio	errupt flag bits a ndition occurs, re corresponding e able bit, GIE, o er software propriate interru or to enabling an	re set when an egardless of the enable bit or th f the INTCON should ensu upt flag bits a n interrupt.	interrupt e state of ie Global register. ure the are clear									

REGISTER 12-3: WDTPSL: WDT PRESCALE SELECT LOW BYTE REGISTER

R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
			PSCN	[<7:0> ⁽¹⁾			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	ented bit, read as	·'O'	
u = Bit is unchanged	t	x = Bit is unknown		-n/n = Value at	POR and BOR/\	alue at all other/	Resets
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0 **PSCNT<7:0>**: Prescale Select Low Byte bits⁽¹⁾

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the WDTTMR registers. PSCNT<17:0> is intended for debug operations and should be read during normal operation.

REGISTER 12-4: WDTPSH: WDT PRESCALE SELECT HIGH BYTE REGISTER

R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
			PSCNT<	:15:8> (1)			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **PSCNT<15:8>**: Prescale Select High Byte bits⁽¹⁾

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the WDTTMR registers. PSCNT<17:0> is intended for debug operations and should be read during normal operation.

REGISTER 12-5: WDTTMR: WDT TIMER REGISTER

U-0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
—		WDTTM	1R<3:0>	STATE	PSCNT<	:17:16> (1)	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 Unimplemented: Read as '0'

bit 6-3 WDTTMR<3:0>: Watchdog Timer Value bits

bit 2 STATE: WDT Armed Status bit

1 = WDT is armed 0 = WDT is not armed

bit 1-0 PSCNT<17:16>: Prescale Select Upper Byte bits⁽¹⁾

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the WDTTMR registers. PSCNT<17:0> is intended for debug operations and should be read during normal operation.

© 2016 Microchip Technology Inc.

14.2.6 ANALOG CONTROL

The ANSELA register (Register 14-4) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELA bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELA bits has no effect on digital output functions. A pin with its TRIS bit clear and its ANSEL bit set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELA bits default to the Analog
	mode after Reset. To use any pins as
	digital general purpose or peripheral
	inputs, the corresponding ANSEL bits
	must be initialized to '0' by user software.

14.2.7 WEAK PULL-UP CONTROL

The WPUA register (Register 14-5) controls the individual weak pull-ups for each PORT pin.

14.2.8 PORTA FUNCTIONS AND OUTPUT PRIORITIES

Each PORTA pin is multiplexed with other functions.

Each pin defaults to the PORT latch data after Reset. Other output functions are selected with the peripheral pin select logic or by enabling an analog output, such as the DAC. See **Section 15.0 "Peripheral Pin Select (PPS) Module"** for more information.

Analog input functions, such as ADC and comparator inputs are not shown in the peripheral pin select lists. Digital output functions may continue to control the pin when it is in Analog mode.

FIGURE 21-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

© 2016 Microchip Technology Inc.

DS40001865B-page 240

23.10 CWG1 Auto-shutdown Source

The output of the comparator module can be used as an auto-shutdown source for the CWG1 module. When the output of the comparator is active and the corresponding ASxE is enabled, the CWG operation will be suspended immediately (see **Section 30.10 "Auto-Shutdown"**).

23.11 Operation in Sleep Mode

The comparator module can operate during Sleep. The comparator clock source is based on the Timer1 clock source. If the Timer1 clock source is either the system clock (FOSC) or the instruction clock (FOSC/4), Timer1 will not operate during Sleep, and synchronized comparator outputs will not operate.

A comparator interrupt will wake the device from Sleep. The CxIE bits of the PIE2 register must be set to enable comparator interrupts.

REGISTER 23-3: CMxNSEL: COMPARATOR Cx NEGATIVE INPUT SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	
—	_	—	_	—		NCH<2:0>	
bit 7							bit 0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3	Unimplemented: Read as '0'
bit 2-0	NCH<2:0>: Comparator Negative Input Channel Select bits
	111 = CxVN connects to AVss
	110 = CxVN connects to FVR Buffer 2
	101 = CxVN unconnected
	100 = CxVN unconnected

- 011 = CxVN connects to CxIN3- pin
- 010 = CxVN connects to CxIN2- pin
- 001 = CxVN connects to CxIN1- pin
- 000 = CxVN connects to CxIN0- pin

REGISTER 23-4: CMxPSEL: COMPARATOR Cx POSITIVE INPUT SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	
—	_	_	_	—			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3 Unimplemented: Read as '0'

bit 2-0 PCH<2:0>: Comparator Positive Input Channel Select bits

- 111 = CxVP connects to AVss
- 110 = CxVP connects to FVR Buffer 2
- 101 = CxVP connects to DAC output
- 100 = CxVP unconnected
- 011 = CxVP unconnected
- 010 = CxVP unconnected
- 001 = CxVP connects to CxIN1+ pin
- 000 = CxVP connects to CxIN0+ pin

27.5.8 LEVEL RESET, EDGE-TRIGGERED HARDWARE LIMIT ONE-SHOT MODES

In Level -Triggered One-Shot mode the timer count is reset on the external signal level and starts counting on the rising/falling edge of the transition from Reset level to the active level while the ON bit is set. Reset levels are selected as follows:

- Low Reset level (MODE<4:0> = 01110)
- High Reset level (MODE<4:0> = 01111)

When the timer count matches the PRx period count, the timer is reset and the ON bit is cleared. When the ON bit is cleared by either a PRx match or by software control a new external signal edge is required after the ON bit is set to start the counter.

When Level-Triggered Reset One-Shot mode is used in conjunction with the CCP PWM operation the PWM drive goes active with the external signal edge that starts the timer. The PWM drive goes inactive when the timer count equals the CCPRx pulse width count. The PWM drive does not go active when the timer count clears at the PRx period count match.

27.5.9 EDGE-TRIGGERED MONOSTABLE MODES

The Edge-Triggered Monostable modes start the timer on an edge from the external Reset signal input, after the ON bit is set, and stop incrementing the timer when the timer matches the PRx period value. The following edges will start the timer:

- Rising edge (MODE<4:0> = 10001)
- Falling edge (MODE<4:0> = 10010)
- Rising or Falling edge (MODE<4:0> = 10011)

When an Edge-Triggered Monostable mode is used in conjunction with the CCP PWM operation the PWM drive goes active with the external Reset signal edge that starts the timer, but will not go active when the timer matches the PRx value. While the timer is incrementing, additional edges on the external Reset signal will not affect the CCP PWM.

28.2.1 CCPX PIN CONFIGURATION

The software must configure the CCPx pin as an output by clearing the associated TRIS bit and defining the appropriate output pin through the RxyPPS registers. See **Section 15.0 "Peripheral Pin Select (PPS) Module"** for more details.

The CCP output can also be used as an input for other peripherals.

Note: Clearing the CCPxCON register will force the CCPx compare output latch to the default low level. This is not the PORT I/O data latch.

28.2.2 TIMER1 MODE RESOURCE

In Compare mode, Timer1 must be running in either Timer mode or Synchronized Counter mode. The compare operation may not work in Asynchronous Counter mode.

See **Section 26.0 "Timer1 Module with Gate Control"** for more information on configuring Timer1.

Note: Clocking Timer1 from the system clock (Fosc) should not be used in Compare mode. In order for Compare mode to recognize the trigger event on the CCPx pin, TImer1 must be clocked from the instruction clock (Fosc/4) or from an external clock source.

28.2.3 AUTO-CONVERSION TRIGGER

All CCPx modes set the CCP interrupt flag (CCPxIF). When this flag is set and a match occurs, an Auto-conversion Trigger can take place if the CCP module is selected as the conversion trigger source.

Refer to **Section 20.2.5 "Auto-Conversion Trigger"** for more information.

Note:	Removing the match condition by
	changing the contents of the CCPRxH
	and CCPRxL register pair, between the
	clock edge that generates the
	Auto-conversion Trigger and the clock
	edge that generates the Timer1 Reset, will
	preclude the Reset from occurring

28.2.4 COMPARE DURING SLEEP

Since Fosc is shut down during Sleep mode, the Compare mode will not function properly during Sleep, unless the timer is running. The device will wake on interrupt (if enabled).

28.3 PWM Overview

Pulse-Width Modulation (PWM) is a scheme that provides power to a load by switching quickly between fully on and fully off states. The PWM signal resembles a square wave where the high portion of the signal is considered the on state and the low portion of the signal is considered the off state. The high portion, also known as the pulse width, can vary in time and is defined in steps. A larger number of steps applied, which lengthens the pulse width, also supplies more power to the load. Lowering the number of steps applied, which shortens the pulse width, supplies less power. The PWM period is defined as the duration of one complete cycle or the total amount of on and off time combined.

PWM resolution defines the maximum number of steps that can be present in a single PWM period. A higher resolution allows for more precise control of the pulse width time and in turn the power that is applied to the load.

The term duty cycle describes the proportion of the on time to the off time and is expressed in percentages, where 0% is fully off and 100% is fully on. A lower duty cycle corresponds to less power applied and a higher duty cycle corresponds to more power applied.

Figure 28-3 shows a typical waveform of the PWM signal.

28.3.1 STANDARD PWM OPERATION

The standard PWM mode generates a Pulse-Width Modulation (PWM) signal on the CCPx pin with up to ten bits of resolution. The period, duty cycle, and resolution are controlled by the following registers:

- · PR2 registers
- T2CON registers
- CCPRxL registers
- CCPxCON registers

Figure 28-4 shows a simplified block diagram of PWM operation.

Note: The corresponding TRIS bit must be cleared to enable the PWM output on the CCPx pin.

FIGURE 28-3: CC

30.8 **Dead-Band Uncertainty**

When the rising and falling edges of the input source are asynchronous to the CWG clock, it creates uncertainty in the dead-band time delay. The maximum uncertainty is equal to one CWG clock period. Refer to Equation 30-1 for more details.

EQUATION 30-1: DEAD-BAND UNCERTAINTY

MODE0 CWG1A CWG1B CWG1C CWG1D No delay CWG1DBR 🕂 No delay CWG1DBF CWG1_data Note 1: WGPOL{ABCD} = 0 2: The direction bit MODE<0> (Register 30-1) can be written any time during the PWM cycle, and takes effect at the next rising CWG1 data. 3: When changing directions, CWG1A and CWG1C switch at rising CWG1_data; modulated CWG1B and CWG1D are held inactive for the dead band duration shown; dead band affects only the first pulse after the direction change.

FIGURE 30-8: EXAMPLE OF PWM DIRECTION CHANGE

33.2 Clock Accuracy with Asynchronous Operation

The factory calibrates the internal oscillator block output (INTOSC). However, the INTOSC frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind.

The first (preferred) method uses the OSCTUNE register to adjust the INTOSC output. Adjusting the value in the OSCTUNE register allows for fine resolution changes to the system clock source. See **Section 9.2.2.2** "Internal Oscillator Frequency **Adjustment**" for more information.

The other method adjusts the value in the Baud Rate Generator. This can be done automatically with the Auto-Baud Detect feature (see **Section 33.3.1 "Auto-Baud Detect"**). There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change in the peripheral clock frequency.

33.4 EUSART Synchronous Mode

Synchronous serial communications are typically used in systems with a single master and one or more slaves. The master device contains the necessary circuitry for baud rate generation and supplies the clock for all devices in the system. Slave devices can take advantage of the master clock by eliminating the internal clock generation circuitry.

There are two signal lines in Synchronous mode: a bidirectional data line and a clock line. Slaves use the external clock supplied by the master to shift the serial data into and out of their respective receive and transmit shift registers. Since the data line is bidirectional, synchronous operation is half-duplex only. Half-duplex refers to the fact that master and slave devices can receive and transmit data but not both simultaneously. The EUSART can operate as either a master or slave device.

Start and Stop bits are not used in synchronous transmissions.

33.4.1 SYNCHRONOUS MASTER MODE

The following bits are used to configure the EUSART for synchronous master operation:

- SYNC = 1
- CSRC = 1
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXxSTA register configures the device for synchronous operation. Setting the CSRC bit of the TXxSTA register configures the device as a master. Clearing the SREN and CREN bits of the RCxSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCxSTA register enables the EUSART.

33.4.1.1 Master Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a master transmits the clock on the TX/CK line. The TX/CK pin output driver is automatically enabled when the EUSART is configured for synchronous transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One clock cycle is generated for each data bit. Only as many clock cycles are generated as there are data bits.

33.4.1.2 Clock Polarity

A clock polarity option is provided for Microwire compatibility. Clock polarity is selected with the SCKP bit of the BAUDxCON register. Setting the SCKP bit sets the clock Idle state as high. When the SCKP bit is set, the data changes on the falling edge of each clock. Clearing the SCKP bit sets the Idle state as low. When the SCKP bit is cleared, the data changes on the rising edge of each clock.

33.4.1.3 Synchronous Master Transmission

Data is transferred out of the device on the RX/DT pin. The RX/DT and TX/CK pin output drivers are automatically enabled when the EUSART is configured for synchronous master transmit operation.

A transmission is initiated by writing a character to the TXxREG register. If the TSR still contains all or part of a previous character the new character data is held in the TXxREG until the last bit of the previous character has been transmitted. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXxREG is immediately transferred to the TSR. The transmission of the character commences immediately following the transfer of the data to the TSR from the TXxREG.

Each data bit changes on the leading edge of the master clock and remains valid until the subsequent leading clock edge.

Note:	The TSR register is not mapped in data
	memory, so it is not available to the user.

- 33.4.1.4 Synchronous Master Transmission Set-up:
- Initialize the SPxBRGH, SPxBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 33.3 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Disable Receive mode by clearing bits SREN and CREN.
- 4. Enable Transmit mode by setting the TXEN bit.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. If interrupts are desired, set the TXxIE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded in the TX9D bit.
- 8. Start transmission by loading data to the TXxREG register.

R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
CLKREN	LKREN — — CLKRD		DC<1:0>	(CLKRDIV<2:0>		
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	CLKREN: Rei	ference Clock	Module Enable	e bit			
	1 = Referen	ce clock modul	e enabled				
	0 = Referen	ce clock modul	e is disabled				
bit 6-5	Unimplement	ted: Read as ')'				
bit 4-3	CLKRDC<1:0	>: Reference (Clock Duty Cy	cle bits ⁽¹⁾			
	11 = Clock ou	tputs duty cycl	e of 75%				
	10 = Clock ou	tputs duty cycl	e of 50%				
	01 = Clock ou	tputs duty cycl	e of 25%				
	00 = Clock ou	itputs duty cycl	e of 0%				
bit 2-0	CLKRDIV<2:0	0>: Reference	Clock Divider	bits			
	111 = Base cl	lock value divid	led by 128				
	110 = Base cl	lock value divid	led by 64				
	101 = Base cl	lock value divid	led by 32				
	011 = Base cl	lock value divid	led by 8				
	010 = Base cl	lock value divid	led by 4				
	001 = Base cl	lock value divid	led by 2				
	000 = Base cl	lock value					

REGISTER 34-1: CLKRCON: REFERENCE CLOCK CONTROL REGISTER

Note 1: Bits are valid for reference clock divider values of two or larger, the base clock cannot be further divided.

FIGURE 35-2: PICkit[™] PROGRAMMER STYLE CONNECTOR INTERFACE

Mnemonic,		Description		14-Bit Opcode				Status	Notos
Орен	rands	Description	Cycles	MSb			LSb	Affected	Notes
		CONTROL OPERA	TIONS						
BRA	k	Relative Branch	2	11	001k	kkkk	kkkk		
BRW	_	Relative Branch with W	2	00	0000	0000	1011		
CALL	k	Call Subroutine	2	10	0kkk	kkkk	kkkk		
CALLW	_	Call Subroutine with W	2	00	0000	0000	1010		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
RETFIE	k	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	0100	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
		INHERENT OPERA	TIONS						
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO, PD	
NOP	-	No Operation	1	00	0000	0000	0000		
RESET	_	Software device Reset	1	00	0000	0000	0001		
SLEEP	_	Go into Standby or IDLE mode	1	00	0000	0110	0011	TO, PD	
TRIS	f	Load TRIS register with W	1	00	0000	0110	Offf		
		C-COMPILER OPT	IMIZED						
ADDFSR	n, k	Add Literal k to FSRn	1	11	0001	0nkk	kkkk		
MOVIW	n mm	Move Indirect FSRn to W with pre/post inc/dec	1	00	0000	0001	0nmm	Z	2, 3
		modifier, mm							
	k[n]	Move INDFn to W, Indexed Indirect.	1	11	1111	0nkk	kkkk	Z	2
MOVWI	n mm	Move W to Indirect FSRn with pre/post inc/dec	1	00	0000	0001	1nmm		2, 3
		modifier, mm							
	k[n]	Move W to INDFn, Indexed Indirect.	1	11	1111	1nkk	kkkk		2

TABLE 36-3: INSTRUCTION SET (CONTINUED)

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

3: See Table in the MOVIW and MOVWI instruction descriptions.