

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 17x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-UFQFN Exposed Pad
Supplier Device Package	20-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f15345-e-gz

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.3.2.1 STATUS Register

The STATUS register, shown in Register 4-1, contains:

- the arithmetic status of the ALU
- · the Reset status

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear bits <4:3> and <1:0>, and set the Z bit. This leaves the STATUS register as '000u u1uu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits, refer to **Section 36.0** "Instruction Set Summary".

Note 1: The <u>C</u> and <u>DC</u> bits operate as Borrow and <u>Digit</u> Borrow out bits, respectively, in subtraction.

REGISTER 4-1: STATUS: STATUS REGISTER

U-0	U-0	U-0	R-1/q	R-1/q	R/W-0/u	R/W-0/u	R/W-0/u
—	_	_	TO	PD	Z	DC ⁽¹⁾	C ⁽¹⁾
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-5	Unimplemented: Read as '0'
bit 4	TO: Time-Out bit
	1 = After power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time-out occurred
bit 3	PD: Power-Down bit
	1 = After power-up or by the CLRWDT instruction
	0 = By execution of the SLEEP instruction
bit 2	Z: Zero bit
	1 = The result of an arithmetic or logic operation is zero
	0 = The result of an arithmetic or logic operation is not zero
bit 1	DC: Digit Carry/Digit Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾
	1 = A carry-out from the 4th low-order bit of the result occurred
	0 = No carry-out from the 4th low-order bit of the result
bit 0	C: Carry/Borrow bit ⁽¹⁾ (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾
	1 = A carry-out from the Most Significant bit of the result occurred
	0 = No carry-out from the Most Significant bit of the result occurred
Note 1:	For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order

bit of the source register.

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)											
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 63											
	CPU CORE REGISTERS; see Table 4-3 for specifics										
1F8Ch 1FE3h	_				Unimple	mented				_	_
1FE4h	STATUS_SHAD	—	—	—	_	—	Z	DC	С	xxx	uuu
1FE5h	WREG_SHAD	G_SHAD Working Register Shadow							xxxx xxxx	uuuu uuuu	
1FE6h	BSR_SHAD	—	—	_	– Bank Select Register Shadow					x xxxx	u uuuu
1FE7h	PCLATH_SHAD	SHAD — Program Counter Latch High Register Shadow						-xxx xxxx	uuuu uuuu		
1FE8h	IFE8h FSR0L_SHAD Indirect Data Memory Address 0 Low Pointer Shadow						xxxx xxxx	uuuu uuuu			
1FE9h	FSR0H_SHAD	Indirect Data Memory	Address 0 High Po	ointer Shadow						xxxx xxxx	uuuu uuuu
1FEAh	EAh FSR1L_SHAD Indirect Data Memory Address 1 Low Pointer Shadow						xxxx xxxx	uuuu uuuu			
1FEBh	Bh FSR1H_SHAD Indirect Data Memory Address 1 High Pointer Shadow						xxxx xxxx	uuuu uuuu			
1FECh	_	Unimplemented						—			
1FEDh	STKPTR	Current Stack Pointer					1 1111	1 1111			
1FEEh	TOSL	Top of Stack Low byte								XXXX XXXX	uuuu uuuu
1FEFh	TOSH — Top of Stack High byte							-xxx xxxx	-uuu uuuu		

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

NOSC<2:0>/ COSC<2:0>	Clock Source
111	EXTOSC ⁽¹⁾
110	HFINTOSC ⁽²⁾
101	LFINTOSC
100	SOSC
011	Reserved (operates like NOSC = 110)
010	EXTOSC with 4x PLL ⁽¹⁾
001	HFINTOSC with 2x PLL ⁽¹⁾
000	Reserved (it operates like NOSC = 110)
Note 1: EXTOSC config	ured by the FEXTOSC bits of

TABLE 9-1: NOSC/COSC BIT SETTINGS

Note 1: EXTOSC configured by the FEXTOSC bits of Configuration Word 1 (Register 5-1).

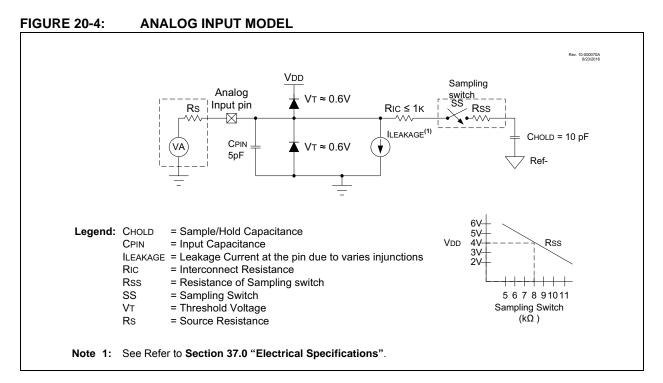
2: HFINTOSC settings are configured with the HFFRQ bits of the OSCFRQ register (Register 9-6).

TABLE 9-2: NDIV/CDIV BIT SETTINGS

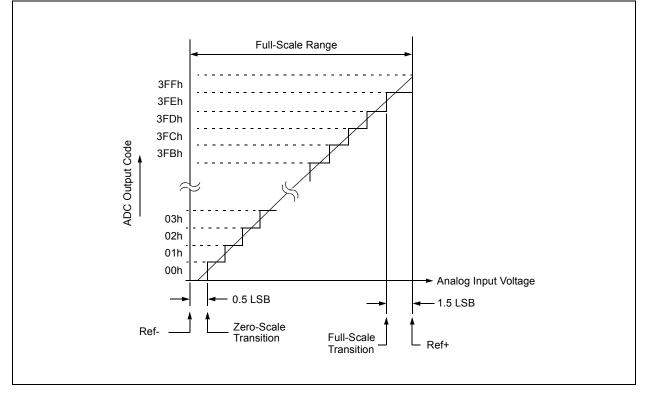
NDIV<3:0>/ CDIV<3:0>	Clock divider
1111-1010	Reserved
1001	512
1000	256
0111	128
0110	64
0101	32
0100	16
0011	8
0010	4
0001	2
0000	1

REGISTER 9-3: OSCCON3: OSCILLATOR CONTROL REGISTER 3

R/W/HC-0/0	R/W-0/0	U-0	R-0/0	R-0/0	U-0	U-0	U-0
CSWHOLD	SOSCPWR	—	ORDY	NOSCR	—	—	—
bit 7 bit C							

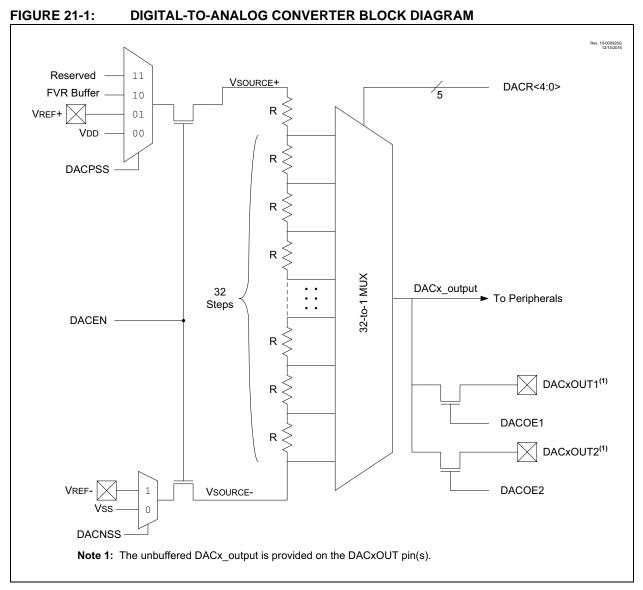

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

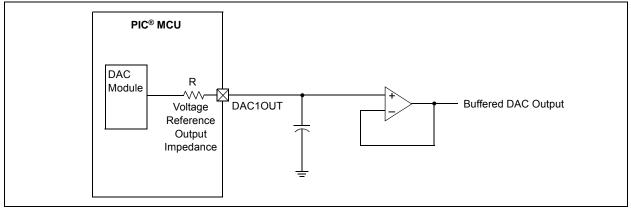
bit 7	CSWHOLD: Clock Switch Hold bit							
	 1 = Clock switch will hold (with interrupt) when the oscillator selected by NOSC is ready 0 = Clock switch may proceed when the oscillator selected by NOSC is ready; if this bit 							
	is clear at the time that NOSCR becomes '1', the switch will occur							
bit 6	SOSCPWR: Secondary Oscillator Power Mode Select bit							
	1 = Secondary oscillator operating in High-power mode							
	0 = Secondary oscillator operating in Low-power mode							
bit 5	Unimplemented: Read as '0'.							
bit 4	ORDY: Oscillator Ready bit (read-only)							
	1 = OSCCON1 = OSCCON2; the current system clock is the clock specified by NOSC							
	0 = A clock switch is in progress							
bit 3	NOSCR: New Oscillator is Ready bit (read-only)							
	1 = A clock switch is in progress and the oscillator selected by NOSC indicates a "ready" condition							
	0 = A clock switch is not in progress, or the NOSC-selected oscillator is not yet ready							
bit 2-0	Unimplemented: Read as '0'							


PIC16(L)F15325/45

R/W-0/0	R/W-0/0	U-0	R/W-0/0	U-0	U-0	U-0	R/W-0/0
UART2MD	UART1MD	—	MSSP1MD	—	—	_	CWG1MD
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	pit	U = Unimplem	nented bit, read	as '0'	
u = Bit is unch	nanged	x = Bit is unkn	own	-n/n = Value a	t POR and BOR	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value dep	ends on conditio	on	
bit 7 bit 6 bit 5	1 = EUSART2 module disabled 0 = EUSART2 module enabled						
bit 5 Unimplemented: Read as '0' bit 4 MSSP1MD: Disable MSSP1 bit 1 = MSSP1 module disabled 0 = MSSP1 module enabled							
bit 3-1	Unimplement	ted: Read as '0	,				
bit 0	1 = CWG1 m	sable CWG1 bi odule disabled odule enabled	t				

REGISTER 16-5: PMD4: PMD CONTROL REGISTER 4





© 2016 Microchip Technology Inc.

DS40001865B-page 232

FIGURE 21-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

© 2016 Microchip Technology Inc.

DS40001865B-page 240

22.0 NUMERICALLY CONTROLLED OSCILLATOR (NCO) MODULE

The Numerically Controlled Oscillator (NCO) module is a timer that uses overflow from the addition of an increment value to divide the input frequency. The advantage of the addition method over simple counter driven timer is that the output frequency resolution does not vary with the divider value. The NCO is most useful for application that requires frequency accuracy and fine resolution at a fixed duty cycle.

Features of the NCO include:

- 20-bit Increment Function
- Fixed Duty Cycle mode (FDC) mode
- Pulse Frequency (PF) mode
- Output Pulse Width Control
- Multiple Clock Input Sources
- Output Polarity Control
- Interrupt Capability

Figure 22-1 is a simplified block diagram of the NCO module.

22.8 NCO Control Registers

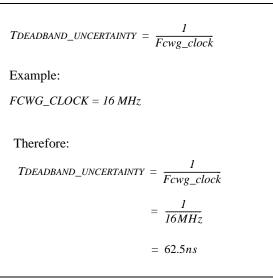
R/W-0/0	U-0	R-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0
N1EN	—	N1OUT	N1POL	—	_	—	N1PFM
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	N1EN: NCO1						
		odule is enable odule is disable					
bit 6			-				
	-	ted: Read as '	0				
bit 5	N1OUT: NCO	of Output bit output v	value of the NC				
bit 4	N1POL: NCC	-		of module.			
bit 4		tput signal is in	verted				
	0 = NCO1 output signal is not inverted						
bit 3-1	Unimplemented: Read as '0'						
bit 0		01 Pulse Frequ	•				
		erates in Pulse			_		
	0 = NCO1 op	erates in Fixed	Duty Cycle m	ode, divide by	2		

REGISTER 22-1: NCO1CON: NCO CONTROL REGISTER

PIC16(L)F15325/45

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
	T0CS<2:0>		TOASYNC		T0CKP	S<3:0>		
bit 7							bit (
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'		
u = Bit is unch	anged	x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Reset				
'1' = Bit is set		'0' = Bit is cleared						
bit 7-5 bit 4	111 = LC1_c 110 = SOSC 101 = MFINT 100 = LFINT 010 = FOSC/ 001 = TOCK 000 = TOCK	; FOSC (500 kHz OSC FOSC 4 IPPS (Inverted) IPPS (True)	:)					
	TOASYNC: TMR0 Input Asynchronization Enable bit 1 = The input to the TMR0 counter is not synchronized to system clocks 0 = The input to the TMR0 counter is synchronized to Fosc/4							
bit 3-0	TOCKPS<3: (1111 = 1:32 1110 = 1:16: 1101 = 1:819 1000 = 1:409 1011 = 1:20 1010 = 1:100 1001 = 1:100 1001 = 1:512 1000 = 1:250 0111 = 1:129 0100 = 1:40 0011 = 1:8 0010 = 1:4 0001 = 1:2 0000 = 1:1	384 92 96 48 24 2 6 8	ate Select bit					

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
PSYNC ^{(1, 2}) CKPOL ⁽³⁾	CKSYNC ^(4, 5)			MODE<4:0>(6, 7)		
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable bit		U = Unimpleme	ented bit, read as	'0'	
u = Bit is und	hanged	x = Bit is unknov	vn	-n/n = Value at	POR and BOR/Va	alue at all other	Resets
'1' = Bit is se	t	'0' = Bit is cleare	ed				
bit 7	DEVNC. Time	rx Prescaler Synch	ronization Enc	blo bit(1, 2)			
		escaler Output is s					
		escaler Output is n					
bit 6	CKPOL: Timerx Clock Polarity Selection bit ⁽³⁾						
	0	dge of input clock o					
	•	lge of input clock c	•				
bit 5		nerx Clock Synchro					
	0	ter bit is synchroniz ter bit is not synchi	_				
bit 4-0	•	Timerx Control Mo		- ·			
51(4-0	See Table 27-1						
Note 1:	Setting this bit ens	ures that reading 1	MRx will retur	n a valid value.			
2:	When this bit is '1'	, Timer2 cannot op	erate in Sleep	mode.			
3:	CKPOL should not	t be changed while	ON = 1.				
4:	Setting this bit ens	ures glitch-free op	eration when th	ne ON is enabled	or disabled.		
5:	When this bit is se	t then the timer op	eration will be	delayed by two Tl	MRx input clocks	after the ON bit	is set.
6:	Unless otherwise in of TMRx).	ndicated, all modes	s start upon ON	I = 1 and stop upo	on ON = 0 (stops o	occur without aff	ecting the value


REGISTER 27-3: T2HLT: TIMERx HARDWARE LIMIT CONTROL REGISTER

7: When TMRx = PRx, the next clock clears TMRx, regardless of the operating mode.

30.8 **Dead-Band Uncertainty**

When the rising and falling edges of the input source are asynchronous to the CWG clock, it creates uncertainty in the dead-band time delay. The maximum uncertainty is equal to one CWG clock period. Refer to Equation 30-1 for more details.

EQUATION 30-1: DEAD-BAND UNCERTAINTY

MODE0 CWG1A CWG1B CWG1C CWG1D No delay CWG1DBR 🕂 No delay CWG1DBF CWG1_data Note 1: WGPOL{ABCD} = 0 2: The direction bit MODE<0> (Register 30-1) can be written any time during the PWM cycle, and takes effect at the next rising CWG1 data. 3: When changing directions, CWG1A and CWG1C switch at rising CWG1_data; modulated CWG1B and CWG1D are held inactive for the dead band duration shown; dead band affects only the first pulse after the direction change.

FIGURE 30-8: EXAMPLE OF PWM DIRECTION CHANGE

31.1 CLCx Setup

Programming the CLCx module is performed by configuring the four stages in the logic signal flow. The four stages are:

- · Data selection
- · Data gating
- Logic function selection
- Output polarity

Each stage is setup at run time by writing to the corresponding CLCx Special Function Registers. This has the added advantage of permitting logic reconfiguration on-the-fly during program execution.

31.1.1 DATA SELECTION

There are 40 signals available as inputs to the configurable logic. Four 40-input multiplexers are used to select the inputs to pass on to the next stage.

Data selection is through four multiplexers as indicated on the left side of Figure 31-2. Data inputs in the figure are identified by a generic numbered input name.

Table 31-2 correlates the generic input name to the actual signal for each CLC module. The column labeled 'LCxDyS<4:0> Value' indicates the MUX selection code for the selected data input. LCxDyS is an abbreviation to identify specific multiplexers: LCxD1S<4:0> through LCxD4S<4:0>.

Data inputs are selected with CLCxSEL0 through CLCxSEL3 registers (Register 31-3 through Register 31-6).

TABLE 31-2: CLCx DATA INPUT SELECTION

LCxDyS<4:0> Value	CLCx Input Source		
101000 to 111111 [40+]	Reserved		
100111 [39]	CWG1B output		
100110 [38]	CWG1A output		
100101 [37]	Reserved		
100100 [36]	Reserved		
100011 [35]	MSSP1 SCK output		
100010 [34]	MSSP1 SDO output		
100001 [33]	EUSART2 (TX/CK) output		
100000 [32]	EUSART2 (DT) output		
011111 [31]	EUSART1 (TX/CK) output		
011110 [30]	EUSART1 (DT) output		
011101 [29]	CLC4 output		
011100 [28]	CLC3 output		
011011 [27]	CLC2 output		
011010 [26]	CLC1 output		
011001 [25]	IOCIF		
011000 [24]	ZCD output		
010111 [23]	C2OUT		
010110 [22]	C1OUT		
010101 [21]	NCO1 output		
010100 [20]	PWM6 output		
010011 [19]	PWM5 output		
010010 [18]	PWM4 output		
010001 [17]	PWM3 output		
010000 [16]	CCP2 output		
001111 [15]	CCP1 output		
001110 [14]	Timer2 overflow		
001101 [13]	Timer1 overflow		
001100 [12]	Timer0 overflow		
001011 [11]	CLKR		
001010 [10]	ADCRC		
001001 [9]	SOSC		
001000 [8]	MFINTOSC (32 kHz)		
000111 [7]	MFINTOSC (500 kHz)		
000110 [6]	LFINTOSC		
000101 [5]	HFINTOSC		
000100 [4]	Fosc		
000011 [3]	CLCIN3PPS		
000010 [2]	CLCIN2PPS		
000001 [1]	CLCIN1PPS		
000000 [0]	CLCIN0PPS		

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u			
LCxG3D4T	LCxG3D4N	LCxG3D3T	LCxG3D3N	LCxG3D2T	LCxG3D2N	LCxG3D1T	LCxG3D1N			
bit 7							bit (
Legend:						(a)				
R = Readable		W = Writable bit		U = Unimplemented bit, read as '0'						
u = Bit is unchanged		x = Bit is unknown		-n/n = Value a	at POR and BO	R/Value at all c	ther Resets			
'1' = Bit is set		'0' = Bit is clea	'0' = Bit is cleared							
bit 7		Noto 2 Doto 4 1	True (non inve	rtad) bit						
		Gate 2 Data 4 1		,						
		 1 = CLCIN3 (true) is gated into CLCx Gate 2 0 = CLCIN3 (true) is not gated into CLCx Gate 2 								
bit 6										
	LCxG3D4N: Gate 2 Data 4 Negated (inverted) bit 1 = CLCIN3 (inverted) is gated into CLCx Gate 2									
	0 = CLCIN3 (inverted) is not gated into CLCx Gate 2									
bit 5	LCxG3D3T: Gate 2 Data 3 True (non-inverted) bit									
	1 = CLCIN2 (= CLCIN2 (true) is gated into CLCx Gate 2								
	0 = CLCIN2 (true) is not gated into CLCx Gate 2									
bit 4	LCxG3D3N: Gate 2 Data 3 Negated (inverted) bit									
		CLCIN2 (inverted) is gated into CLCx Gate 2								
		IN2 (inverted) is not gated into CLCx Gate 2								
bit 3		Gate 2 Data 2 T	· ·							
		CIN1 (true) is gated into CLCx Gate 2 CIN1 (true) is not gated into CLCx Gate 2								
bit 2		Gate 2 Data 2								
		(inverted) is ga	• ·	,						
		(inverted) is no								
bit 1	LCxG3D1T: Gate 2 Data 1 True (non-inverted) bit									
		(true) is gated into CLCx Gate 2								
	0 = CLCIN0	(true) is not gat	ted into CLCx	Gate 2						
bit 0	LCxG3D1N:	Gate 2 Data 1 I	Negated (inver	rted) bit						
		(inverted) is ga								
	0 = CLCIN0	(inverted) is no	t gated into Cl	Cx Gate 2						

REGISTER 31-9: CLCxGLS2: GATE 2 LOGIC SELECT REGISTER

32.4.4 SDA HOLD TIME

The hold time of the SDA pin is selected by the SDAHT bit of the SSP1CON3 register. Hold time is the time SDA is held valid after the falling edge of SCL. Setting the SDAHT bit selects a longer 300 ns minimum hold time and may help on buses with large capacitance.

TABLE 32-1:	I ² C BUS TERMS
-------------	----------------------------

TERM	Description				
Transmitter	The device which shifts data out onto the bus.				
Receiver	The device which shifts data in from the bus.				
Master	The device that initiates a transfer, generates clock signals and termi- nates a transfer.				
Slave	The device addressed by the master.				
Multi-master	A bus with more than one device that can initiate data transfers.				
Arbitration	Procedure to ensure that only one master at a time controls the bus. Winning arbitration ensures that the message is not corrupted.				
Synchronization	Procedure to synchronize the clocks of two or more devices on the bus.				
Idle	No master is controlling the bus, and both SDA and SCL lines are high.				
Active	Any time one or more master devices are controlling the bus.				
Addressed Slave	Slave device that has received a matching address and is actively being clocked by a master.				
Matching Address	Address byte that is clocked into a slave that matches the value stored in SSP1ADD.				
Write Request	Slave receives a matching address with R/W bit clear, and is ready to clock in data.				
Read Request	Master sends an address byte with the R/\overline{W} bit set, indicating that it wishes to clock data out of the Slave. This data is the next and all following bytes until a Restart or Stop.				
Clock Stretching	When a device on the bus hold SCL low to stall communication.				
Bus Collision	Any time the SDA line is sampled low by the module while it is out- putting and expected high state.				

32.4.5 START CONDITION

The I^2C specification defines a Start condition as a transition of SDA from a high to a low state while SCL line is high. A Start condition is always generated by the master and signifies the transition of the bus from an Idle to an active state. Figure 32-12 shows wave forms for Start and Stop conditions.

32.4.6 STOP CONDITION

A Stop condition is a transition of the SDA line from low-to-high state while the SCL line is high.

Note:	At least one SCL low time must appear
	before a Stop is valid, therefore, if the SDA
	line goes low then high again while the SCL
	line stays high, only the Start condition is
	detected.

32.4.7 RESTART CONDITION

A Restart is valid any time that a Stop would be valid. A master can issue a Restart if it wishes to hold the bus after terminating the current transfer. A Restart has the same effect on the slave that a Start would, resetting all slave logic and preparing it to clock in an address. The master may want to address the same or another slave. Figure 32-13 shows the wave form for a Restart condition.

In 10-bit Addressing Slave mode a Restart is required for the master to clock data out of the addressed slave. Once a slave has been fully addressed, matching both high and low address bytes, the master can issue a Restart and the high address byte with the R/W bit set. The slave logic will then hold the clock and prepare to clock out data.

32.4.8 START/STOP CONDITION INTERRUPT MASKING

The SCIE and PCIE bits of the SSP1CON3 register can enable the generation of an interrupt in Slave modes that do not typically support this function. Slave modes where interrupt on Start and Stop detect are already enabled, these bits will have no effect.

32.5.3 SLAVE TRANSMISSION

When the R/\overline{W} bit of the incoming address byte is set and an address match occurs, the R/\overline{W} bit of the SSP1STAT register is set. The received address is loaded into the SSP1BUF register, and an ACK pulse is sent by the slave on the ninth bit.

Following the ACK, slave hardware clears the CKP bit and the SCL pin is held low (see **Section 32.5.6** "**Clock Stretching**" for more detail). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data.

The transmit data must be loaded into the SSP1BUF register which also loads the SSP1SR register. Then the SCL pin should be released by setting the CKP bit of the SSP1CON1 register. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time.

The \overline{ACK} pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. This \overline{ACK} value is copied to the ACKSTAT bit of the SSP1CON2 register. If ACKSTAT is set (not \overline{ACK}), then the data transfer is complete. In this case, when the not \overline{ACK} is latched by the slave, the slave goes idle and waits for another occurrence of the Start bit. If the SDA line was low (\overline{ACK}), the next transmit data must be loaded into the SSP1BUF register. Again, the SCL pin must be released by setting bit CKP.

An MSSP interrupt is generated for each data transfer byte. The SSP1IF bit must be cleared by software and the SSP1STAT register is used to determine the status of the byte. The SSP1IF bit is set on the falling edge of the ninth clock pulse.

32.5.3.1 Slave Mode Bus Collision

A slave receives a read request and begins shifting data out on the SDA line. If a bus collision is detected and the SBCDE bit of the SSP1CON3 register is set, the BCL1IF bit of the PIR3 register is set. Once a bus collision is detected, the slave goes idle and waits to be addressed again. User software can use the BCL1IF bit to handle a slave bus collision.

32.5.3.2 7-bit Transmission

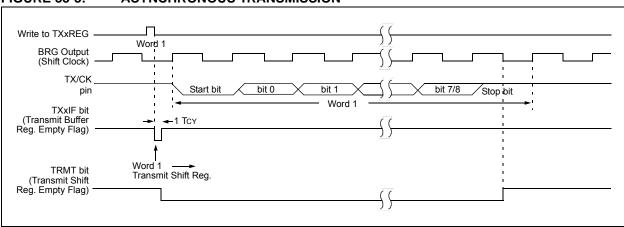
A master device can transmit a read request to a slave, and then clock data out of the slave. The list below outlines what software for a slave will need to do to accomplish a standard transmission. Figure 32-18 can be used as a reference to this list.

- 1. Master sends a Start condition on SDA and SCL.
- 2. S bit of SSP1STAT is set; SSP1IF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit set is received by the Slave setting SSP1IF bit.
- 4. Slave hardware generates an ACK and sets SSP1IF.
- 5. SSP1IF bit is cleared by user.
- 6. Software reads the received address from SSP1BUF, clearing BF.
- 7. R/\overline{W} is set so CKP was automatically cleared after the ACK.
- 8. The slave software loads the transmit data into SSP1BUF.
- 9. CKP bit is set releasing SCL, allowing the master to clock the data out of the slave.
- 10. SSP1IF is set after the ACK response from the master is loaded into the ACKSTAT register.
- 11. SSP1IF bit is cleared.
- 12. The slave software checks the ACKSTAT bit to see if the master wants to clock out more data.
 - Note 1: If the master ACKs the clock will be stretched.
 - ACKSTAT is the only bit updated on the rising edge of SCL (9th) rather than the falling.
- 13. Steps 9-13 are repeated for each transmitted byte.
- 14. If the master sends a not ACK; the clock is not held, but SSP1IF is still set.
- 15. The master sends a Restart condition or a Stop.
- 16. The slave is no longer addressed.

33.1.1.5 TSR Status

The TRMT bit of the TXxSTA register indicates the status of the TSR register. This is a read-only bit. The TRMT bit is set when the TSR register is empty and is cleared when a character is transferred to the TSR register from the TXxREG. The TRMT bit remains clear until all bits have been shifted out of the TSR register. No interrupt logic is tied to this bit, so the user has to poll this bit to determine the TSR status.

Note:	The TSR register is not mapped in data					
	memory, so it is not available to the user.					


33.1.1.6 Transmitting 9-Bit Characters

The EUSART supports 9-bit character transmissions. When the TX9 bit of the TXxSTA register is set, the EUSART will shift nine bits out for each character transmitted. The TX9D bit of the TXxSTA register is the ninth, and Most Significant data bit. When transmitting 9-bit data, the TX9D data bit must be written before writing the eight Least Significant bits into the TXxREG. All nine bits of data will be transferred to the TSR shift register immediately after the TXxREG is written.

A special 9-bit Address mode is available for use with multiple receivers. See **Section 33.1.2.7** "Address **Detection**" for more information on the Address mode.

33.1.1.7 Asynchronous Transmission Set-up:

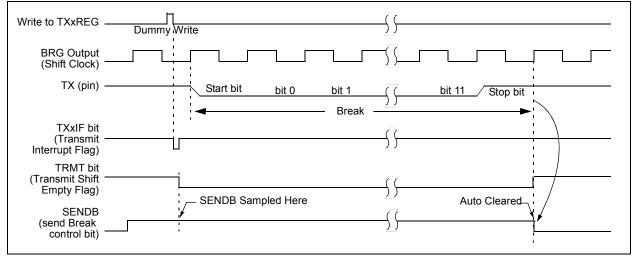
- Initialize the SPxBRGH, SPxBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 33.3 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If 9-bit transmission is desired, set the TX9 control bit. A set ninth data bit will indicate that the eight Least Significant data bits are an address when the receiver is set for address detection.
- 4. Set SCKP bit if inverted transmit is desired.
- 5. Enable the transmission by setting the TXEN control bit. This will cause the TXxIF interrupt bit to be set.
- If interrupts are desired, set the TXxIE interrupt enable bit of the PIE3 register. An interrupt will occur immediately provided that the GIE and PEIE bits of the INTCON register are also set.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded into the TX9D data bit.
- 8. Load 8-bit data into the TXxREG register. This will start the transmission.

FIGURE 33-3: ASYNCHRONOUS TRANSMISSION

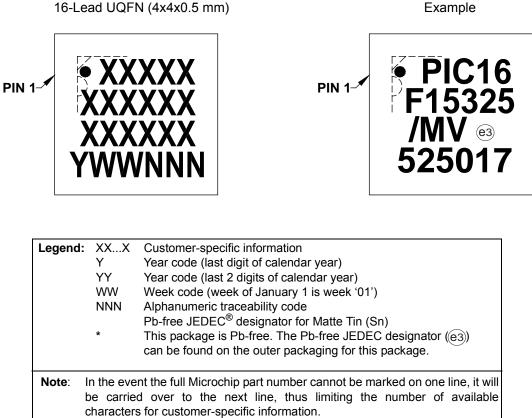
33.3.5 RECEIVING A BREAK CHARACTER

The Enhanced EUSART module can receive a Break character in two ways.

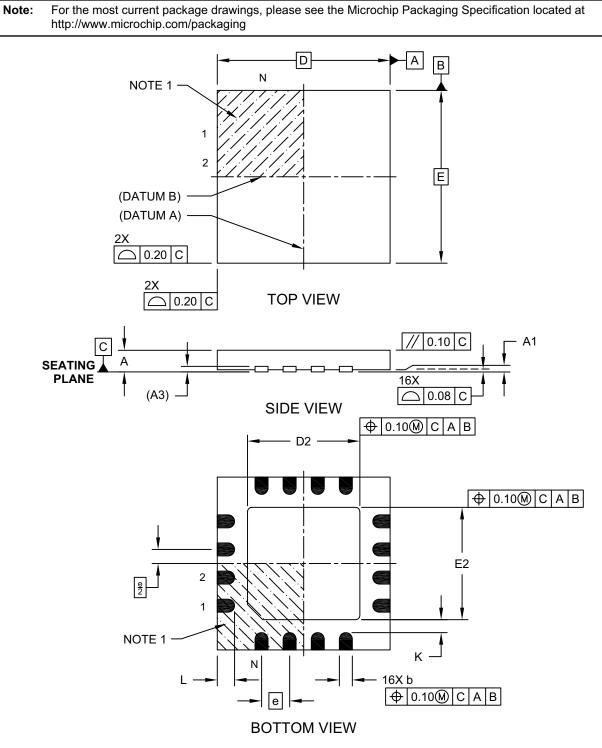
The first method to detect a Break character uses the FERR bit of the RCxSTA register and the received data as indicated by RCxREG. The Baud Rate Generator is assumed to have been initialized to the expected baud rate.


A Break character has been received when:

- · RXxIF bit is set
- · FERR bit is set
- RCxREG = 00h

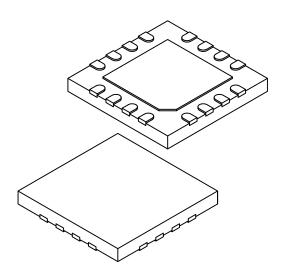

The second method uses the Auto-Wake-up feature described in **Section 33.3.3 "Auto-Wake-up on Break"**. By enabling this feature, the EUSART will sample the next two transitions on RX/DT, cause an RXxIF interrupt, and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Detect feature. For both methods, the user can set the ABDEN bit of the BAUDxCON register before placing the EUSART in Sleep mode.



40.1 Package Marking Information (Continued)

16-Lead UQFN (4x4x0.5 mm)


16-Lead Ultra Thin Plastic Quad Flat, No Lead Package (JQ) - 4x4x0.5 mm Body [UQFN]

Microchip Technology Drawing C04-257A Sheet 1 of 2

16-Lead Ultra Thin Plastic Quad Flat, No Lead Package (JQ) - 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	Ν	IILLIMETER	S		
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	N	16				
Pitch	е	0.65 BSC				
Overall Height	Α	0.45	0.50	0.55		
Standoff	A1	0.00	0.02	0.05		
Terminal Thickness	A3	0.127 REF				
Overall Width	E		4.00 BSC			
Exposed Pad Width	E2	2.50	2.60	2.70		
Overall Length	D	4.00 BSC				
Exposed Pad Length	D2	2.50	2.60	2.70		
Terminal Width	b	0.25	0.30	0.35		
Terminal Length	L	0.30	0.40	0.50		
Terminal-to-Exposed-Pad	K	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-257A Sheet 2 of 2