

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 17x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f15345-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The hardware stack is 16-levels deep and has Overflow and Underflow Reset capability. Direct,

Indirect, and Relative Addressing modes are available.

Two File Select Registers (FSRs) provide the ability to

read program and data memory.

3.0 ENHANCED MID-RANGE CPU

This family of devices contains an enhanced mid-range 8-bit CPU core. The CPU has 48 instructions. Interrupt capability includes automatic context saving.

FIGURE 3-1: CORE DATA PATH DIAGRAM

Rev. 10-000055C 11/30/2016 15 Configuration Data Bus 15. 8 Program Counter Flash MUX Program Memory 16-Level Stack RAM (15-bit) 14 Program Program Memory 12 RAM Addr Bus Read (PMR) Addr MUX Instruction Reg Indirect Direct Addr Addr 7 12 5 12 BSR Reg 15, FSR0 Reg 15 FSR1 Reg STATUS Reg 8 MUX Power-up Instruction Timer Decode and Power-on Control Reset ALU 8 Watchdog CLKIN Timer Brown-out CLKOUT Timing Reset W Reg Generation SOSCI \boxtimes sosco 🖂 囟 囟 Vdd Vss Internal Oscillator Block

			REGISTER		DANKS U-			r			r
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 11									•		
						and Table 4.0 for					
	CPU CORE REGISTERS; see Table 4-3 for specifics										
58Ch	NCO1ACCL				NCO1AC	C<7:0>				0000 0000	0000 0000
58Dh	NCO1ACCH				NCO1AC	C<15:8>				0000 0000	0000 0000
58Eh	NCO1ACCU	—	—	—	—		NCO1A	ACC<19:16>		0000	0000
58Fh	NCO1INCL				NCO1IN	C<7:0>				0000 0001	0000 0001
590h	NCO1INCH				NCO1INC	C<15:8>				0000 0000	0000 0000
591h	NCO1INCU	—	—	—	—		NCO1I	NC<19:16>		0000	0000
592h	NCO1CON	N1EN	—	N1OUT	N1POL	—	—	—	N1PFM	0-000	0-000
593h	NCO1CLK	1	N1PWS<2:0>		—	—		N1CKS<2:0	>	000000	000000
594h	_				Unimpler	mented				_	_
595h	_				Unimpler	mented				_	_
596h	_				Unimpler	mented				_	_
597h	_				Unimpler	mented				_	_
598h	_				Unimpler	mented				_	_
599h	_				Unimpler	mented				_	_
59Ah	_	Unimplemented								_	_
59Bh	_	Unimplemented							_	_	
59Ch	TMR0L	Holding Register for th	e Least Significan	t Byte of the 16-bi	t TMR0 Register					0000 0000	0000 0000
59Dh	TMR0H	Holding Register for th	e Most Significant	Byte of the 16-bit	TMR0 Register					1111 1111	1111 1111
59Eh	T0CON0	TOEN	_	TOOUT	T016BIT		TOOU	ITPS<3:0>		0-00 0000	0-00 0000
59Fh	T0CON1		T0CS<2:0>		T0ASYNC		TOCH	<ps<3:0></ps<3:0>		0000 0000	0000 0000

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

							,					
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR	
Bank 62 (0	Continued)											
1F38h	ANSELA	-	—	ANSA5	ANSA4	—	ANSA2	ANSA1	ANSA0	11 1111	11 1111	
1F39h	WPUA	—	-	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	00 0000	00 0000	
1F3Ah	ODCONA	—	—	ODCA5	ODCA4	—	ODCA2	ODCA1	ODCA0	00 0000	00 0000	
1F3Bh	SLRCONA	—	—	SLRA5	SLRA4	—	SLRA2	SLRA1	SLRA0	11 1111	11 1111	
1F3Ch	INLVLA	—	—	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	11 1111	11 1111	
1F3Dh	IOCAP	—	—	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	00 0000	00 0000	
1F3Eh	IOCAN	—	—	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	00 0000	00 0000	
1F3Fh	IOCAF	—	—	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	00 0000	00 0000	
1F40h					Unimple	mented				—	—	
1F41h					Unimple	mented				—	—	
1F42h					Unimple	mented				—	—	
1F43h	ANSELB ⁽¹⁾	ANSB7	ANSB6	ANSB5	ANSB4	—	—	—	—	1 1111	1 1111	
1F44h	WPUB ⁽¹⁾	WPUB7	WPUB6	WPUB5	WPUB4	—	—	—	—	0 0000	0 0000	
1F45h	ODCONB ⁽¹⁾	ODCB7	ODCB6	ODCB5	ODCB4	—	—	—	—	0 0000	0 0000	
1F46h	SLRCONB ⁽¹⁾	SLRB7	SLRB6	SLRB5	SLRB4	—	—	—	—	1 1111	1 1111	
1F47h	INLVLB ⁽¹⁾	INLVLB7	INLVLB6	INLVLB5	INLVLB4	—	—	—	—	1 1111	1 1111	
1F48h	IOCBP ⁽¹⁾	IOCBP7	IOCBP6	IOCBP5	IOCBP4	—	—	—	—	0 0000	0 0000	
1F49h	IOCBN ⁽¹⁾	IOCBN7	IOCBN6	IOCBN5	IOCBN4	—	—	—	—	0 0000	0 0000	
1F4Ah	IOCBF ⁽¹⁾	IOCBF7	IOCBF6	IOCBF5	IOCBF4	—	—	—	—	0 0000	0 0000	
1F4Bh	_				Unimple	mented				—	—	
1F4Ch	_				Unimple	mented				—	—	
1F4Dh	_				Unimple	mented				—	—	
1F4Eh	ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	1111 1111	1111 1111	
1F4Fh	WPUC	WPUC7 ⁽¹⁾	WPUC6 ⁽¹⁾	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	0000 0000	0000 0000	
1F50h	ODCONC	ODCC7 ⁽¹⁾	ODCC6 ⁽¹⁾	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	0000 0000	0000 0000	
1F51h	SLRCONC	SLRC7 ⁽¹⁾	SLRC6 ⁽¹⁾	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0	1111 1111	1111 1111	
1F52h	INLVLC	INLVLC7 ⁽¹⁾	INLVLC6 ⁽¹⁾	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	1111 1111	1111 1111	
1F53h	IOCCP	IOCCP7 ⁽¹⁾	IOCCP6 ⁽¹⁾	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	0000 0000	0000 0000	
1F54h	IOCCN	IOCCN7 ⁽¹⁾	IOCCN6 ⁽¹⁾	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	0000 0000	0000 0000	
1F55h	IOCCF	IOCCF7 ⁽¹⁾	IOCCF6 ⁽¹⁾	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	0000 0000	0000 0000	
1F56h 	_		Unimplemented							_	_	

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

PIC16(L)F15325/45

Legend:

Note 1:

Present only in PIC16(L)F15345.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	—	—	—	—		INTEDG	124
PIE0	—	_	TMR0IE	IOCIE	—	_	_	INTE	125
PIE1	OSFIE	CSWIE	—	—	—	—	-	ADIE	126
PIE2	_	ZCDIE	—	—	_	_	C2IE	C1IE	127
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	_	_	BCL1IE	SSP1IE	128
PIE4	—	—	—	—	—	—	TMR2IE	TMR1IE	129
PIE5	CLC4IE	CLC3IE	CLC2IE	CLC1IE	—	—	_	TMR1GIE	130
PIE6	—	—	—	—	—	—	CCP2IE	CCP1IE	131
PIE7	—	—	NVMIE	NCO1IE	—	—	_	CWG1IE	132
PIR0	—	—	TMR0IF	IOCIF	—	—	_	INTF	133
PIR1	OSFIF	CSWIF	—	—	_	_	_	ADIF	134
PIR2	_	ZCDIF	—	—	_	_	C2IF	C1IF	135
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	—	—	BCL1IF	SSP1IF	136
PIR4	—	_	—	—	—	—	TMR2IF	TMR1IF	137
PIR5	CLC4IF	CLC3IF	CLC2IF	CLC1IF	—	—	_	TMR1GIF	138
PIR6	—	—	—	—	—	—	CCP2IF	CCP1IF	139
PIR7	_	_	NVMIF	NCO1IF		_	_	CWG1IF	140

TABLE 10-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupts.

12.7 Register Definitions: Windowed Watchdog Timer Control

REGISTER 12-1: WDTCON0: WATCHDOG TIMER CONTROL REGISTER 0

U-0	U-0	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W-0/0
-	-			WDTPS<4:0>(1)			SWDTEN
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	oit	U = Unimplem	nented bit, read	as '0'	
u = Bit is unc	hanged	x = Bit is unkn	own	-n/n = Value at	t POR and BOF	R/Value at all ot	her Resets
'1' = Bit is set	t	ʻ0' = Bit is clea	ared	q = Value depe	ends on conditi	on	
bit 7-6	Unimplemer	nted: Read as '0)'				
bit 5-1	WDTPS<4:0	: Watchdog Tir	mer Prescale S	elect bits ⁽¹⁾			
	Bit Value = F	Prescale Rate					
	11111 = R e	eserved. Results	s in minimum in	terval (1:32)			
	•						
	•						
	10011 = Re	eserved. Results	s in minimum in	terval (1:32)			
	10010 = 1 :8	3388608 (2 ²³) (I	nterval 256s no	ominal)			
	10001 = 1:4	194304 (2 ²²) (I	nterval 128s no	ominal)			
	10000 = 1:2	2097152 (2 ²¹) (I	nterval 64s noi	minal)			
	01111 = 1:1	1048576 (2 ²⁰) (1	nterval 32s noi	minal)			
	01110 = 1:5	524288 (2 ¹⁹) (In	terval 16s nom	inal)			
	01101 = 12	262144 (2 ¹⁰) (IN 131072 (2 ¹⁷) (In	terval as nomir	nal)			
	01100 = 1	5536 (Interval 2	2s nominal) (Re	eset value)			
	01010 = 1:3	32768 (Interval 2	1s nominal)				
	01001 = 1:1	16384 (Interval §	512 ms nomina	l)			
	01000 = 1:8	3192 (Interval 28	56 ms nominal))			
	00111 = 1:4	1096 (Interval 12	28 ms nominal)				
	00110 = 1:2	2048 (Interval 64	4 ms nominal)				
	00101 = 1.	512 (Interval 16	ms nominal)				
	00010 = 1:2	256 (Interval 8 m	ns nominal)				
	00010 = 1:1	128 (Interval 4 m	ns nominal)				
	00001 = 1:6	64 (Interval 2 ms	s nominal)				
	00000 = 1:3	32 (Interval 1 ms	s nominal)				
bit 0	SWDTEN: Se	oftware Enable/	Disable for Wa	tchdog Timer bi	it		
	If WDTE<1:0	> = 1x:					
	This bit is ign	ored.					
	$\frac{\text{If WDTE}<1:0}{1 - \text{WDT is f}}$	$\geq = 01$:					
	$\perp = VUIISI0 = WDTief$	urried off					
	If WDTE<1:0	> = 00:					
	This bit is ign	ored.					
	Ũ						

- **Note 1:** Times are approximate. WDT time is based on 31 kHz LFINTOSC.
 - 2: When WDTCPS <4:0> in CONFIG3 = 11111, the Reset value of WDTPS<4:0> is 01011. Otherwise, the Reset value of WDTPS<4:0> is equal to WDTCPS<4:0> in CONFIG3.
 - **3:** When WDTCPS <4:0> in CONFIG3 \neq 11111, these bits are read-only.

REGISTER 17-4: IOCBP: INTERRUPT-ON-CHANGE PORTB POSITIVE EDGE REGISTER

R/W-0/0 R/W-0/0 R/W-0/0 U-0 U-0 U-0 IOCBP7 IOCBP6 IOCBP5 IOCBP4 — — — — bit 7 bit 0	Legend:							
R/W-0/0 R/W-0/0 R/W-0/0 U-0 U-0 U-0 IOCBP7 IOCBP6 IOCBP5 IOCBP4 — — — — bit 7 IOCBP5 IOCBP4 IOCBP5 IOCBP5 IOCBP4 IOCBP5 IOCBP5								bit 0
R/W-0/0 R/W-0/0 R/W-0/0 U-0 U-0 U-0 U-0 IOCBP7 IOCBP6 IOCBP5 IOCBP4	hit 7	•	•	•		•		bit 0
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 U-0 U-0 U-0 U-0	IOCBP7	IOCBP6	IOCBP5	IOCBP4	_	—	—	—
	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	 IOCBP<7:4>: Interrupt-on-Change PORTB Positive Edge Enable bits 1 = Interrupt-on-Change enabled on the pin for a positive-going edge. IOCBFx bit and IOCIF flag will be set upon detecting an edge. Interrupt on Change disabled for the associated pin
bit 3-0	U = Interrupt-on-Change disabled for the associated pin. Unimplemented: read as '0'

REGISTER 17-5: IOCBN: INTERRUPT-ON-CHANGE PORTB NEGATIVE EDGE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
IOCBN7	IOCBN6	IOCBN5	IOCBN4	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 **IOCBN<7:4>:** Interrupt-on-Change PORTB Negative Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a negative-going edge. IOCBFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.
- bit 3-0 Unimplemented: read as '0'

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	Y TSEN TSRNG CDAFVR<1:0>				ADFVR	220	
ADCON0			CHS<	:5:0>			GO/DONE	ADON	233
ADCON1	ADFM		ADCS<2:0>			—	ADPRE	F<1:0>	234
DAC1CON0	DAC1EN	—	DAC10E1	DAC10E2	DAC1PS	SS<1:0>	—	DAC1NSS	242

TABLE 18-1: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

Legend: - = unimplemented locations read as '0'. Shaded cells are not used with the Fixed Voltage Reference.

20.2.6 ADC CONVERSION PROCEDURE

This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

- 1. Configure Port:
 - Disable pin output driver (Refer to the TRIS register)
 - Configure pin as analog (Refer to the ANSEL register)
- 2. Configure the ADC module:
 - Select ADC conversion clock
 - Select voltage reference
 - Select ADC input channel
 - Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - Clear ADC interrupt flag
 - Enable ADC interrupt
 - Enable peripheral interrupt
 - Enable global interrupt⁽¹⁾
- 4. Wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the GO/DONE bit.
- 6. Wait for ADC conversion to complete by one of the following:
 - Polling the GO/DONE bit
 - · Waiting for the ADC interrupt
- 7. Read ADC Result.
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).
 - **Note 1:** The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.
 - 2: Refer to Section 20.3 "ADC Acquisition Requirements".

EXAMPLE 20-1: ADC CONVERSION

;This code ;for polli ;oscillato ; ;Conversio are incluo ;	<pre>;This code block configures the ADC ;for polling, Vdd and Vss references, ADCRC ;oscillator and AN0 input. ; ;Conversion start & polling for completion ; are included.</pre>						
BANKSEL	ADCON1	;					
MOVLW	B'11110000'	;Right justify, ADCRC					
		;oscillator					
MOVWF	ADCON1	;Vdd and Vss Vref					
BANKSEL	TRISA	;					
BSF	TRISA,0	;Set RA0 to input					
BANKSEL	ANSEL	;					
BSF	ANSEL,0	;Set RAO to analog					
BANKSEL	ADCON0	;					
MOVLW	B'0000001'	;Select channel ANO					
MOVWF	ADCON0	;Turn ADC On					
CALL	SampleTime	;Acquisiton delay					
BSF	ADCON0, ADGO	;Start conversion					
BTFSC	ADCON0, ADGO	;Is conversion done?					
GOTO	\$-1	;No, test again					
BANKSEL	ADRESH	;					
MOVF	ADRESH,W	;Read upper 2 bits					
MOVWF	RESULTHI	;store in GPR space					
BANKSEL	ADRESL	;					
MOVF	ADRESL,W	Read lower 8 bits					
MOVWF	RESULTLO	;Store in GPR space					

				- (- /		
R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—	—	—	_	—	ADRE	S<9:8>
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 20-6: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1

bit 7-2 Reserved: Do not use.

bit 1-0 ADRES<9:8>: ADC Result Register bits Upper two bits of 10-bit conversion result

REGISTER 20-7: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
ADRES<7:0>									
bit 7 bit									

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ADRES<7:0>: ADC Result Register bits Lower eight bits of 10-bit conversion result

© 2016 Microchip Technology Inc.

24.0 ZERO-CROSS DETECTION (ZCD) MODULE

The ZCD module detects when an A/C signal crosses through the ground potential. The actual zero crossing threshold is the zero crossing reference voltage, VCPINV, which is typically 0.75V above ground.

The connection to the signal to be detected is through a series current limiting resistor. The module applies a current source or sink to the ZCD pin to maintain a constant voltage on the pin, thereby preventing the pin voltage from forward biasing the ESD protection diodes. When the applied voltage is greater than the reference voltage, the module sinks current. When the applied voltage is less than the reference voltage, the module sources current. The current source and sink action keeps the pin voltage constant over the full range of the applied voltage. The ZCD module is shown in the simplified block diagram Figure 24-2.

The ZCD module is useful when monitoring an A/C waveform for, but not limited to, the following purposes:

- A/C period measurement
- · Accurate long term time measurement
- · Dimmer phase delayed drive
- Low EMI cycle switching

24.1 External Resistor Selection

The ZCD module requires a current limiting resistor in series with the external voltage source. The impedance and rating of this resistor depends on the external source peak voltage. Select a resistor value that will drop all of the peak voltage when the current through the resistor is nominally 300 μ A. Refer to Equation 24-1 and Figure 24-1. Make sure that the ZCD I/O pin internal weak pull-up is disabled so it does not interfere with the current source and sink.

EQUATION 24-1: EXTERNAL RESISTOR

$$RSERIES = \frac{VPEAK}{3 \times 10^{-4}}$$

FIGURE 24-1: EXTERNAL VOLTAGE

27.1 Timer2 Operation

Timer2 operates in three major modes:

- Free Running Period
- One-shot
- Monostable

Within each mode there are several options for starting, stopping, and reset. Table 27-1 lists the options.

In all modes, the TMR2 count register is incremented on the rising edge of the clock signal from the programmable prescaler. When TMR2 equals T2PR, a high level is output to the postscaler counter. TMR2 is cleared on the next clock input.

An external signal from hardware can also be configured to gate the timer operation or force a TMR2 count Reset. In Gate modes the counter stops when the gate is disabled and resumes when the gate is enabled. In Reset modes the TMR2 count is reset on either the level or edge from the external source.

The TMR2 and T2PR registers are both directly readable and writable. The TMR2 register is cleared and the T2PR register initializes to FFh on any device Reset. Both the prescaler and postscaler counters are cleared on the following events:

- a write to the TMR2 register
- a write to the T2CON register
- · any device Reset
- External Reset Source event that resets the timer.

Note:	TMR2	is	not	cleared	when	T2CON	is
	written.						

27.1.1 FREE RUNNING PERIOD MODE

The value of TMR2 is compared to that of the Period register, T2PR, on each TMR2_clk cycle. When the two values match, the comparator resets the value of TMR2 to 00h on the next rising TMR2_clk edge and increments

the output postscaler counter. When the postscaler count equals the value in the OUTPS<4:0> bits of the TMRxCON1 register, a one TMR2_clk period wide pulse occurs on the TMR2_postscaled output, and the postscaler count is cleared.

27.1.2 ONE-SHOT MODE

The One-Shot mode is identical to the Free Running Period mode except that the ON bit is cleared and the timer is stopped when TMR2 matches T2PR and will not restart until the T2ON bit is cycled off and on. Postscaler OUTPS<4:0> values other than 0 are meaningless in this mode because the timer is stopped at the first period event and the postscaler is reset when the timer is restarted.

27.1.3 MONOSTABLE MODE

Monostable modes are similar to One-Shot modes except that the ON bit is not cleared and the timer can be restarted by an external Reset event.

27.2 Timer2 Output

The Timer2 module's primary output is TMR2_postscaled, which pulses for a single TMR2_clk period when the postscaler counter matches the value in the OUTPS bits of the TMR2CON register. The T2PR postscaler is incremented each time the TMR2 value matches the T2PR value. This signal can be selected as an input to several other input modules:

- The ADC module, as an Auto-conversion Trigger
- · COG, as an auto-shutdown source

In addition, the Timer2 is also used by the CCP module for pulse generation in PWM mode. Both the actual TMR2 value as well as other internal signals are sent to the CCP module to properly clock both the period and pulse width of the PWM signal. See **Section 28.0** "**Capture/Compare/PWM Modules**" for more details on setting up Timer2 for use with the CCP, as well as the timing diagrams in **Section 27.5** "**Operation Examples**" for examples of how the varying Timer2 modes affect CCP PWM output.

27.3 External Reset Sources

In addition to the clock source, the Timer2 also takes in an external Reset source. This external Reset source is selected for Timer2 with the T2RST register. This source can control starting and stopping of the timer, as well as resetting the timer, depending on which mode the timer is in. The mode of the timer is controlled by the MODE<4:0> bits of the TMRxHLT register. Edge-Triggered modes require six Timer clock periods between external triggers. Level-Triggered modes require the triggering level to be at least three Timer clock periods long. External triggers are ignored while in Debug Freeze mode.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxG1D4T	LCxG1D4N	LCxG1D3T	LCxG1D3N	LCxG1D2T	LCxG1D2N	LCxG1D1T	LCxG1D1N
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	LCxG1D4T: G	Gate 0 Data 4 T	rue (non-inve	rted) bit			
	1 = CLCIN3	(true) is gated i	nto CLCx Gate	e O Coto O			
bit 6	0 = CLCINS((irue) is not gai	eu Into CLCX	Gale 0			
bit 0	1 = CLCIN3	(inverted) is da	ted into CLCx	Gate 0			
	0 = CLCIN3	(inverted) is no	t gated into CL	_Cx Gate 0			
bit 5	LCxG1D3T:	Gate 0 Data 3 T	rue (non-inve	rted) bit			
	1 = CLCIN2 ((true) is gated i	nto CLCx Gat	e 0			
	0 = CLCIN2 ((true) is not gat	ed into CLCx	Gate 0			
bit 4	LCxG1D3N: (Gate 0 Data 3 I	Negated (inver	rted) bit			
	1 = CLCIN2 (0 = CLCIN2 ((inverted) is ga (inverted) is no	ted into CLCx t gated into CL	Gate 0 _Cx Gate 0			
bit 3	LCxG1D2T:	Gate 0 Data 2 T	rue (non-inve	rted) bit			
	1 = CLCIN1 ((true) is gated i	nto CLCx Gat	e 0			
	0 = CLCIN1 ((true) is not gat	ed into I CLCx	Gate 0			
bit 2	LCxG1D2N: (Gate 0 Data 2 I	Negated (inver	rted) bit			
	1 = CLCIN1((inverted) is ga	ted into CLCx	Gate 0			
bit 1		ate 0 Data 1 T	rue (non-inve	rted) hit			
Dit 1	1 = CLCINO((true) is gated i	nto CI Cx Gat				
	0 = CLCINO((true) is not gat	ed into CLCx	Gate 0			
bit 0	LCxG1D1N:	Gate 0 Data 1 I	Negated (inver	rted) bit			
	1 = CLCIN0 ((inverted) is ga	ted into CLCx	Gate 0			
	0 = CLCIN0 ((inverted) is no	t gated into CL	Cx Gate 0			

REGISTER 31-7: CLCxGLS0: GATE 0 LOGIC SELECT REGISTER

32.2.1 SPI MODE REGISTERS

The MSSP module has five registers for SPI mode operation. These are:

- MSSP STATUS register (SSP1STAT)
- MSSP Control register 1 (SSP1CON1)
- MSSP Control register 3 (SSP1CON3)
- MSSP Data Buffer register (SSP1BUF)
- MSSP Address register (SSP1ADD)
- MSSP Shift register (SSP1SR) (Not directly accessible)

SSP1CON1 and SSP1STAT are the control and status registers in SPI mode operation. The SSP1CON1 register is readable and writable. The lower six bits of the SSP1STAT are read-only. The upper two bits of the SSP1STAT are read/write.

In one SPI master mode, SSP1ADD can be loaded with a value used in the Baud Rate Generator. More information on the Baud Rate Generator is available in **Section 32.7 "Baud Rate Generator"**.

SSP1SR is the shift register used for shifting data in and out. SSP1BUF provides indirect access to the SSP1SR register. SSP1BUF is the buffer register to which data bytes are written, and from which data bytes are read.

In receive operations, SSP1SR and SSP1BUF together create a buffered receiver. When SSP1SR receives a complete byte, it is transferred to SSP1BUF and the SSP1IF interrupt is set.

During transmission, the SSP1BUF is not buffered. A write to SSP1BUF will write to both SSP1BUF and SSP1SR.

© 2016 Microchip Technology Inc.

32.5.3.3 7-bit Transmission with Address Hold Enabled

Setting the AHEN bit of the SSP1CON3 register enables additional clock stretching and interrupt generation after the eighth falling edge of a received matching address. Once a matching address has been clocked in, CKP is cleared and the SSP1IF interrupt is set.

Figure 32-19 displays a standard waveform of a 7-bit address slave transmission with AHEN enabled.

- 1. Bus starts Idle.
- Master sends Start condition; the S bit of SSP1STAT is set; SSP1IF is set if interrupt on Start detect is enabled.
- Master sends matching address with R/W bit set. After the eighth falling edge of the SCL line the CKP bit is cleared and SSP1IF interrupt is generated.
- 4. Slave software clears SSP1IF.
- 5. Slave software reads ACKTIM bit of SSP1CON3 register, and R/\overline{W} and D/\overline{A} of the SSP1STAT register to determine the source of the interrupt.
- 6. Slave reads the address value from the SSP1BUF register clearing the BF bit.
- Slave software decides from this information if it wishes to ACK or not ACK and sets the ACKDT bit of the SSP1CON2 register accordingly.
- 8. Slave sets the CKP bit releasing SCL.
- 9. Master clocks in the \overline{ACK} value from the slave.
- 10. Slave hardware automatically clears the CKP bit and sets SSP1IF after the ACK if the R/W bit is set.
- 11. Slave software clears SSP1IF.
- 12. Slave loads value to transmit to the master into SSP1BUF setting the BF bit.

Note: <u>SSP1BUF</u> cannot be loaded until after the ACK.

13. Slave sets the CKP bit releasing the clock.

- 14. Master clocks out the data from the slave and sends an ACK value on the ninth SCL pulse.
- 15. Slave hardware copies the ACK value into the ACKSTAT bit of the SSP1CON2 register.
- 16. Steps 10-15 are repeated for each byte transmitted to the master from the slave.
- 17. If the master sends a not \overline{ACK} the slave releases the bus allowing the master to send a Stop and end the communication.

Note: Master must send a not ACK on the last byte to ensure that the slave releases the SCL line to receive a Stop.

PIC16(L)F15325/45

32.6.13.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:

- a) After the SDA pin has been deasserted and allowed to float high, SDA is sampled low after the BRG has timed out (Case 1).
- b) After the SCL pin is deasserted, SCL is sampled low before SDA goes high (Case 2).

The Stop condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSP1ADD and counts down to zero. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 32-38). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 32-39).

FIGURE 32-38: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 32-39: BUS COLLISION DURING A STOP CONDITION (CASE 2)

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
INTCON	GIE	PEIE	—	—		—	—	INTEDG	124	
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	_	—	BCL1IF	SSP1IF	136	
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	_	_	BCL1IE	SSP1IE	128	
RCxSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	446	
TXxSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	445	
BAUDxCON	ABDOVF	RCIDL	_	SCKP	BRG16		WUE	ABDEN	447	
RCxREG	EUSART Rec	eive Data Regis	ster						448*	
TXxREG	EUSART Trar	nsmit Data Reg	jister						448*	
SPxBRGL				SPxBR	G<7:0>				448*	
SPxBRGH	SPxBRG<15:8>							449*		
RXPPS	—	—		RXPPS<5:0>						
CKPPS	—	—		CXPPS<5:0>						
RxyPPS	_	_	_	RxyPPS<4:0>						
CLCxSELy	_	_			LCxDy	S<5:0>			367	

TABLE 33-2: SUMMARY OF REGISTERS ASSOCIATED WITH EUSART

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for the EUSART module. *

Page with register information.

Mnemonic, Operands		Description	Cycles	14-Bit Opcode				Status	Notos
		Description		MSb			LSb	Affected	Notes
		CONTROL OPERA	TIONS						
BRA	k	Relative Branch	2	11	001k	kkkk	kkkk		
BRW	_	Relative Branch with W	2	00	0000	0000	1011		
CALL	k	Call Subroutine	2	10	0kkk	kkkk	kkkk		
CALLW	_	Call Subroutine with W	2	00	0000	0000	1010		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
RETFIE	k	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	0100	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
		INHERENT OPERA	TIONS						
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO, PD	
NOP	-	No Operation	1	00	0000	0000	0000		
RESET	_	Software device Reset	1	00	0000	0000	0001		
SLEEP	_	Go into Standby or IDLE mode	1	00	0000	0110	0011	TO, PD	
TRIS	f	Load TRIS register with W	1	00	0000	0110	Offf		
		C-COMPILER OPT	IMIZED						
ADDFSR	n, k	Add Literal k to FSRn	1	11	0001	0nkk	kkkk		
MOVIW	n mm	Move Indirect FSRn to W with pre/post inc/dec	1	00	0000	0001	0nmm	Z	2, 3
		modifier, mm							
	k[n]	Move INDFn to W, Indexed Indirect.	1	11	1111	0nkk	kkkk	Z	2
MOVWI	n mm	Move W to Indirect FSRn with pre/post inc/dec	1	00	0000	0001	1nmm		2, 3
		modifier, mm							
	k[n]	Move W to INDFn, Indexed Indirect.	1	11	1111	1nkk	kkkk		2

TABLE 36-3: INSTRUCTION SET (CONTINUED)

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

3: See Table in the MOVIW and MOVWI instruction descriptions.

40.0 PACKAGING INFORMATION

40.1 Package Marking Information

14-Lead PDIP (300 mil) Example PIC16F15325 /SO @3 XXXXXXXXXXXXXXXXX 1525017 14-Lead TSSOP (4.4 mm) Example 5325 525 e3 017 NNN 14-Lead SOIC (3.90 mm) Example PIC16F15325 **** /SO @3 XXXXX **1525017** VNNN Legend: XX...X Customer-specific information Υ Year code (last digit of calendar year) YΥ Year code (last 2 digits of calendar year) WW Week code (week of January 1 is week '01') NNN Alphanumeric traceability code Pb-free JEDEC[®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW C

	MILLIMETERS					
Dimension Lin	nits	MIN	NOM	MAX		
Number of Pins	N	14				
Pitch	е		1.27 BSC			
Overall Height	A	-	-	1.75		
Molded Package Thickness	A2	1.25	-	-		
Standoff §	A1	0.10	I	0.25		
Overall Width	E		6.00 BSC			
Molded Package Width	E1	3.90 BSC				
Overall Length	D	8.65 BSC				
Chamfer (Optional)	h	0.25	÷	0.50		
Foot Length	L	0.40	-	1.27		
Footprint	L1		1.04 REF			
Lead Angle	O	0°	-	-		
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.10	-	0.25		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-065C Sheet 2 of 2